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Abstract

Epileptic seizure detection and prediction by using noninvasive measurements such as

scalp EEG signals or invasive, intracranial recordings, has been at the heart of epilepsy

studies for at least three decades. To this end, the most common approach has been to

consider short-length recordings (several seconds to a few minutes) around a seizure,

aiming to identify significant changes that occur before or during seizures. An inherent

assumption in this approach is the presence of a relatively constant EEG activity in the

interictal period, which is interrupted by seizure occurrence. Here, we examine this

assumption by using long-duration scalp EEG data (21–94 hr) in nine patients with epi-

lepsy, based on which we construct functional brain networks. Our results reveal that

these networks vary over time in a periodic fashion, exhibiting multiple peaks at periods

ranging between 1 and 24 hr. The effects of seizure onset on the functional brain network

properties were found to be considerably smaller in magnitude compared to the changes

due to these inherent periodic cycles. Importantly, the properties of the identified network

periodic components (instantaneous phase) were found to be strongly correlated to sei-

zure onset, especially for the periodicities around 3 and 5 hr. These correlations were

found to be largely absent between EEG signal periodicities and seizure onset, suggesting

that higher specificity may be achieved by using network-based metrics. In turn, this

implies that more robust seizure detection and prediction can be achieved if longer term

underlying functional brain network periodic variations are taken into account.
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1 | INTRODUCTION

The task of detecting or predicting epileptic seizures has received tre-

mendous attention for more than 30 years (Mormann, Andrzejak,

Elger, & Lehnertz, 2007). Automated detection and prediction

algorithms based on electroencephalographic (EEG) measurements

attempt to characterize the transition from the inter-ictal to the ictal

state, by identifying EEG patterns that significantly deviate from the

inter-ictal state. For this reason, knowledge of the baseline inter-ictal

properties is vital. However, an inherent assumption commonly made
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is that EEG activity during this inter-ictal state is relatively constant

and interrupted by seizure occurrence. This assumption arises, at least

in part, because only short-length recordings (several seconds to

minutes) around seizure onset are typically examined.

However, assuming a constant baseline (inter-ictal state) is at odds

with the long-established influence of longer term biological rhythms

(e.g., the circadian rhythm) on physiological signals (Glass, 2001). These

signals include heartbeat dynamics and heart rate variability, blood pres-

sure and EEG among others and typically exhibit a 1/f behavior in the

frequency domain. Specifically, the influence of the circadian rhythm on

EEG signal properties, which results approximately in a main 24-hr peri-

odicity, has been demonstrated for almost half a century (Scheich,

1969). Furthermore, a weak ultradian modulation with a cycle of

approximately 90–120 min in the 9–11 Hz frequency band, as well as a

slower and stronger temporal modulation with 4 hr period in the

11–13 Hz band have been reported in 12-hr recordings during daytime

wakefulness from healthy subjects (Kaiser, 2008; Kaiser & Sterman,

1994). A strong periodicity in the EEG power during daytime with a

period around 3–4 hr, mostly in the fronto-central activity over 22.5 Hz,

as well as in parietal alpha activity, was reported in (Chapotot, Jouny,

Muzet, Buguet, & Brandenberger, 2000).

A number of studies have also demonstrated the effect of the cir-

cadian rhythm on EEG signal patterns in patients with epilepsy. In a

study of one patient suffering from epilepsy, circadian patterns were

clearly observable in certain intracranial EEG channel combinations

(Kreuz et al., 2004). In another study, the distribution of false seizure

predictions during the day and their relation to the sleep–wake cycle

was investigated, with the results revealing that the majority of false

predictions occurred during non-REM sleep (Schelter et al., 2006).

Therefore, a strategy to avoid false seizure predictions by taking into

consideration the influence of circadian rhythms and using adaptive

thresholds was proposed in a subsequent study (Schelter, Feldwisch-

Drentrup, Ihle, Schulze-Bonhage, & Timmer, 2011). More recent stud-

ies have also suggested that seizures tend to occur at specific times

during the day, which may be used to improve seizure prediction

(Karoly et al., 2017), and that multidien (multiple day) rhythms in inter-

ictal epileptiform activity obtained from intracranial EEG are corre-

lated to seizure occurrence (Baud et al., 2018).

In addition to examining the EEG signal properties originating

from one or a few channels of interest, the use of functional connec-

tivity patterns has been suggested as a promising approach, which

may improve our understanding of the emergence of epileptogenesis

and ictogenesis (Burns, Santaniello, Yaffe, Jouny, & Crone, 2014;

Geier, Bialonski, Elger, & Lehnertz, 2015; Kramer et al., 2011;

Lehnertz et al., 2014; Pittau, Grova, Moeller, Dubeau, & Gotman,

2012; van Mierlo et al., 2014). This is in agreement with recent evi-

dence that seizure onset may occur within a network of brain regions,

challenging the traditional definitions of focal and generalized seizures

(Berg & Scheffer, 2011; Lehnertz et al., 2014). Functional brain net-

works are often described using concepts from complex systems and

network theory (Rubinov & Sporns, 2010), aiming to quantify the

interplay between the dynamic properties of network constituents

(i.e., nodes and links) and the network topology. Similarly to EEG

signals, it has been shown that functional connectivity patterns are

influenced by biological rhythms. For instance, the long-term proper-

ties of the functional brain networks of healthy subjects have been

studied in (Ferri, Rundo, Bruni, Terzano, & Stam, 2007, 2008), where

it was shown that these networks moved toward a small-world orga-

nization (high clustering coefficient and small characteristic path

length) during the transition from wakefulness to sleep.

Global properties of epileptic networks around seizure onset have

been characterized using measures such as the clustering coefficient,

shortest path length/efficiency or synchronizability (Lehnertz et al.,

2014; Rubinov & Sporns, 2010). Additional studies have explored the

relevance of local network properties, such as the importance of indi-

vidual nodes in the context of seizure dynamics (Burns et al., 2014;

Geier, Bialonski, et al., 2015; Kramer, Kolaczyk, & Kirsch, 2008;

Varotto, Tassi, Franceschetti, Spreafico, & Panzica, 2012; Wilke,

Worrell, & He, 2011; Zubler et al., 2015). Overall, studies related to

seizure brain networks have suggested a transition from a more ran-

dom functional network topology before seizure to a more regular

topology during seizure, followed by a return to random topology

after seizure, which may suggest a common mechanism of ictogenesis

(Lehnertz et al., 2014). On the other hand, findings related to node-

specific epileptic network characteristics have been less consistent,

with important nodes not necessarily confined to the epileptic focus

(Burns et al., 2014; Geier, Kuhnert, Elger, & Lehnertz, 2013; Geier &

Lehnertz, 2017; Lehnertz et al., 2014).

The aforementioned changes in short-term network characteris-

tics around seizure onset are accompanied by pronounced fluctua-

tions of local and global network properties over longer term periods

(Geier et al., 2013; Kramer et al., 2011; Kuhnert, Elger, & Lehnertz,

2010). The existence of long–term periodic fluctuations in the proper-

ties of functional brain networks was demonstrated in (Kuhnert et al.,

2010), where it was also shown that these fluctuations exhibit larger

amplitude compared to fluctuations that can be attributed to seizure

activity and status epilepticus. The power spectral density estimates

of the network clustering coefficient and average shortest path

length, averaged over all patients, revealed a strong circadian compo-

nent at around 24 hr, as well as peaks at 12 and 8 hr (Kuhnert et al.,

2010). The long-term evolution of degree-degree correlations

(assortativity) in functional epileptic brain networks was investigated

in (Geier, Lehnertz, & Bialonski, 2015), with the results revealing that

time-resolved assortativity exhibits large fluctuations with a periodic

structure that could be attributed to daily rhythms. Similarly, changes

due to epileptic seizure onset, particularly pre-seizure alterations,

were found to contribute marginally to the aforementioned long-term

fluctuations (Geier, Lehnertz, & Bialonski, 2015). Furthermore, it has

been suggested that the epileptic focus is not consistently the most

important node in the network, but node importance may vary drasti-

cally over time (Geier et al., 2013; Geier & Lehnertz, 2017).

Overall, there is growing evidence that long-term periodic varia-

tions in EEG signals and functional brain networks are correlated to

epileptic seizure onset. However, most epilepsy detection and predic-

tion studies utilize short segments of data around seizures, implicitly

assuming a relatively constant inter-ictal baseline. Improving the
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performance of current seizure detection/prediction algorithms may

be achieved by taking into account these underlying long-term varia-

tions, which in turn relies on the availability of continuous, long-

duration patient recordings. In this context, here we rigorously investi-

gate the long-term periodic properties of scalp EEG-based functional

brain networks and their relation to seizure onset using long-duration

data recorded from nine patients with epilepsy. Specifically, we con-

struct functional brain networks and systematically examine their

temporal structure over multiple time scales by using graph-theoretic

measures to summarize network properties, as well as a novel mea-

sure based on graph edit distance to quantify brain topology. Beyond

the 24-hr circadian periodicity, we show that shorter periodicities at

around 3, 5, and 12 hr are consistently observed in brain networks,

and that these periodicities result in network property fluctuations of

higher amplitude compared to seizure-induced changes. Furthermore,

we investigate whether seizures occur preferentially at specific phases

of these periodic components. Using circular statistics, we show that

seizures occur preferentially at specific instantaneous phases of these

components, particularly for the shorter periodicities (around 3 and

5 hr). This suggests that quantifying the characteristics of long-term

network periodic fluctuations and their phase in particular may facili-

tate reliable detection/prediction of seizure onset. Finally, we show

that correlations to seizure onset are much stronger for measures

related from functional networks compared to periodicities in the EEG

signals per se. Overall, our findings demonstrate the important role of

biological rhythms on long-term functional connectivity patterns and

seizure onset, which could be exploited for designing more reliable

seizure detection and prediction algorithms.

2 | METHODS

2.1 | EEG recording and preprocessing

Long-term video-EEG recordings were collected from nine patients

with epilepsy at the Neurology Ward of the Cyprus Institute of Neu-

rology and Genetics. The study was approved by the Cyprus National

Bioethics Committee. All subjects gave written informed consent in

accordance with the Declaration of Helsinki. Five patients were moni-

tored using an XLTek (Natus Medical Incorporated, CA) scalp EEG

recording system (Patients 1–5), while the remaining four were moni-

tored with a Nicolet (Natus Medical Incorporated, CA) system

(Patients 6–9). Table 1 provides demographic and epidemiological

information for the patients, as well as the duration of the recordings.

Seizures and sleep intervals were identified and marked by specialized

neurophysiologists (coauthors ESP and SSP).

Twenty-one electrodes were placed according to the 10–20

international system with two additional anterotemporal electrodes.

In addition, four electrodes were used to record the electrooculogram

(EOG) and electrocardiogram (ECG) signals, respectively. The data

were recorded at a sampling rate of 200 and 500 Hz for the XLTek

and Nicolet systems, respectively, using a cephalic reference, Cz, that

was not part of the scalp derivations used to display the recorded

channels. The EEG and EOG signals were band-pass filtered between

1 and 45 Hz to remove line noise and muscle artifacts. The Lagged

Auto-Mutual Information Clustering (LAMIC) algorithm (Daly,

Nicolaou, Nasuto, & Warwick, 2013; Nicolaou & Nasuto, 2007) was

applied to remove ocular artifacts using simultaneously recorded EOG

recordings (2 channels) as reference signals (Nicolaou & Nasuto,

2003; Ziehe & Müller, 1998).

Subsequently, the data were converted to the bipolar montage,

as this montage was found to be more robust to volume conduction

effects in the present case, where a limited number of electrodes was

available (Christodoulakis et al., 2013). According to this montage,

pairs of EEG electrodes placed in nearby locations of the scalp are

used to obtain the time-series by subtracting the corresponding mea-

surements, forming the pairs Fp1-F7, F7-T3, T3-T5, T5-O1, Fp2-F8,

F8-T4, T4-T6, T6-O2, Fp1-F3, F3-C3, C3-P3, P3-O1, Fp2-F4, F4-C4,

C4-P4, P4-O2, Fz-Cz, and Cz-Pz.

2.2 | Functional brain network construction

Each bipolar time series, for example, Fp1-F7, corresponds to a node

in the network; note that the nodes do not change over time. We

identified edges (i.e., connections) between nodes by quantifying

time- and frequency-domain correlations between the corresponding

EEG time series. To track network-related changes over time, we used

5-s non-overlapping windows, as this window length was previously

found to yield a good compromise between the amount of data

needed for accurate calculation of correlation metrics and temporal

resolution for identifying seizure-related changes in the network mea-

sures (Christodoulakis et al., 2013). We quantified the correlation

between all time-series pairs within each time window using the fol-

lowing measures: cross-correlation, corrected crosscorrelation, and

coherence (subsections 2.2.1–2.2.3). Finally, we constructed binary

graphs by using a threshold that was specific to each correlation mea-

sure as discussed in Section 2.2.4.

2.2.1 | Cross-correlation

The normalized cross-correlation between any pair of EEG time series

x(t) and y(t) corresponding to two different nodes was calculated as

follows:

Cxy τð Þ= 1
n−τ

Xn−τ

t=1

x tð Þ
σx

� �
y t+ τð Þ

σy

� �
ð1Þ

where σx and σy are the SDs of x and y, respectively. Cxy was com-

puted for a range of values for the lag τ; for the desired range of

[−100 100] ms chosen here, τ was within [−20 20] and [−50 50] time

lags for the data recorded with the XLTek and Nicolet systems,

respectively, due to the different sampling rates employed by the two

systems (200 and 500 Hz). Cxy takes values between −1 and 1,

with 1 indicating perfect linear correlation, −1 perfect linear
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anti-correlation, and 0 no correlation. The maximum of the absolute

value of cross-correlation maxτ|Cxy| over the chosen range of τ values,

was used to quantify the degree of correlation between all node pairs

within a given time window.

2.2.2 | Corrected cross-correlation

Cross-correlation often takes its maximum at zero lag in the case of

scalp EEG measurements (Nunez & Srinivasan, 2006). Consistent

zero-lag correlations could be both due to real interaction and volume

conduction effects (or common signal in the reference), whereby cur-

rents from underlying sources are conducted instantaneously through

the head volume to the EEG sensors (i.e., assuming that scalp poten-

tials have no delays compared to their underlying sources (quasi-static

approximation) (Christodoulakis et al., 2013; Nunez & Srinivasan,

2006). In principle, true direct interactions between any two physio-

logical sources will typically incur a nonzero delay due to transmission

speed, provided that the sampling frequency is high enough to cap-

ture such delays, although one cannot exclude that true interactions

occur at zero-lag (Stam, Nolte, & Daffertshofer, 2007). At the expense

of missing some true interactions at zero lag, one could measure inter-

actions not occurring at zero lag, which are free from the common

artifacts of volume conduction and common signal in the reference.

To this end, we calculated the corrected cross-correlation, which is a

measure of the cross-correlation asymmetry, as defined in (Nevado

et al., 2012), by subtracting the negative-lag part of Cxy(τ) from its

positive-lag counterpart:

�Cxy τð Þ=Cxy τð Þ−Cxy −τð Þ for τ >0 ð2Þ

Note that �Cxy τð Þ provides a lower bound estimate of the nonzero-

lag cross correlations and it typically yields much smaller values com-

pared to Cxy. As in the case of cross-correlation, the maximum within

the selected range of time lags ([−100 100] ms) was used to quantify

correlation between all node pairs.

TABLE 1 Patient characteristics

Patient
Length of
recordings

Age (age at
the onset) Gender Diagnosis/localization

Number of

recorded
seizures

Seizure
frequency Interictal activity

1 46 hr 10 (10) M Left temporal lobe

epilepsy

1 2/year No abnormalities

2 22 hr 28 (10) F Intractable focal onset

epilepsy

2 1/week Small amplitude spikes/polyspike

wave complexes, trains, right

posterior quadrant.

3 68 hr 41 (22) F Complex partial seizures 2 45/year Sharp waves/polyspike wave

complexes at T3, F3, T3-T5

4 94 hr 28 (12) F Intractable generalized

epilepsy

1 Several/month Frequent spike wave activity F8

and T4, also independently at

T3. During sleep, generalized

polyspike wave complexes

associated with single whole

body jerks.

5 36 h 51 (11) M Longstanding generalized

epilepsy

1 3/year Rare F8-T4, T4, F7-T3

6 21 hr 26 (24) M Focal onset epilepsy 1 Seizure free Interictal F8-T4. Rare low

amplitude irregular isolated

sharp waves or low amplitude

spike and wave

7 71 hr 23 (10) F Complex partial seizures 2 2/month Frequent left frontotemporal

spikes at Fz.

8 27 hr 25 (9) F Genetic generalized

epilepsy

6 Every morning

(absence)

Frequent sharp waves right frontal

and left temporal

simultaneously.

Right frontal spikes with

secondary generalization into

spike wave discharges.

Generalized polyspike wave

during sleep.

9 69 hr 21 (15) F Focal onset epilepsy 4 Daily Spikes during sleep at T4, T6, F7,

F7-T3 independently
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2.2.3 | Coherence

Coherency may be viewed as a measure of cross-correlation in the

frequency domain as it quantifies the linear correlation between two

signals x and y as a function of the frequency f. It is defined as the

ratio between the cross-spectral density Sxy(f ) over the product of the

auto-spectral densities of x and y (Sxx(f ) and Syy(f ), respectively).

Coherency is a complex number, as the cross-spectral density is com-

plex. Therefore, in many cases coherence (or the squared coherence),

which is defined as the magnitude of coherency (or its square), is

employed as a measure of correlation in the frequency domain, that is,

kxy fð Þ= Sxy fð Þh ij jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sxx fð Þh ij j Syy fð Þh ij jp ð3Þ

The value of kxy(f ) ranges between 0 and 1, with 1 indicating per-

fect linear correlation and 0 no correlation between x and y at fre-

quency f. We calculated the maximum coherence value between EEG

signals for all nodes both for the broadband signals (1-45 Hz), as well

as within the following frequency bands; delta (1-4 Hz), theta

(4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-45 Hz).

The maximum coherence value within each frequency band was used

to quantify correlation between all node pairs.

2.2.4 | Network binarization

To obtain a binary (rather than weighted) network, we applied

thresholding to identify strongly correlated nodes, which were subse-

quently assigned edges with a weight of 1. Binarization by

thresholding is a common practice for the construction of brain net-

works. Its implementation is simple and quick, which is important in

cases where real-time implementation is needed (e.g., seizure detec-

tion/prediction) and it also provides a way to compare brain networks

between different subject populations/cohorts by selecting the

threshold value such that a desired percentage of the total network

nodes is included in the binary network. In this context, the threshold

value was selected such that networks with similar average degrees

were obtained for different correlation measures. For the three exam-

ined correlation measures (as well as alternative ones—see

(Christodoulakis et al., 2013)), it was found that different threshold

values yielded very similar results in terms of the time evolution and

the corresponding periodicity patterns for all network measures

(Figure S1). This was found to be the case except when the threshold

value was too high (close to one for correlation or coherence) yielding

disconnected graphs, or too low (close to zero), yielding densely/fully

connected graphs. For threshold values between these two extremes,

the resulting graphs exhibited similar properties for shorter data seg-

ments (Christodoulakis et al., 2013). For the longer duration data

examined here, the effects of threshold value are discussed in

Section 3.1. We also used the multivariate phase randomization

method to generate surrogate data based on the original time series

to construct binary networks (Theiler et al. 1992). However, this

method yielded densely connected networks similar to those obtained

by setting a fixed, low threshold value. They also yielded long-

duration temporal patterns for functional networks for which some

periodicities (particularly the circadian periodicity) were not as clear.

Therefore, taking also into account that thresholding can be

implemented much faster, which is important for detection/prediction

algorithms, we present results using the thresholding method.

2.3 | Functional brain network periodicities

The evolution of functional brain networks over time was quantified

twofold: First, we computed summative graph properties (average

degree, global efficiency, and clustering coefficient; Sections 2.3.1–

2.3.3) as a function of time. We also performed direct comparisons of

the network topologies at different times by means of the graph edit

distance, which quantifies dissimilarity between different graphs

(Section 2.3.4). In the following, let n denote the number of nodes of

the network (in our case n = 18) and N the set of all nodes.

2.3.1 | Average degree

The degree ki of a node i is defined as the number of nodes j in the

network to which node i is connected via an edge, eij; that is, the num-

ber of edges incident to i. The average network degree is given by

(Rubinov & Sporns, 2010):

K =
1
n

X
iϵN

ki ð4Þ

The average degree of a graph quantifies its overall connectivity.

2.3.2 | Global efficiency

The average degree does not provide any information regarding the

edge distribution and information flow efficiency in the network. This

can be captured by the shortest (or geodesic) path length dij between

a pair of nodes i and j. It is defined as the minimum number of edges

that must be traversed to get from node i to j. The characteristic path

length is defined as the average shortest path length over all pairs of

nodes in the network (Rubinov & Sporns, 2010):

L=
1

n n−1ð Þ
X

i, jϵN, i 6¼j

dij ð5Þ

However, the characteristic path length is well defined only for

pairs of nodes that are connected through a path. If any two nodes i

and j are not connected through a path, the shortest path length

between them is dij = ∞, hence, the average shortest path length for

the network becomes L = ∞ . A workaround for this is to consider

only pairs of nodes that are connected through a path, but this does
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not consider the connectivity of the entire network. To overcome this

limitation, the efficiency between a pair of nodes, defined as the

inverse of the shortest distance between the nodes, 1=dij , was pro-

posed. The global network efficiency is subsequently defined as the

average efficiency over all pairs of nodes (Latora & Marchiori, 2001):

E =
1

n n−1ð Þ
X

i, jϵN, i 6¼j

1
dij

ð6Þ

Therefore, when a path between two nodes does not exist, the

resulting efficiency is zero.

2.3.3 | Clustering coefficient

A cluster is defined as a group of nodes that are highly inter-

connected. The clustering coefficient Ci of a node i is defined as the

fraction of existing edges between nodes adjacent to node i over the

maximum possible number of edges (Watts & Strogatz, 1998):

Ci =
2ti

ki ki−1ð Þ ð7Þ

where ki is the degree of node i, and ti denotes the number of edges

ejj0 between nodes j and j
0
that are both connected to i. The clustering

coefficient of the network C is defined as the mean clustering coeffi-

cient across all nodes:

C =
1
n

X
i∈N

Ci ð8Þ

2.3.4 | Graph edit distance

Using the summative graph measures defined above, the general char-

acteristics of two (or more) functional brain networks corresponding

to different times may be compared. If these measure values (degree,

clustering coefficient, efficiency) corresponding to two different net-

works differ substantially, it is reasonable to assume that the

corresponding networks differ in their topology. However, comparing

networks with similar network summative measure values can be

inconclusive. Therefore, to quantify topological difference between

graphs in more detail, we compared every pair of graphs directly in

terms of their structure using the graph edit distance (Dickinson,

Bunke, Dadej, & Kraetzl, 2003). This measure quantifies similarity

between two graphs as the minimum number of insertions and dele-

tions of edges, which makes the two graphs identical, assuming they

have the same nodes. Essentially, the graph edit distance gAB between

two functional brain networks A and B is equal to the number of

edges that exist in one of the two graphs only. Note that graph edit

distance is a symmetric measure, since an insertion of an edge in one

graph is equivalent to a deletion in the other.

2.3.5 | Periodicity estimation

To characterize the periodicities that arise in functional brain network

characteristics over time, we investigated the evolution of both the

resulting graph-theoretical summative network properties and net-

work structure. Each of the three summative network properties—

average degree, global efficiency, and clustering coefficient—provides

a single value per network, yielding a single time series per measure.

To characterize the periodic structure of these time series, we used

the Lomb-Scargle (LS) periodogram to estimate their power spectral

density (PSD) (more details are given in the Section S2).

We also investigated the existence of periodicities in the network

structure by developing a novel measure based on the graph edit dis-

tance. Specifically, we considered the course of the functional brain

network over time as a vector A(t), whereby each time lag t corre-

sponds to one 5-s window. Subsequently, we compared this vector

with shifted copies of itself and, for each shift lag τ, we calculated the

average graph edit distance Gged(τ) between all network pairs that are

separated by τ time lags:

Gged τð Þ= 1
n−τ

Xn−τ

t=1

gA tð ÞA t + τð Þ ð9Þ

Similarly, to the autocorrelation function, this measure can reveal

periodic changes in the network structure over time, complementing net-

work summative properties. Note that, for any shift value τ, the lower

the value of Gged(τ) is, the more similar the corresponding graphs are.

2.4 | Correlation of functional network
periodicities to seizure onset

2.4.1 | Calculation of periodic component phase
distributions

To investigate the relation of seizure onset to brain network periodic-

ities, we initially calculated the instantaneous phase for each of the

main identified periodic components at seizure onsets and obtained

the corresponding phase distributions. Subsequently, we used circular

statistics to examine whether seizure onsets occurred at specific pre-

ferred phases. To obtain the required phase distributions, we initially

performed zero-phase digital filtering of the average degree time

series to obtain band-limited signals around the main identified peri-

odicities. We considered ±0.5h before and after the main period of

each component on a subject-to-subject basis to account for physio-

logically expected individual differences. We investigated the periodic

components with mean values across subjects at 3.6, 5.4, 12, and

24 hr, as these were consistently identified for all patients (Table 2).

Similar periodic components were obtained using the remaining con-

nectivity measures (clustering coefficient and efficiency) for all

patients, whereby virtually identical peaks were identified (Table S1),

reflecting the fact that the network topology was also characterized

by the same periodic structure (Figure 4). In the interest of space, we
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present the results obtained using the average degree. Subsequently,

we applied the Hilbert transform to the resulting bandlimited signals

to calculate the instantaneous phase of each periodic component at

the time of seizure onset for all patients and seizures. To evaluate the

specificity of connectivity measures versus EEG signal properties, we

repeated this procedure for the time-resolved power of the averaged

EEG signal across all electrodes and subsequently correlated the

resulting long-term periodicities to seizure onset.

2.4.2 | Circular statistics

The correlation of the resulting phase distributions for each periodic

component to seizure onset was investigated using circular statistics.

Circular statistics are suitable for data that are defined within an angu-

lar scale, as in the present case, whereby there is no designated zero

and, in contrast to a linear scale, the designation of high and low

values is arbitrary (Berens, 2009). In this context, the mean resultant

vector after transforming the data points to unit vectors in the two-

dimensional angular plane is given by:

�r =
1
N

X
I

ri ð10Þ

where rι is the unit vector. The length of the mean resultant vector is

a crucial quantity for the measurement of circular spread or hypothe-

sis testing in directional statistics. The closer it is to one, the more

concentrated the data sample is around the mean direction. The resul-

tant vector length is computed by:

TABLE 2 Main periodic components
identified in the network average degree
for all subjects

Periodic peak
location mean (range) P1 P2 P3 P4 P5 P6 P7 P8 P9

24.0 (23.6–24.5) √ N/A √ √ √ √ √ N/A √

12.0 (11.8–12.2) √ √ √ √ √ √ √

5.4 (4.8–5.9) √ √ √ √ √ √ √ √ √

3.6 (3.2–3.8) √ √ √ √ √ √ √ √ √

1.7 (1.7–1.9) √ √ √ √ √

F IGURE 1 Top: Network average degree (a), global efficiency (b), and clustering coefficient (c) for Patient 4 as a function of time, obtained
using cross correlation for quantifying pairwise correlations. For presentation purposes, the obtained network properties have been smoothed
using a moving average filter. The vertical dashed line indicates seizure onset and the gray bars indicate sleep intervals. Bottom row:
Corresponding autocorrelation sequences. A periodic pattern with a main period equal to around 24 hr can be observed. Functional brain
networks during sleep periods were found to be more connected and clustered compared to awake periods
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R= �rk k ð11Þ

The circular variance is related to the length of the mean resultant

vector (Berens, 2009) and is defined as:

S=1−R ð12Þ

In contrast to variance on a linear scale, circular variance S is

bounded between [0, 1]. It is indicative of the spread in a data set.

Specifically, for samples pointing toward the same direction, the

corresponding mean vector has a length close to 1 and circular vari-

ance is small. For samples spread out evenly around the circle, the

mean vector has a length close to 0 and circular variance is close to its

maximum value of one.

We investigated whether phase values at seizure onset times

were distributed uniformly around the circle from 0 to 2π or whether

a common mean direction existed by using the instantaneous phase

obtained for all seizures and patients both for network and EEG mea-

sures as described above. To assess significance, we applied the Ray-

leigh test with the following common null hypothesis H0: the

population is distributed uniformly around the circle (Fisher, 1993).

The Rayleigh test is particularly suited for detecting a unimodal

deviation from uniformity. The approximate p-value under H0 can be

computed as (Zar, 1999):

F IGURE 2 Network average degree (a), global efficiency (b), and clustering coefficient (c), and their corresponding autocorrelation sequences,
respectively, (d)-(f) for Patient 4 as a function of time obtained using corrected cross correlation for quantifying pairwise correlations. For
presentation purposes, the obtained network properties have been smoothed. The vertical dashed line indicates seizure onset and the gray bars
indicate sleep intervals. The observed patterns are very similar to those obtained when using standard cross correlation (Figure 1)

F IGURE 3 Periodogram of the time-resolved average degree of
the functional brain networks of Patient 4 using cross-correlation (top
panel) and corrected cross correlation (bottom panel). The inset
graphs show a zoomed-in version for periods between 3 and 10 hr.
The periodic components that were consistently identified for all
subjects (located at 3.4, 5.9, 11.8, and 23.6 hr for this particular
subject) are marked on the plot. The dotted horizontal lines denote
the statistical significance level (p = .05)
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P= e 1+4N+4 N2R2
nð Þ 1+2Nð Þð Þ ð13Þ

where Rn = R × N and N is the number of observations. Small p values

indicate a significant departure from uniformity and subsequently

rejection of the null hypothesis. This was done for all seizures (twenty)

corresponding to nine different patients.

To account for the fact that we had multiple seizures for some

subjects and thus the statistics could be biased toward patients with

multiple seizures (mainly Patients 8 and 9), we also calculated

corrected p-values by creating groups of nine samples (i.e., one seizure

per patient) for all possible combinations and periods (3.6, 5.4,12, and

24 hr) (Zar, 1999). For the 24-hr circadian periodic component, these

groups included six samples, since the recordings of only six patients

were longer than 24 hr. The corrected p-values were computed by

applying the Rayleigh test (Equation (13)). All the above quantities

were obtained using the CircStat toolbox (Berens, 2009) in Matlab

(Mathworks, Natick, MA).

3 | RESULTS

Representative individual results are provided for Patient 4, from

which the longest recording (94 hr) was obtained.

3.1 | Functional brain network periodicities

3.1.1 | Effect of threshold value on time-resolved
network properties

The effect of the threshold value on the time-resolved average net-

work degree is shown in Figure S1. It can be observed that the

resulting patterns are similar for threshold values between 0.2 and

0.8. As these temporal patterns and the corresponding periodicities—

as opposed to the absolute network measure values—were of interest

in the present study, the precise threshold value did not influence the

main results described below for a wide range of threshold values.

F IGURE 4 Periodicity in the network
structure as assessed with the average graph edit
distance for all patients. The power spectral
density (PSD) of the average graph edit distance
at time lag τ (Gged(τ)—Equation (9)) illustrates the
periodicity in the structure of the network
topology. The inset graph shows the zoomed in
PSD between 3 and 10 hr. The main peaks agree
with those identified by the summative network
measures (Table 2; Table S1)
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Hence, we selected the latter independently for each correlation mea-

sure, aiming to obtain similar average degree values across all mea-

sures. Specifically, for cross-correlation and coherence the threshold

was set to 0.65, whereas for corrected cross-correlation it was set

to 0.20.

3.1.2 | Time domain correlation measures

Figure 1a-c shows the time course of the three summative network

properties of interest (average degree, global efficiency, and clustering

coefficient) in the case of standard cross-correlation. The obtained

functional brain networks were less connected and less clustered

when the patient was awake compared to sleep (gray-shaded bars).

This pattern occurred periodically, in cycles of approximately 24 hr,

which is further illustrated by the corresponding autocorrelation

sequences (Figure 1e-f). Similar results were obtained when corrected

cross-correlation was used for constructing the networks (Figure 2). In

addition to the main 24 hr cycles, it can be observed that additional

periodic components at shorter time scales coexist in the time course

of the obtained functional brain network measures; note, for example,

the spikes that occur during awake and sleep times separated by

approximately 75 min. These shorter term periodicities are examined

in more detail in Section 3.1.3.

3.1.3 | Frequency domain correlation measures

The average network degree obtained using coherence within the six

frequency bands of interest is shown in the Supporting Information

(Figure S2). Global efficiency and clustering coefficient yielded similar

patterns for all frequency bands and are not shown separately. Except

for the gamma band, the 24 hr periodicity is clear for all other fre-

quency bands, particularly for the alpha band, followed by the beta

band, and finally the delta and theta bands. Overall, these results sug-

gest that the alpha and beta bands dominate the long-term broadband

EEG-based network properties.

3.1.4 | Periodicities at shorter time scales

In addition to the main 24 hr periodicity observed for all network

measures, periodicities at shorter time scales were also observed

(Figures 1 and 2; Figure S1). Figure 3 shows the LS periodogram for

F IGURE 5 Average degree obtained using cross-correlation around seizure onset for time intervals of increasing duration for three patients
(A: Patient 4, B: Patient 3, C: Patient 8): (a) ±2 min around seizure onset, (b) ±5 min, (c) ±15 min, (d) ±30 min, (e) ±1 hr, (f) ±2 hr. Seizure onset and
end are indicated by the dashed and dotted vertical lines, respectively. Whereas for smaller intervals (±2 to ±5 min—Panels a, b) an increase in the
average degree just before seizure onset, followed by a decrease persisting after seizure end, can be observed, the amplitude of this change is
considerably smaller when compared to longer term fluctuations in network connectivity (Panels c-f)
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the average degree of Patient 4 obtained from cross-correlation and

corrected cross-correlation (Figures 1 and 2, respectively). The peaks

in the periodogram correspond to different periodic components and

have been marked accordingly. Table 2 summarizes the main periodic

peaks for the average degree, which were consistent across all

patients. A peak was deemed consistent if its location differed by a

maximum of half an hour compared to the mean peak location across

subjects. Note that the 24-hr periodicity is absent for patients for

whom the recordings were shorter than 24 hr. Periodic components,

which were consistent across patients were observed at the following

mean locations: 3.4 hr (range: 3.2–3.8 hr), 5.4 hr (range: 4.8–5.9 hr),

12 hr (range: 11.8–12.2 hr), and 24 hr (range: 23.6–24.5 hr), while a

component with an average period of 1.7 hr (range 1.7–1.9 hr) was

identified in five out of nine patients. As mentioned above, virtually

identical results were obtained for network efficiency and clustering

coefficient (Table S1).

3.1.5 | Periodicities in network topology

In addition to examining the evolution of summative brain network

measures over time, we investigated the evolution of their topology

using the average graph edit distance (Equation (9), Section 2.3.5).

Note that for the present case, similarity between graphs at different

time points is indicated by the presence of a local minimum. The main

periodic peaks revealed by the LS periodogram of the average graph

edit distance Gged(τ) are shown in Figure 4 for all patients. These peaks

are in agreement to those identified using the average degree

(Figures 1 and 2, Table 2) and the other summative network proper-

ties (Table S1). This finding was consistent across all nine patients,

suggesting that long-term EEG-based network topology is character-

ized by a similar periodic structure to the summative properties;

hence, the long-term variations of the latter accurately reflect the

corresponding variations in the underlying network topology. In turn,

this implies that summative measures can be used to examine the cor-

relation of brain connectivity patterns to seizure onset (Section 3.3).

3.1.6 | EEG signal power periodicities

To complement the results related to functional brain networks, we

investigated the long-term periodicities in the recorded scalp EEG sig-

nals. Specifically, we calculate the power of the average EEG signal

over all electrodes within the six frequency bands of interest (broad-

band, delta, theta, alpha, beta, and gamma) within the same 5 s sliding

windows and show the obtained results in the Supplementary material

for Patient 4 (Figure S3). Results were found to be similar across

patients. The main circadian periodicity is evident mostly in the broad-

band, beta, and gamma signal power. Compared to the observed peri-

odicities in network summative properties using coherence (average

F IGURE 5 (Continued)
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degree; Figure S2), there exist similarities (mostly for the beta band

and also for the theta and delta bands). However, pronounced differ-

ences can be observed for the alpha and gamma bands. Specifically,

the average network degree yielded a clear circadian periodicity for

the alpha band (Figure S2d), which was not as evident for the EEG sig-

nal. On the other hand, the EEG signal power exhibited a clearer peri-

odicity within the gamma band compared to the network average

degree (Figure S2f). Finally, the results suggest that during sleep, the

EEG delta and theta power increased (Figure S3b-c), while beta and

gamma power decreased (Figure S3e-f), which suggests an overall

slowing of the sleep EEG in agreement to previous studies (Bazil &

Walczak, 1997; Bruzzo et al., 2008; Minecan, Natarajan, Marzec, &

Malow, 2002).

3.2 | Effects of seizure onset on brain network
properties

Figure 5 shows the average degree for three patients (A: Patient 4, B:

Patient 3, and C: Patient 8) obtained using cross-correlation

(Figure 1a) within segments of increasing duration around one

recorded seizure from each patient. In panels (a-b), where ±2 and

±5 min around the seizure onset are plotted, an increase in the aver-

age network degree slightly before seizure onset can be observed,

which gradually decreases after the onset until it reaches a lower level

compared to its pre-seizure value. However, when longer intervals are

considered (Figure 5c-f, where intervals of ±15 min or longer are

shown), it can be observed that the changes in network connectivity

occurring close to seizure onset have a rather small amplitude com-

pared to the slower fluctuations in network connectivity (e.g., those

occurring during the transition from sleep to awake and vice versa).

This was a consistent observation across different seizures and

patients and implies that distinguishing seizure-related from

physiologically-related connectivity changes may present considerable

challenges. We provide additional examples for seizures recorded

F IGURE 5 (Continued)

TABLE 3 Mean resultant vector length values R for the phase
distributions obtained from network average degree and EEG signal
power (all seizures)

Signal

R

3.6 hr 5.4 hr 12 hr 24 hr

Average degree 0.97 0.98 0.85 0.72

Power 0.28 0.18 0.33 0.19

Note: In all cases, the average network degree yielded a vector that was

more concentrated around its mean value, suggesting a clear correlation

between seizure onset and instantaneous phase, particular for the 3.4 and

5.6 hr periodicities.
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F IGURE 6 Instantaneous phases of the network average degree and EEG signal power at seizure onset for the main identified
periodicities (3.4, 5.6, 12, and 24 hr). A: all patients, B: Patient 8, C: Patient 9. Left panels: location of instantaneous phases at seizure onset
on the unit circle. Right panels: Angular histograms of the corresponding phase distributions. The blue (green) circles denote the
instantaneous phase for each periodic component of the average degree (EEG signal power) at seizure onset for all seizures and patients and
the blue (green) lines denote the corresponding mean resultant vector length (R). For all periodic components, particularly the 3.4 and 5.6 hr
components, the phase distribution was found to be pronouncedly different from a uniform distribution or the average degree only—not for
signal power
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from all patients except Patient 4 (for whom the sole recorded seizure

is shown in Figure 5) in the Supplementary Material (Figures S4‑S11).

While the observed patterns in network degree around seizure onset

were not the same in all patients, the relation between the amplitude

changes within shorter and longer time windows around seizure onset

was found to be consistent.

3.3 | Correlation of functional brain network
periodicities to seizure onset

The instantaneous phases of the main identified periodicities (mean

periodicities: 3.6, 5.4, 12, and 24 hr) both for the average network

degree and the EEG signal power, are shown in Figure 6a for all sei-

zures from nine patients. The left panels show the instantaneous

phases on the unit circle, and the right panels show the corresponding

angular phase distribution histograms. The blue (green) circles (left

panels) denote the instantaneous phase of the average degree (EEG

signal power) periodic components at seizure onset, for all seizures

and patients. The blue (green) lines (right panels) indicate the direction

and magnitude of the mean resultant vector for the average degree

and EEG signal power, respectively.

A mean resultant vector with a larger length R (close to one) sug-

gests that the data sample is more concentrated around the mean

direction. The average degree yielded distributions that were concen-

trated, particularly for the shorter (3.4 and 5.6 hr) periodic compo-

nents. This is further illustrated in Table 3, where the corresponding

values of the mean resultant vector length R are given. The values

obtained for the average degree suggest that the instantaneous

phases are not distributed uniformly, but seizure onset occurs within

specific phase ranges. In contrast, the instantaneous phases obtained

from EEG signal power were more uniformly distributed around the

circle. Statistically, we examined the departure from uniformity using

Rayleigh's test for all seizures from all patients (Table 4; top two rows)

as well as taking all possible combinations of one seizure from each

patient (Table 4; bottom two rows), as described in Section 2.3.5. In

the latter case, we provide the minimum and maximum obtained p-

values separately. Overall, the resulting p-values (Table 4) suggest that

the null hypothesis (uniform distribution) was rejected in all cases for

the average degree but not for the EEG signal power. The largest

departures from uniformity (smaller p-values) were obtained for the

shorter periodicities.

To examine whether the aforementioned correlations were present

at an individual level, we repeated the same analysis for Patients 8 and

9, from which multiple seizures were recorded (6 and 4, respectively).

The results are presented in Figures 6b,c and Table 5, which contains

the p-values obtained from Rayleigh's Test. As before, the null hypothe-

sis (uniform distribution) was rejected with high confidence for the

average network degree phase distributions in both patients, while the

distribution of phases based on signal power did not depart significantly

from uniformity. These results suggest that long-term brain connectivity

is more strongly correlated to seizure onset compared to the EEG signal

properties both at the group and individual levels.

4 | DISCUSSION

We have examined the time evolution of functional brain networks in

patients with epilepsy using long-duration scalp EEG measurements

(between 22 and 94 hr). The brain networks were constructed using

three different correlation measures: cross-correlation, corrected

cross-correlation, and coherence. Network evolution over time was

TABLE 4 P-values obtained from Rayleigh's test comparing the instantaneous phase distributions of the average degree and EEG signal
power periodic components at seizure onset to the uniform distribution

Rayleigh's test 3.6 hr 5.4 hr 12 hr 24 hr

All patients/seizures Average degree 1.4 × 10-8 1.5 × 10-8 2 × 10-7 1.2 × 10-6

Signal power 0.22 0.52 0.11 0.68

One seizure per

patient—All

combinations

Average degree Min: 1.3 × 10-5;

max: 2.6 × 10-5
Min: 2.4 × 10-5; max: 2.6 × 10-5 Min: 0.001; max: 0.03 Min: 0.01; max: 0.04

Signal power Min: 0.11; max: 0.96 Min: 0.44; max: 0.97 Min: 0.41; max: 0.98 Min: 0.57; max: 0.99

Note: Top two lines: All seizures from all nine patients. Bottom two lines: One seizure per patient for all possible combinations. The corresponding

minimum and maximum p-values are given. In all cases, the null hypothesis (uniform distribution) was rejected with high confidence for the average

network degree, in contrast to the EEG signal power.

TABLE 5 P-values obtained from
Rayleigh's Test comparing the
instantaneous phase distributions to the
uniform distribution only for two subjects
with multiple seizures: Patient 9 (six
seizures) and Patient 10 (four seizures)

Rayleigh's test 3.6 hr 5.4 hr 12 hr 24 hr

Average degree Patient 8 8.3 × 10-5 1.5 × 10-5 5.9 × 10-5 -

Patient 9 0.008 0.007 0.008 0.04

Signal power Patient 8 0.13 0.14 0.07 -

Patient 9 0.52 0.47 0.46 0.93

Note: In all cases, the null hypothesis (uniform distribution) was rejected with high confidence for the

average network degree, in contrast to the EEG signal power.
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monitored using three widely used summative network measures:

average node degree, global efficiency, and clustering coefficient, as

well as a novel measure based on the graph edit distance. For all

examined correlation measures, it was found that network properties

exhibited a main 24 hr periodicity, as well as additional periodicities at

shorter time scales. Importantly, a strong correlation between the

average degree periodic components and seizure onset was revealed

by examining the distribution of the component instantaneous phases

at seizure onset, particularly for the shorter periodicities. These corre-

lations were much weaker or totally absent the EEG signal power peri-

odic components. Overall, these findings suggest that functional

network properties (average degree) are a more specific marker of the

probability of seizure onset and that they could be taken into account

for designing more robust seizure detection and prediction algorithms.

For instance, patient-specific correlation patterns between the instan-

taneous phase of long-term, network-based periodicities, and seizure

onset could be used as priors in such algorithms, along with other

EEG-based measures calculated around an occurring or impeding sei-

zure, to yield improved performance. This includes both, for example,

more accurate detection of seizure events with respect to timing, as

well as more reliable prediction of seizures with higher sensitivity and

specificity (false-positives).

The long-term patterns (several hours to days) of EEG signal and

functional brain network properties have been investigated in previous

studies; however, this has been done mainly using intracranial recordings

(Geier et al., 2013; Geier & Lehnertz, 2017; Geier, Lehnertz, & Bialonski,

2015; Kramer et al., 2011; Kreuz et al., 2004; Kuhnert et al., 2010; Schad

et al., 2008; Schelter et al., 2011). The use of scalp EEG has been consid-

erably more limited, due to the practical difficulties of collecting long-

term scalp EEG data. For instance, studies that have investigated the

modulation of scalp EEG signals by circadian and ultradian rhythms have

used short data segments collected at different times of the day

(Aeschbach et al., 1997, 1999). Studies focusing on the effect of sleep

(Ferri et al., 2007, 2008) have used scalp EEG overnight recordings. In

another study, long-term intracranial and scalp EEG data from six

patients were used to perform seizure detection and prediction using

integrate-and-fire neuron models (Schad et al., 2008). A clear 24 hr pat-

tern was reported and, even though iEEG achieved overall better perfor-

mance, scalp EEG yielded better performance for some patients.

More recently, several studies have used functional connectivity in

the context of seizure prediction and detection (Van Mierlo et al., 2011;

van Mierlo et al., 2014). However, in most of these, this was done using

relatively short-time windows around the seizure to perform seizure

prediction and localization of the epileptogenic focus. Additional studies

have used iEEG to examine the longer term properties of functional

brain networks in patients with epilepsy and their relation to seizure

onset (Baud et al., 2018; Campo, Principe, Ley, Rocamora, & Deco,

2018; Geier & Lehnertz, 2017; Geier, Lehnertz, & Bialonski, 2015;

Kramer et al., 2011; Kuhnert et al., 2010). To our knowledge, our study

is the first to investigate the long-term properties of functional brain

networks and their correlation with seizure onset using scalp EEG.

The obtained results are in general agreement with (Kuhnert

et al., 2010), who used iEEG data from 13 patients to monitor the

long-term properties (characteristic path length and clustering coeffi-

cient) of binary functional brain networks constructed using mean

phase coherence and thresholding to keep the mean degree constant

across consecutive windows. A prominent 24-hr rhythm, as well as

shorter time periodicities, were revealed in the temporal structure of

the examined network measures. Also, similarly to our results, the

effects of seizures on network measures were found to be consider-

ably smaller in amplitude compared to the effect of slower inherent

network fluctuations. However, the correlation between longer term

network fluctuations and seizure onset were not examined. In a sub-

sequent study, Geier, Lehnertz, & Bialonski, (2015) used a similar

methodology to investigate the long-term evolution of degree-degree

correlations (assortativity) in functional brain networks using iEEG

data from seven patients suffering from pharmacoresistant focal epi-

lepsy. Large fluctuations in time-resolved degree-degree correlations,

which exhibited periodic temporal structure largely attributed to daily

rhythms, were reported. Also, possible preseizure alterations were

found to contribute marginally to the observed long-term fluctuations.

The temporal and spatial variability of the importance of different

regions in epileptic brain networks were investigated in (Geier &

Lehnertz, 2017) using iEEG data from 17 patients to construct net-

works using mean phase coherence. The importance of network

nodes was assessed using strength centrality and betweenness cen-

trality, which were subsequently used to define important regions.

The importance of brain regions was found to fluctuate over time,

with the fluctuations mostly attributed to processes acting on time-

scales of hours to days, with a strong contribution of daily rhythms.

We extend the aforementioned studies, which examined the time

evolution of summative network measures only, by demonstrating that

the network topology is also characterized by the same periodic struc-

ture using a novel measure based on the graph edit distance

(Equation (9), Figure 4). In addition, our analysis revealed several addi-

tional periodicities at shorter time scales for all subjects both for the

network summative properties (Figure 3) and topology (Figure 4).

The most consistent of these shorter periodicities were harmonics of

the main circadian periodicity, which were observed for all subjects

(Figures 1 and 2 and Table 2; Table S1). In addition to these, subject-

specific additional peaks in the PSD of the examined network proper-

ties were observed (e.g., Figure 3). While these could be also due to

physiological fluctuations, it cannot be ruled out that they are due to

the reconfiguration of the underlying brain networks due to cognitive

processes, which has been suggested to occur over much faster time

scales—termed brain micro-states (Van De Ville, Britz, & Michel, 2010).

Figure 6 and Tables 3 and 4 suggest that there are significant cor-

relations between the network periodicities, particularly for the shorter,

consistent periodicities at 3.6 and 5.4 hr, and seizure onset. These

results extend our previous work (Anastasiadou et al., 2016) and are in

agreement with (Baud et al., 2018), which also used circular statistics to

investigate correlations between seizure onset and brain dynamics

using multiday iEEG data from 37 subjects. Specifically, in this latter

study, an epileptiform discharge measure was calculated on an hourly

basis, and the wavelet transform was applied to the resulting time series

and revealed that seizures tended to occur during the rising phase of
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subject-specific, multi-dien rhythms. The phase concentration was

tighter for multi-dien rhythms compared to circadian rhythms (Baud

et al., 2018). In another recent study, Karoly et al., (2017) investigated

the time of seizure occurrence using long iEEG records (total of over

3,500 days) from a cohort of nine subjects. They also concluded that

seizures tended to occur during preferred times of the day on a

subject-specific basis and that incorporating this information can

improve seizure prediction, using a logistic regression classifier.

Our approach demonstrates that the correlations between long-

term rhythms and seizure occurrence can be captured using noninva-

sive scalp EEG (instead of iEEG). Furthermore, scalp EEG typically

yields a more complete coverage of the brain, which is more suitable

for performing network-based analysis. The fact that the circadian

rhythm is correlated to seizure onset suggests that seizures tend to

occur at specific times for different subjects (Baud et al., 2018; Karoly

et al., 2017; Spencer et al., 2016). However, the additional fact that

seizure onset was more tightly correlated to the harmonics of the cir-

cadian periodicity suggests that in some cases, seizures do not neces-

sarily occur at the preferred time zone corresponding to the circadian

periodicity, but at times separated by multiples of the period of these

harmonic components (i.e., multiples of around 3.6 or 5.4 hr).

Importantly, EEG signal power was not found to be strongly corre-

lated to seizures (Figure 6), suggesting that network-based measures

are a more sensitive marker of seizure occurrence. As seizure-induced

changes in the network properties are considerably smaller in amplitude

compared to longer term rhythms (Figure 5), considering the instanta-

neous phase of the network-based periodicities can improve the sensi-

tivity and specificity of seizure detection and prediction algorithms.

Seizure detection/prediction solely based on constant, prespecified

thresholds may not be sufficient, as a large number of false-positives or

false-negatives may result, if the selected threshold is relatively low or

high, respectively. Importantly, the examined network measures do not

depend on selecting specific electrode locations.

4.1 | Study limitations

We had recordings of a relatively low number of subjects, which is

due to the practical difficulties of collecting long-term scalp EEG data.

Furthermore, a relatively low number of seizures was recorded in

most of these subjects. This was mainly due to clinical considerations.

Specifically, patients were monitored routinely for a maximum of

5 days. In cases where the question was epilepsy diagnosis, the

recording was terminated when a seizure with semiology fitting with

the clinical observations was recorded. When the scope was pres-

urgical evaluation, a larger number of seizures (typically 2–3) were

recorded to ascertain that these seizures were identical. Thus, the

number of seizures per patient was limited by these clinical consider-

ations. One could increase the sample of patients but the problem of

collecting a high number of seizures in the same patient is inherent to

the clinical situation. Therefore, when calculating circular statistics, we

corrected for the fact that we had multiple seizures for some subjects

to avoid biasing the results by these subjects. Note that previous

related studies were based on similar subject sizes, for example, (Baud

et al., 2018; Kuhnert et al., 2010).

To make sure that our analysis was not biased by the well-

established EEG volume conduction effects (Nunez & Srinivasan, 2006),

we used the bipolar montage (Christodoulakis et al., 2013) and consid-

ered three correlation measures (correlation, corrected cross-correla-

tion, and coherence) that are differentially sensitive to volume

conduction and reference choice effects. In general, while zero-lag cor-

relations could be due to both artefactual (volume conduction/

reference effects) and true correlations, non-zero lag correlations are

more likely to reflect true correlations of underlying sources (Stam et al.,

2007). By quantifying correlations using measures that are less sensitive

to volume conduction, such as corrected cross-correlation, one accepts

the risk of missing functionally meaningful correlations at zero-lag, but

at the same time, the most frequent artifacts for misinterpretation of

correlations are very much reduced (Stam et al., 2007). In the present

case, the obtained results were similar for all measures, suggesting that

volume conduction was not a major factor. Related to this, we have

recently performed a more extended comparison between a wider

range of correlation metrics and reference choices, showing that the

main identified periodic patterns and their correlation to seizures were

affected only when average referencing was used (Anastasiadou et al.,

2019), which is likely due to the low number of electrodes and inade-

quate electrode coverage of the scalp in the examined data set.

In conclusion, our results suggest that considering the long-term

structure of functional brain networks in patients with epilepsy yields

promise for achieving more reliable seizure detection/prediction. This

should be further demonstrated by assessing the performance of sei-

zure detection/prediction algorithms that utilize network-based infor-

mation (e.g., periodic component instantaneous phase) and comparing

it to alternative approaches. We aim to investigate this in future stud-

ies using experimental data from larger patient cohorts. This could

also allow investigating the effects of different factors (such as seizure

frequency and focus) on the correlations between connectivity and

seizure onset.
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