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Abstract

Despite enthusiasm about the potential for using fMRI-based functional con-

nectomes in the development of biomarkers for autism spectrum disorder (ASD), the

literature is full of negative findings—failures to distinguish ASD functional con-

nectomes from those of typically developing controls (TD)—and positive findings that

are inconsistent across studies. Here, we report on a new study designed to either

better differentiate ASD from TD functional connectomes—or, alternatively, to refine

our understanding of the factors underlying the current state of affairs. We scanned

individuals with ASD and controls both at rest and while watching videos with social

content. Using multiband fMRI across repeat sessions, we improved both data quan-

tity and scanning duration by collecting up to 2 hr of data per individual. This is about

50 times the typical number of temporal samples per individual in ASD fcMRI studies.

We obtained functional connectomes that were discriminable, allowing for near-

perfect individual identification regardless of diagnosis, and equally reliable in both

groups. However, contrary to what one might expect, we did not consistently or

robustly observe in the ASD group either reductions in similarity to TD functional

connectivity (FC) patterns or shared atypical FC patterns. Accordingly, FC-based pre-

dictions of diagnosis group achieved accuracy levels around chance. However, using

the same approaches to predict scan type (rest vs. video) achieved near-perfect accu-

racy. Our findings suggest that neither the limitations of resting state as a “task,” data

resolution, data quantity, or scan duration can be considered solely responsible for

failures to differentiate ASD from TD functional connectomes.
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1 | INTRODUCTION

Recent years have seen widespread interest in the potential for func-

tional connectivity MRI (fcMRI) to serve as a biomarker or

neuroendophenotype for autism spectrum disorders (ASDs). How-

ever, despite this enthusiasm, existing studies have failed to differenti-

ate individuals with ASD from typically developing controls

(TD) with sufficiently high in-sample or out-of-sample accuracy to
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meet biomarker standards (Abraham et al., 2017; Chen et al., 2015;

Heinsfeld, Franco, Craddock, Buchweitz, & Meneguzzi, 2018; Nielsen

et al., 2013; Plitt, Barnes, & Martin, 2015; Yahata et al., 2016), and

findings of group-level differences between ASD and TD groups have

been inconsistent across studies and include many negative results

(Tyszka, Kennedy, Paul, & Adolphs, 2014; Dajani et al., 2019; He,

Byrge, & Kennedy, 2020; for review see Hull, Jacokes, Torgerson,

Irimia, & Van Horn, 2016).

Many factors could underlie this overall pattern of results, includ-

ing (but not limited to) the following. First, most such studies have

examined fcMRI data collected during the resting state, but such a

task-free state may not be sufficiently constrained or, alternatively,

not sufficiently related to the behavioral presentation of ASD, to give

rise to shared atypical patterns of brain functioning. Second, while

data that are collected over longer scans and with more data points

(Birn et al., 2013; Horien et al., 2018; Laumann et al., 2015) permit the

most precise estimates of functional connectivity at the individual

level, and accordingly many scanning initiatives are collecting more

and more data points per individual with higher temporal resolution

(Gordon et al., 2017; Laumann et al., 2015; Smith et al., 2013), existing

studies of fcMRI in ASD typically use lower-resolution imaging proto-

cols and short scan durations, suggesting that estimates of functional

connectivity in the literature may not be sufficiently precise to accu-

rately discriminate diagnostic groups. Further, given the likelihood of

lower data quality in clinical populations, and thus less usable data,

precision and consistency of individual FC estimates may vary

between groups, potentially giving rise to less accurate estimates of

connectivity in the ASD group.

Here, we report on a new study of individuals with ASD and con-

trols with several key advances designed to address these potential

factors. In contrast to the existing literature, here we collect data not

only during the resting state but also while individuals watch videos

with varied social content in the scanner, which should constrain

evoked brain activity and may relate more to atypical social behavior

than the resting state. Also in contrast to the existing literature, which

predominantly examines a single low temporal resolution (TR 2–3 s)

5–6 min resting-state fcMRI scan per individual, here we collect

for each individual up to eight high-resolution multiband scans

(TR 0.813 s), 13–16 min each, for up to 2 hr of data over two

sessions—about 20 times more scanning time and 50 times more data

points per individual than most existing studies of ASD. Our overarch-

ing goal was to either better differentiate functional connectomes at

the group level or, alternatively, refine our understanding of the fac-

tors that are more or less likely to be responsible for inconsistency

and negative results in the existing literature. In so doing, we asked:

(a) are functional connectomes individually discriminable and consis-

tent in both diagnosis groups; (b) are functional connectomes more

similar within groups and do they show common group-specific pat-

terns; and (c) can groups be differentiated, and if so, does video

watching or rest allow for better separation of the groups?

Functional imaging in special populations always requires difficult

tradeoffs. Analyzing high-quality data is paramount (see, e.g., Deen &

Pelphrey, 2012), yet frequently requires excluding more scans and

more subjects than is desirable, limiting generalizability and discarding

expensive and unique data. Retaining more subjects may increase

generalizability, but at the cost of increased difficulty in disentangling

potential effects of diagnosis from those of data quality. Here, we

have attempted to bridge that trade-off by reporting results in multi-

ple ways. In the main text, we report results from a small sample with

the highest quality data, using the strictest data inclusion thresholds.

In this sample, some reliable group differences in head motion

(as indexed using filtered framewise displacement or FDfilt, see

Methods) remained. In the Supporting Information, we further address

residual effects of data quality by downsampling each rest scan such

that no group differences in FDfilt remained, yielding the equivalent of

about 5 min of low-temporal-resolution data (comparable to the exis-

ting ASD fcMRI literature) of the highest quality. We also report in the

Supporting Information results from a larger, more inclusive sample

with a more relaxed censoring threshold. Finally, we also report

results under several additional preprocessing alternatives. Results

were generally consistent across approaches.

To preview our results, we obtained functional connectivity esti-

mates that were highly discriminable, allowing for near-perfect “fin-

gerprinting” or individual identification regardless of diagnosis group,

and these functional connectomes were consistent within individuals

and equally so in both groups. However, while it might have been

expected that dissimilarities to TD functional connectivity patterns

would be observable in the ASD group, we did not observe any such

reductions in similarity to TD FC patterns robustly or consistently at

the group level, although very small reductions were observed in a

few isolated preprocessing approaches. We found no consistent atyp-

ical FC patterns shared across the ASD group. Prediction of diagnosis

group from functional connectomes, using the complete connectome

as well as a targeted selection of edges, achieved accuracy not far

from chance. However, these same prediction approaches achieved

near perfect accuracy when applied to scan type (rest vs. video)

irrespective of group. Overall, our findings suggest that none of the

potential factors we identified and addressed can be considered fully

responsible for the failures in the literature to robustly and consis-

tently differentiate ASD and TD functional connectomes. Despite

adding a constrained and socially relevant task and increasing scan

resolution, duration, and temporal samples, which resulted in discrimi-

nable and consistent FC estimates and near-perfect prediction of scan

type, successful discrimination between ASD and TD connectomes

was not achieved.

2 | MATERIALS AND METHODS

2.1 | Participants

Participants included 25 high-functioning adults with an autism spec-

trum disorder (ASD; mean age 24.2; range 17–54; 6 female) and

29 age- and full-scale IQ-matched controls (TD; mean age 24.5; range

19–37; 5 female), recruited from Bloomington, IN and surrounding

areas. All ASD participants had previously received DSM-IV community
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diagnoses of autism, Asperger's Syndrome, or Pervasive Developmental

Disorder-Not Otherwise Specified (PDD-NOS), and the Autism Diag-

nostic Observation Schedule, Second Edition (ADOS-2; Lord et al.,

2000) was administered and scored by research reliable administrators

at the time of study recruitment. All participants were administered

Module 4 (the version appropriate for verbally fluent adults). We used

the revised scoring algorithm that has improved diagnostic specificity

over the previously used scoring algorithms (Hus & Lord, 2014). All par-

ticipants exceeded the cutoff of 8 (combined social affect [SA] and

restricted and repetitive behaviors [RRB] domains), with a mean score

of 13.25 (SD = 3.08) (mean SA = 10.5 [2.84]; mean RRB = 2.75 [1.45]).

We also administered the Autism-Spectrum Quotient (AQ; Baron-

Cohen, Wheelwright, Skinner, Martin, & Clubley, 2001) and the

Wechsler Abbreviated Scale of Intelligence, Second Edition (Wechsler,

2011). All subjects provided written informed consent; all experimental

procedures were approved by the Indiana University Institutional

Review Board.

After initial subject-level exclusions due to consistently poor data

quality (N = 4 ASD subjects) and then scan-level exclusions due to

excessive censoring (more than 30% of scan censored at time points

with filtered framewise displacement [FDfilt] exceeding 0.2 mm) and

insufficient (fewer than 3) scans of each type remaining after censor-

ing, the remaining primary sample included 16 individuals with ASD

(14 with at least 3 rest and at least 3 video scans; 1 with 3 rest scans

only; 1 with 3 video scans only) and 28 TD individuals (27 with at least

3 rest and at least 3 video scans; 1 with 3 video scans only). In the

analyzed sample, there were no group differences in age at time of

scanning (ASD group: Mdn 298.5 months (interquartile range [IQR]:

110.5); TD group: Mdn: 279.5 months [IQR: 63.5]; U = 197, z = .65,

p > .5) or IQ (ASD group: Mdn: 118.5 [IQR: 16.5]; TD group Mdn:

115 [IQR: 14.5]; U = 196, z = .67, p > .5). As expected, AQ differed

between groups (ASD: Mdn 33 [IQR 14], TD: Mdn 17 [IQR 5.5],

U = 27.5, z = 4.8, p < .001) and the median ADOS score in the ASD

group was 8.5 (IQR 3) (or 11 [IQR 3] using the revised scoring

algorithm).

We also repeated the primary analyses with a more relaxed cen-

soring threshold (FDfilt > 0.5 mm) in order to include more data partic-

ularly from ASD subjects. This sample included 20 individuals with

ASD (19 with at least 3 rest and at least 3 video scans and 1 with

3 video scans only) and 29 TD individuals (25 with at least 3 rest and

at least 3 video scans, 3 with 4 video scans only, and 1 with 4 video

scans only; see Supporting Information for further detail). The

remaining supplemental analyses used the primary sample of

individuals.

2.2 | Design

The study design consisted of two scanning sessions separated by

approximately 1 week (mean 9.3 days between scan sessions, SD 6).

Both scanning sessions consisted of two resting-state scans and two

video-watching scans, interleaved starting with rest. All rest scans

were approximately 16 min long (1,200 TRs); video scans were

approximately 13–14 min long (1,000, 952, 1,026, and 977 TRs). Sub-

jects were instructed to move as little as possible and remain awake

with eyes open.

No visual stimulus was provided during resting state scans. Stim-

uli for video scans were concatenated short video trailers, with no

repetition of specific trailers across sessions. All trailers were obtained

from Vimeo (https://vimeo.com). They were selected based on multi-

ple criteria. First, to ensure that videos represented novel stimuli, we

excluded any trailer that had a wide theatrical release. Second, we

excluded videos with potentially objectionable content (i.e., nudity,

swearing, and drug use). Finally, we excluded videos with intentionally

startling events that could lead to excessive in-scanner movement.

Each trailer lasted between 45 and 285 s (approximately 1–5 min).

Each video scan comprised between four and six trailers with genres

that included documentaries, dramas, comedies, sports, mystery, and

adventure. Video was back-projected onto a screen that was visible to

subjects via a mirror attached to the head coil. Audio was provided via

MR-compatible headphones.

Wakefulness was monitored via an MR-compatible video camera;

scans in which participants fell asleep were excluded from analysis

(10 scans total; 5 from 2 ASD participants and 4 from 4 TD partici-

pants). One additional TD scan was excluded due to a technical issue.

The final primary sample analyzed included multiple scans for most

participants (304 scans analyzed, mean 3.4 [SD 1.28] resting-state

runs and mean 3.5 [SD 1.17] video runs per participant). (For the sup-

plemental analyses, less strictly censored sample: 361 scans analyzed

with mean 3.71 [SD = 0.84] rest scans and mean 3.65 [SD = 0.99]

video scans per participant). Anatomical images were acquired after

functional runs, during which participants were able to watch a video

of their choosing.

2.3 | Data acquisition and preprocessing

Acquisition and preprocessing were detailed in Byrge and Kennedy

(2018) and repeated here. MRI images were acquired using a 3 Tesla

whole-body MRI system (Magnetom Tim Trio, Siemens Medical Solu-

tions, Natick, MA) with a 32-channel head receive array, using a pro-

tocol designed to be similar (but not identical due in large part to

hardware constraints) to the Human Connectome Project (Smith

et al., 2013). Both raw and prescan-normalized images were acquired;

raw images were used at all preprocessing stages and in all analyses

unless specifically noted. During functional scans, T2*-weighted

multiband echo planar imaging (EPI) data were acquired using the fol-

lowing parameters: TR/TE = 813/28 ms; flip angle = 60�; 3.4 mm iso-

tropic voxels; 42 slices acquired with interleaved order covering the

whole brain; multi-band acceleration factor of 3. The number of vol-

umes varied: rest functional scans were 1,200 volumes; video func-

tional scans were 1,000, 952, 1,026, and 977 volumes. Preceding the

first functional scan, gradient-echo EPI images were acquired in oppo-

site phase-encoding directions (10 images each with P-A and A-P

phase encoding) with identical geometry to the EPI data

(TR/TE = 1175/39.2 ms, flip angle = 60�) to be used to generate a
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fieldmap to correct EPI distortions, similar to the approach used by

the Human Connectome Project (Smith et al., 2013). High-resolution

T1-weighted images of the whole brain (MPRAGE, 0.7 mm isotropic

voxel size; TR/TE/TI = 2499/2.3/1000 ms) were acquired as anatomi-

cal references.

Data were preprocessed with an in-house pipeline using FEAT

(v6.00) and MELODIC (v3.14) within FSL (v. 5.0.8; FMRIB's Software

Library, www.fmrib.ox.ac.uk/fsl), Advanced Normalization Tools

(ANTs; v2.1.0) (Avants et al., 2011), and Matlab_R2014b.

Individual anatomical images were bias-corrected and skull-

stripped using Advanced Normalization Tools (ANTs), and segmented

into gray matter, white matter, and CSF partial volume estimates using

FSL FAST. From 20 randomly selected anatomical images (10 TD;

10 ASD), a midspace template was constructed using ANTs'

buildtemplateparallel tool and then skull-stripped. Composite (affine

and diffeomorphic) transforms warping each individual anatomical

image to this midspace template and warping the midspace template

to the Montreal Neurological Institute MNI152 1 mm reference tem-

plate were obtained using ANTs.

The initial five volumes (~4 s) of each functional run were dis-

carded to minimize magnetization equilibration effects. We conducted

rigid-body motion correction, field map-based geometric distortion

correction, and nonbrain removal but not slice-timing correction (due

to the fast TR; Smith et al., 2013). Initial preprocessing also included

weak high-pass temporal filtering (>2,000 s FWHM) to remove slow

drifts (as in Smith et al., 2013) but no spatial smoothing. Off-

resonance geometric distortions in the EPI data were corrected using

a fieldmap derived from two gradient-echo EPI images collected in

opposite phase-encoding directions (P-A and A-P) using FSL topup

(similar to the study by Smith et al., 2013).

As reported in earlier work (Byrge & Kennedy, 2018), we evalu-

ated a number of different preprocessing approaches on this data set

and report here for the primary results the preprocessing approach

that best removed lagged residual noise: FIX+MGTR, or FIX followed

by mean cortical signal regression (equivalently, mean grayordinate

time series regression or “MGTR,” following Burgess et al., 2016) in a

second step. First, we employed FSL-FIX (Salimi-Khorshidi et al.,

2014) to regress out independent components classified as noise by a

classifier trained on independent but similar data and validated on

hand-classified functional runs. Then, the mean cortical signal (the

mean BOLD signal across the individuals' gray matter partial volume

estimate obtained from FSL FAST) was regressed from the residuals

following FIX in a second step (as in Burgess et al., 2016), and the

resulting residuals were analyzed as the cleaned data. Due to the con-

troversy surrounding global signal regression (Murphy & Fox, 2017;

Power, Plitt, Laumann, & Martin, 2017), we also repeated the primary

analyses using FIX without MGTR in the Supporting Information).

Registration of cleaned functional data occurred as follows. An

affine transformation matrix registering the mean prescan-normalized

functional image to each subject's skull-stripped T1-weighted anatom-

ical image was obtained using Boundary-Based Registration (BBR) via

epi_reg within FSL. (The mean prescan-normalized images yielded

more accurate alignment than the raw functional images, due to the

reduced contrast in fast-TR EPI data; see also Smith et al., 2013).

Next, each subject's functional images were transformed to the

MNI152 reference all in one step, using ANTS to apply a concatena-

tion of this affine transformation matrix with the composite (affine

+ diffeomorphic) transforms mapping between the subject's anatomi-

cal image, the midspace template, and the MNI152 reference.

We obtained region of interest time series using a 114-region-

of-interest (ROI) cortical parcellation anatomically subdividing the

Yeo 17 functional networks (Yeo et al., 2011) and described more

fully in the study by Betzel et al. (2014). (We also repeated the pri-

mary analyses using a second ROI set, the cortical Harvard-Oxford

parcellation distributed with FSL, subdivided by hemisphere into

96 ROIs, as reported in the Supporting Information). Individual ROI

masks were created for each subject from the product of the individ-

uals' gray matter partial volume estimate and the region of interest

mask (as in the study by Tyszka et al., 2014). The weighted mean sig-

nal across each individual region of interest mask was then extracted

from the cleaned BOLD signal for each functional run. These time

courses together were used to construct functional connectivity

matrices.

2.4 | Data analysis

2.4.1 | Functional connectome construction

Motion censoring/scrubbing prior to connectome construction was

performed in all analyses (Power, Barnes, Snyder, Schlaggar, &

Petersen, 2012). Earlier work using slower-TR fMRI data employed

framewise displacement traces to index head movement and identify

which data points to censor; however, in faster-TR data such as the

current data set, framewise displacements as originally computed

reflect a combination of motion and physiological noise (Byrge &

Kennedy, 2018; Power et al., 2018; Power et al., 2019). Following

Power et al. (2019), we attempted to better isolate head movements

by computing filtered framewise displacement traces (FDfilt) from

the backwards differential of the filtered raw head movement traces

(using the Butterworth filter reported in the study by Power et al.,

2019, with a differential of three TRs rather than four, to adjust for

the small difference in sampling rates). We censored time points

where FDfilt exceeded three different thresholds: in the primary ana-

lyses, a strict threshold of FDfilt > 0.2 mm, and in supplemental ana-

lyses, a more relaxed and inclusive threshold of FDfilt > 0.5 mm as

well as a moderate threshold of FDfilt > 0.3 mm that permitted ran-

domly downsampling each rest scan prior to FC construction such

that no group differences in FDfilt remained (see Supplemental

Methods). In all cases, the remaining (uncensored) TRs were used to

construct the FC matrices, and scans with more than 30% of time

points censored were excluded from analysis. We generated func-

tional connectivity matrices by computing the Fisher-z transformed

pairwise Pearson correlations among all ROI timeseries. Symmetric

114 × 114 FC matrices were reduced to 6,441 × 1 FC vectors for

use in subsequent analyses.
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2.4.2 | Group differences in data quality

Reliable group differences in FDfilt persisted after censoring under the

strict and relaxed censoring thresholds (strict [0.2 mm]: for two scans,

both rest scans, U = 76, p = .0028; U = 85, p = .0125; all other U > 95

and p > .19); relaxed (0.5 mm); four scans, three rest, U < 134,

p < .0175, all other U > 173, p > .055). To address these group differ-

ences, we included mean FDfilt as a covariate in analyses where

appropriate, and we also repeated the primary analyses upon FC

matrices constructed from data randomly downsampled to eliminate

group differences in FDfilt prior to FC construction (for rest data only;

see Supporting Information).

2.4.3 | Statistical reporting

We report nonparametric statistics throughout this article (except in

select cases where parametric approaches are clearly appropriate) due

to the relatively small number of individuals in the autism group and

to reduce the influence of outliers upon group-level conclusions.

When not explicitly indicated, values reported in parentheses follow-

ing medians are interquartile ranges. Where relevant, we conserva-

tively report the minimum test statistic (i.e., for Mann–Whitney

U tests, the smaller of the U statistic for the ranks of the ASD group

and for the ranks of the TD group). For group comparisons, positive z-

values reflect higher ranks in the ASD group; for scan-type compari-

sons, positive z-values reflect higher ranks for video scans. There are

several methods for reporting effect sizes of nonparametric tests;

here we report effect size as r, the absolute value of the

corresponding z-statistic divided by the square root of the total sam-

ple size. Correlations were Fisher-z transformed before analysis and

inverse-Fisher-z transformed for visualization and reporting. Given

the absence of reliable group differences, for ease of comparison, all

statistics are reported at α = .05 without correcting for multiple

comparisons.

2.4.4 | Discriminability analyses (fingerprinting)

We predicted individual subject identity from functional connectomes

in two different ways. In both cases, we kept rest scans and video

scans separate, using rest scans to predict identity for rest scans but

not using rest scans to predict identity for video scans. First, we used

an approach (Byrge & Kennedy, 2019) based on the method originally

introduced by Finn et al. (2015, 2017) and adapted for comparing four

scans in one pass (vs. comparing two scans as in the study by Finn

et al., 2015, 2017). In brief, we first computed the similarity between

all pairs of scans as the Pearson correlation between the

corresponding pair of FC vectors. Next, we predicted subject identity

for a given scan by (a) identifying the scan with maximal similarity to

the given scan and (b) taking the subject identity corresponding to the

maximally similar scan as the predicted subject identity for the given

scan. Accuracy was computed as the percentage of scans for which

the predicted subject identity was equal to the actual subject identity.

Next, we used the original pairwise fingerprinting approach intro-

duced by Finn et al. (2015)—which uses pairs of scans (i.e., rest1 and

rest2) to predict identity rather than all four scans of each type but is

otherwise the same—then averaged together accuracy for each pair of

scans for each subject.

2.4.5 | Consistency and similarity analyses

The “fingerprinting” approach compares within-subject and across-

subject similarity of functional connectomes and succeeds when

within-subject similarity exceeds across-subject similarity. We also

examined these quantities separately. We computed within-subject

similarity—or consistency—as the median of the Fisher-z transformed

Pearson correlations between all pairs of vectorized FC of the same

scan type for a given subject. We computed across-subject similarity

analogously, as follows. For each scan, we computed the median of

the Fisher-z transformed Pearson correlations between vectorized FC

for that scan and vectorized FC for all scans of the same type from all

other subjects in the reference group. We then analyzed these values

at the subject level, specifically the median across all scans for the

same subject. We computed across-subject similarity to two reference

groups, always using a leave-one-subject-out approach: all (other) TD

subjects, and all (other) ASD subjects. As before, rest and video scans

were kept separate; that is, rest scans were compared to rest scans

but not to video scans.

2.4.6 | Extension of maximal similarity matching
(fingerprinting) procedure to diagnosis and scan-type
prediction

We extended the fingerprinting or maximal similarity matching proce-

dure for comparing multiple scans in one pass (Byrge & Kennedy,

2019) to predict scan type and diagnosis, rather than individual iden-

tity. To do this, we took the predicted diagnosis (or scan type) for a

given scan as the diagnosis (or scan type) of the scan, it is most similar

to. For these analyses, we excluded scans contributed from the same

individual; that is, we compared a given scan only to scans from other

individuals.

2.4.7 | Connectome-based predictive modeling

Following Shen et al. (2017), we attempted to predict diagnosis group

using functional connectomes. This procedure was conducted sepa-

rately for rest and for video runs, using leave-one-subject-out cross

validation, and using average FC matrices for each subject constructed

from the median FC values at each edge across all rest or all video

scans. 250 iterations of the following procedure were conducted.

First, one subject was left out. Second, a randomly selected subset of

TD subjects was selected, to match the size of the remaining ASD
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group (Spronk et al., 2018). Third, for each FC edge, a GLM was fit,

modeling FC in this subset of subjects as a function of diagnosis and

mean for each subject of the mean FDfilt for all scans of this type. We

included the latter as a proxy for data quality after noticing that many

of the edges that differed between groups also differed between

scans with low and high movement; we chose to use means here

because they are more susceptible to the extreme values reflecting

poorer data quality. Fourth, we masked each functional connectome,

selecting only those FC edges that covaried with diagnosis above and

beyond any associations with data quality at a threshold of p < .01

(note that results did not differ substantially at different thresholds;

see Supporting Information). Fifth, we computed two summary values

for each included subject: the sum of the FC edges that positively

covaried with diagnosis and the sum of the edges that negatively

covaried with diagnosis, above and beyond associations with FDfilt.

Sixth, we fit a logistic regression modeling diagnosis as a function of

two variables, the sums of the positively and the negatively covarying

edges (note that including mean FDfilt as a third variable in this model

did not change the pattern of results). Seventh, we computed the

sums of the positively and negatively covarying edges for the left-out-

subject and predicted diagnosis using this last logistic regression

model. Finally, after all iterations were completed, we binarized the

model predictions using a threshold of 0.5, computed the accuracy,

sensitivity, and specificity for each iteration, and report the medians

across iterations.

We also used the connectome-based predictive modeling (CPM)

procedure to attempt to predict AQ, a continuous scale designed to

capture traits associated with the autism spectrum (Baron-Cohen

et al., 2001). The procedure was the same as described above, except

the logistic model in Step 6 was replaced with a linear model, and

rather than accuracy, we used correlations between actual and

predicted AQ to assess model performance.

Finally, we also conducted a parallel CPM procedure in which we

attempted to predict scan type rather than diagnosis. For this proce-

dure, the median FC matrix across all rest scans and the median across

all video scans for each subject was used as input data, both scans

from the left-out-subject were excluded from the training sample, and

only subjects that had both usable rest and video scans were included.

Otherwise, the procedure was identical to that described above.

3 | RESULTS

3.1 | Functional connectomes are individually
discriminable in both TD and ASD groups

We began by examining whether functional connectomes were indi-

vidually discriminable using the “fingerprinting” approach (Finn et al.,

2015), which captures whether within-subject similarity of functional

connectivity exceeds across-subject similarity. We took two different

approaches to “fingerprinting”: one that asks whether a given scan is

discriminable relative to any of the other two to three scans of the

same type contributed by that same individual (Byrge & Kennedy,

2018), and the other that asks whether a given scan is discriminable

relative to each of those other two to three scans, evaluated pairwise

(Finn et al., 2015). In both cases, we compared like scans (i.e., rest

scans to rest scans but not rest scans to video scans).

Functional connectomes were indeed individually discriminable in

both groups. Relative to all available scans of the same type (Byrge &

Kennedy, 2018), 100% of rest scans and 100% of video scans were

discriminable. Across all subjects, average pairwise discriminability

(Finn et al., 2015) across all pairs of like scans was also high (for both

rest and video scans, Mdn Acc = 100% [0%]; i.e., median = 100% with

interquartile range = 0%, see Statistical Reporting). Average pairwise

discriminability was reduced in the ASD group for rest scans (Mdn

AccASD = 100% [33.3%], Mdn AccTD = 100% [0%], U = 109, z = −2.77,

p = .0056, r = .44) but did not differ between groups for video scans

(Video: Mdn AccASD = 100% [0%], Mdn AccTD = 100% [0%],

U = 178.5, z = −0.36, p = .72, ns).

Further examination revealed that average pairwise discriminabil-

ity was strongly linked with the number of scans available across all

subjects (Rest: Mdn Acc = 66.6% (0%) across individuals with three

scans; Mdn 100% (0%) across individuals with four scans; U = 3,

z = −5.06, p < .0001, r = .81; video: Mdn Acc = 66.6% (0%) for 3 scans;

Mdn Acc = 100% (0%) with four scans; U = 0, z = −5.8, p < .0001,

r = .92). When fewer scans are available for a given individual, the rea-

son is nearly always exclusion due to data quality, making it impossible

to decouple whether ASD per se or data quality might underlie the ini-

tial group difference in pairwise discriminability for rest scans. Thus,

we attempted to further control for potential effects of data quality

by regressing mean filtered framewise displacement (FDfilt) from aver-

age pairwise discriminability before assessing potential group differ-

ences in the residuals. No reliable group differences in pairwise

discriminability remained after this analysis (Rest: U = 132, z = −1.37,

p > .17, ns; video: U = 147, z = 1.12, p > .26, ns).

Finally, discriminability did not differ reliably between the differ-

ent scan tasks (mean pairwise discriminability across all subjects,

W = 11, p > .3, ns) or separately for either group (ASD: W = 0,

p > 0.058, ns; TD: W = 4, p > .7, ns). Thus, the current acquisition and

preprocessing choices capture individual distinctness in functional

connectivity.

3.2 | Functional connectomes are consistent in
both groups

After establishing that functional connectomes are individually dis-

criminable in both groups, we next decomposed the fingerprinting

approach to examine the consistency or within-subject similarity of

functional connectomes. Median within-subject similarity of func-

tional connectivity did not differ between groups for rest scans (Mdn

rASD = .84 [.2], Mdn rTD = .86 [.21], U = 152, z = −.79, p > .42, ns) or

for video scans (Mdn rASD = .85 [.16], Mdn rTD = .87 [.18], W = 147,

z = −1.11, p > .26, ns). Note that in the larger alternative sample with

a more relaxed censoring threshold, there were group differences for

rest and marginally so for video scans (rest: Mdn rASD = .82 [.25],
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Mdn rTD = .26 [.15], U = 173, z = −2, p = .045, r = .29; video: Mdn

rASD = .84 [.21], Mdn rTD = .87 [.17], U = 175, z = −1.87, p = .061,

r = .28); however, these were attenuated when mean FDfilt was first

regressed from the data (rest: U = 227, z = −.83, p > .4, ns; video:

U = 214, z = −1, p > .3, ns).

Consistency within individuals did not reliably differ between rest

and video scans, although it tended to be slightly higher for video

scans (Mdn r = .87 [.17] vs. Mdn r = .86 [.18] for rest scans, W = 217,

z = 1.6, p = .11).

3.3 | Similarity to control functional connectomes
did not consistently or robustly differ between groups

Next, we examined the other component of individual discriminability

used by the fingerprinting approach: across-subject similarity. Of most

interest in studies of clinical populations is similarity to control sub-

jects. We computed similarity to (other) control subjects as the

median of the correlations between an individuals' functional connec-

tivity matrix and those of all (other) controls for the same scan, aver-

aged separately across rest and across video scans. Similarity to

controls was marginally reduced in the ASD group (rest: Mdn rASD = .58

[.04], Mdn rTD = .6 [.05], U = 118, z = −1.78, p = .08, r = .28; video:

Mdn rASD = .6 [0.07], Mdn rTD = 0.61 [.06], U = 125, z = −1.73,

p = .08, r = .27). However, once again, regressing mean FDfilt from the

data before comparing the groups resulted in the effect becoming no

longer reliable (rest: U = 153, z = −0.77, p = .44, r = .12, ns; video:

U = 140, z = −1.31, p > .18, r = 0.21, ns). As detailed in the Supporting

Information (Supplemental Table S1, Row 8), this analysis was more

sensitive to preprocessing differences than the previous analyses,

with marginal group differences persisting in some cases and one

small significant effect (uncorrected). However, taken in aggregate

across the samples and preprocessing choices analyzed, there were no

strong, consistent, robust group differences in this measure.

Overall, subjects were more similar to (other) controls during

video scans (Mdn r = .6 [.05]) than during rest scans (Mdn r = .59 [.05],

W = 88, z = 3.72, p < .001, r = .42), as might be expected given the

constrained nature of the video stimuli.

3.4 | No shared ASD-specific FC patterns were
evident

In parallel to the previous analysis, we also examined across-subject

similarity to the ASD group. Higher similarity among ASD individuals

would be suggestive of the shared, ASD-specific pattern of functional

connectivity that is the goal of many clinical functional connectivity

studies. However, median similarity to (other) individuals with ASD

was not reliably higher in the ASD group (rest: Mdn rASD = .56 [.05],

Mdn rTD = 0.58 [.06], U = 121, z = −1.69, p = .09, r = .27, ns; video:

Mdn rASD = 0.59 [0.047], Mdn rTD = 0.59 [.06], U = 134, z = −1.48,

p = .14, ns), and once again, the marginal group difference for the rest

scans is eliminated when mean FDfilt is first regressed from the data

(W = 155, z = −.7, p = .48, r = .11, ns). As with the previous similarity

to TD analysis, this analysis was somewhat sensitive to preprocessing

choices (see Supplemental Table S1, Row 9), with marginal group dif-

ferences and one small significant effect (uncorrected) persisting after

regressing mean FDfilt for a few preprocessing approaches. However,

regardless of statistical threshold, z-values were negative across all

preprocessing approaches, indicating that the TD group, rather than

the ASD group, was the group that demonstrated numerically higher

similarity to (other) ASD individuals. This is somewhat counterintui-

tive, as the opposite pattern would be expected if there were a shared

ASD-specific FC pattern.

To gain more insight into this pattern of findings, we used multi-

dimensional scaling (MDS) to visualize similarity among pairs of scans,

separately for rest (Figure 1, top row) and for video scans (Figure 1,

bottom row). ASD and TD subjects were included together in the

MDS computation (Figure 1, left column) and also plotted separately

for visualization purposes (Figure 1, middle column, ASD subjects;

right column, TD subjects), with scans from the same subject plotted

in the same color. If there were a shared pattern of functional connec-

tivity among all or some ASD subjects, the MDS plots in Figure 1 (left

column) would reveal clusters where ASD scans (in red) are closer

together than they are to TD scans (in blue). While there are a few

small clusters of ASD data points in the left column, those clusters

turn out to reflect individual-level similarity (c.f. Figure 1, top left,

upper right and lower right red clusters to those same clusters in

Figure 1, top middle, see also Figure 1, bottom left, rightmost red clus-

ter to that same cluster in Figure 1, bottom middle) rather than

increased similarity among different individuals with ASD. Overall, the

ASD scans that are most dissimilar (those plotted furthest from the

center) tend also to be distant from scans from other subjects from

both groups (plotted along the periphery), indicating a lack of shared

FC pattern. Indeed, for both rest and video scans, MDS visualization

intermixes the majority of TD and ASD scans, indicating comparable

similarity at this level of analysis.

We note that in general, in both groups, it can be seen in Figure 1

that scans from the same subject (plotted in the same color) are plot-

ted near to one another, reflecting the high within-subject similarity

reported above, and also more close to one another than to those of

other subjects, reflecting the high discriminability or “fingerprinting”

accuracy reported above.

These visualizations also suggest the possibility of a different pat-

tern. Some subjects whose scans have reduced within-subject

similarity—as indicated by greater distance among data points in the

same color, such as the green data points in Figure 1 (top middle)—

may also have reduced across-subject similarity, as indicated by

greater distance from the center of the plot. Indeed, for both rest and

video scans, there was an increasing relationship between within-

subject similarity and across-subject similarity, such that subjects

whose scans were dissimilar to others also tended to be less consis-

tent relative to themselves. These associations hold across all subjects

and separately within both groups and hold using both metrics of

across-subject similarity: similarity to only (other) control subjects

(rest: Spearman's ⍴All = .59, p < .001, ⍴ASD = .65, p = .01, ⍴TD = .54,
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p < .007; video: ⍴All = .45, p < .004, ⍴ASD = .58, p < .03, ⍴TD = .38,

p < .06) and similarity to only (other) ASD subjects (rest: Spearman's

⍴All = .55, p < .001, ⍴ASD = .61, p < .02, ⍴TD = .47, p < .03; video:

⍴All = .52, p < .001, ⍴ASD = .68, p < .006, ⍴TD = .45, p < .03). In other

words, this is a general relationship rather than an ASD-specific one.

This association could reflect a number of underlying mechanisms, but

it is suggestive of data quality, and indeed, both within-subject similar-

ity and similarity to controls are associated with mean FDfilt across all

subjects (rest: ⍴All = −.42, p < .008 and ⍴All = −.4, p < .02; video: ⍴All =

−0.57, p < .001 and ⍴All = −.4, p < 0.02), although this relationship

held in the control group (⍴TD ranging from −0.38 to −0.63; p < .0012

to .065) but not the ASD group (⍴ASD ranging from −0.08 to −0.39;

p > .15 to .75, ns).

3.5 | Neither rest scans nor video scans permitted
differentiating the ASD and TD groups

The MDS visualizations, and specifically the interleaving of the major-

ity of scans from ASD and TD subjects, do not suggest that a clear

boundary between the groups can be drawn using full functional con-

nectomes as we have done thus far. Indeed, attempts to predict the

diagnosis group for all available scans using maximal similarity

matching, in parallel to the fingerprinting procedure used previously,

result in accuracy around chance, as most scans are predicted to be

those of controls (Rest: 62%, 3.6% sensitivity, 95.8% specificity;

video: 66.9%, 10.5% sensitivity, 100% specificity).

Nonetheless, it remains possible that a more targeted selection of

connectome edges might permit better prediction of group member-

ship. Therefore, we conducted connectome-based predictive model-

ing (CPM; Shen et al., 2017) separately for rest and video scans,

iterating over randomly downsampled subsamples of the control

group such that the same number of ASD and TD scans were avail-

able. This procedure resulted in group prediction accuracy that was

still quite low (Rest: Mdn accuracy 51.3% [7.7%], sensitivity 58.3%

[8.3%], specificity 46.7% [20%] across iterations; video: Mdn accuracy

57.5% [7.5%], sensitivity 60% [12%], specificity 60% [13.3%]). CPM

accuracy for video scans exceeded rest scans (U = 14,171, z = −10.6,

p < < .0001), and this was the case in all but one preprocessing

approach examined (see Supplemental Table S1). However, such a dif-

ference is difficult to interpret in the context of approximately

chance-level accuracy for both scan tasks.

Finally, in an exploratory follow-up analysis, we also ran CPM

models attempting to predict AQ score, a continuous scale designed

to capture traits associated with the autism spectrum (Baron-Cohen

et al., 2001), again separately for rest and for movie scans. Results for

F IGURE 1 Multidimensional scaling (MDS) visualizations of pairwise similarity among all rest scans (top row) and among all video scans
(bottom row). Both MDS computations were conducted using all subjects (left column); results are also re-plotted separately for each group (ASD,
middle column; TD, right column) for closer inspection. The middle and right columns plot scans from the same subject in the same color (note
that colors are recycled across groups, i.e., the orange points in the middle and in the right plots represent different subjects). Note that these
visualizations present pairwise similarity before regressing out FDfilt
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F IGURE 2 Median and difference functional connectivity matrices for each scan task across all subjects (Row 1), for each diagnosis group
(Rows 2 and 3), and differences between diagnosis groups for each task (Row 4). Task differences (Column 3) are more apparent upon visual
inspection than group differences (Row 4). Differences are ordered as ASD-TD (Row 4) and Video-Rest (Column 3). Left hemisphere ROIs are
plotted to the left and above right hemisphere ROIs
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rest scans looked similar to the results for diagnostic predictions, with

the median correlation between actual AQ scores and predicted AQ

scores across iterations being r = .035 (IQR = 0.13), p = .69

(IQR = 0.36). However, the distribution of correlations was different

for movie scans, and positively skewed, with Mdn r = .26 (IQR = 0.11),

Mdn p = .10 (IQR = 0.16), and statistically higher than for rest scans

(U = 460, z = −11.09, p < < .001)—despite being predominantly not

statistically significant. We consider the differences between these

movie and rest results to be an interesting hint deserving follow-up in

future work but not a robust enough result to be considered further

in the present work, especially considering the low proportions of var-

iance involved.

3.6 | Rest and video scans can themselves be near-
perfectly differentiated

Figure 2 presents the median FC matrices for each scan task, across

all subjects (top row), and across each group (middle rows). Median

differences between the groups (bottom row) are small, consistent

with the overall indistinguishability of scans from the different groups.

Contrary to these small median group differences, Figure 2 also shows

that differences between FC matrices at rest and during the video are

evident by eye, across all subjects (top right) and separately within

each group (middle right). Indeed, another MDS visualization of

pairwise similarity among scans, this time including all scans together

rather than examining rest and video scans separately, reveals that

while once again ASD and TD scans are intermingled (Figure 3, left),

rest and video scans form visually distinct groups (Figure 3, right).

These results suggest that it may be possible to predict scan type

based on functional connectivity, using the same analytic techniques

that did not differentiate groups. Using maximal similarity matching

(parallel to fingerprinting), scan-type prediction accuracy was 98.4%

across all scans, with comparable accuracy using CPM upon both

median rest and median video connectomes together (Mdn accu-

racy = 98.6% (0%) across iterations). Taken all together, scan task and

individual identity were stronger drivers of similarity and dissimilarity

among scans than diagnosis group membership.

4 | DISCUSSION

We found no consistent or robust differences in functional con-

nectomes between the ASD group and the TD group, despite a

densely sampled, high-resolution acquisition that allowed us to pre-

dict individual identity and scan task with near-perfect accuracy.

Functional connectomes from individuals with ASD were equally

discriminable as those of controls, and equally consistent across

different scans. Although a few specific preprocessing choices gave

rise to small effects of reduced similarity to controls in the ASD

group, the overarching conclusion from these analyses is that ASD

functional connectomes in this data set were consistently indistin-

guishable from those of controls (see also Byrge, Dubois, Tyszka,

Adolphs, & Kennedy, 2015; Dajani et al., 2019). Collecting more

data per individual and including naturalistic viewing conditions

were thus not sufficient to robustly pull apart the diagnosis groups,

and whatever shared ASD-specific signals may ultimately exist in

this sample must thus be smaller than those associated with scan

task and individual identity.

The success observed in discriminating individual functional con-

nectomes is in line with the existing literature (Finn et al., 2015; Finn

et al., 2017; Horien et al., 2018; Vanderwal et al., 2017) and the effec-

tively perfect accuracy in our densely sampled dataset is consistent

with work showing that increasing temporal sampling improves

F IGURE 3 MDS visualizations of pairwise similarity among all scans. Left: scans color-coded according to diagnosis (red = ASD, blue = TD).
Right: scans color-coded according to scan type (green = video; black = rest). Note that these visualizations present pairwise similarity before
regressing out FDfilt
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discriminability and reliability of FC (Birn et al., 2013; Horien et al.,

2018; Laumann et al., 2015). Ours is the first study, to our knowledge,

to evaluate functional connectome fingerprinting in ASD and we

found that given our acquisition parameters, preprocessing choices,

and sample, discriminability of functional connectomes in ASD did not

differ from those of controls so long as data quality was controlled in

analyses. The high accuracy obtained from using functional con-

nectomes to predict scan task is consistent with prior work demon-

strating successful prediction of task from connectivity measures

(Kaufmann et al., 2017; Pallares et al., 2018; Richiardi, Eryilmaz,

Schwartz, Vuilleumier, & Van De Ville, 2011; Xie et al., 2018). What is

most striking, at least superficially, is that a recognizable diagnosis

defined by shared clinical features across individuals was not associ-

ated with a shared pattern of brain function, in this data set, using

these analytic approaches.

Whether common patterns of brain function associated with ASD

do ultimately exist in this dataset and in this particular sample of indi-

viduals is not something that can be conclusively answered at this

time. Several possibilities exist. One is that shared patterns of brain

function associated with ASD do exist. Given that an ASD diagnosis is

associated with common behavior patterns, and behavior comes from

the brain, this possibility is likely to be what most people would

expect. In that case, either such shared neurofunctional differences

occur at a different temporal or spatial scale than the current fMRI

acquisition can measure, and thus detecting them requires technologi-

cal advances, or perhaps instead such shared differences do exist at

the current resolution and detecting them requires instead analytic or

denoising advancements. Another possibility recognizes that shared

patterns of behavior need not be associated with shared patterns of

brain function (Edelman & Gally, 2001; Price & Friston, 2002;

Seghier & Price, 2018). Although this principle applies broadly (e.g., to

reading, in adult controls; Richardson, Seghier, Leff, Thomas, & Price,

2011), in ASD research, it is typically considered under the umbrella

of “heterogeneity”—the idea that because ASD is thought to be asso-

ciated with multiple distinct etiologies and developmental histories

(Fountain, Winter, & Bearman, 2012; Geschwind, 2009; Landa, Gross,

Stuart, & Bauman, 2012; Levy, Mandell, & Schultz, 2009), the search

for shared patterns of brain function associated with ASD may be

more fruitful within ASD subgroups that reflect shared etiological and

developmental factors (e.g., Lombardo et al., 2015). Detecting shared

patterns of brain function associated with ASD subgroups requires a

larger sample size and more extensive phenotyping and/or genotyping

than the current dataset. However, at least at the level of full cortical

functional connectomes, our analyses revealed no hints of distinct

shared patterns among a subset of ASD individuals: similarity to

(other) ASD individuals was never higher in the ASD group, and visual

inspection of the MDS plots suggested no clusters comprised of more

than one individual with ASD.

Our results reveal that across diagnosis groups, and consistent

with the literature in controls (Byrge & Kennedy, 2019; Finn et al.,

2015; Finn et al., 2017; Horien et al., 2018; Vanderwal et al., 2017),

individuals are more similar to themselves across scans than to

others, an observation that the fingerprinting approach leverages

for predicting identity. Visual inspection of the MDS plots (Figure 1)

also reveals that scans from select individuals with ASD seem to

form their own cluster, away from the other scans. Whether such

examples reflect the individual variability seen across all subjects—

perhaps in a more exaggerated form—or instead perhaps a member

of a real ASD subgroup that happens to be represented by N = 1 in

our particular sample (e.g., perhaps one specific, rare, etiology)—

cannot be determined without a larger sample. This is also related

to discussions of “idiosyncrasy” in ASD—although definitions vary,

numerous studies have observed a form of exaggerated individual

variability, in which some individuals with ASD appear both distinct

from controls and distinct from other individuals with ASD (Byrge

et al., 2015; Hahamy, Behrmann, & Malach, 2015; Hasson et al.,

2009; Nunes, Peatfield, Vakorin, & Doesburg, 2019). This pattern is

also observed in some individuals with ASD in this sample, although

associations between within-subject similarity, across-subject simi-

larity, and data quality across all subjects make these dimensions

difficult to disentangle.

It is worth noting that residual associations between our mea-

sures of interest and indices of data quality persisted in our sample

despite our rigorous data inclusion thresholds and state-of-the-art

preprocessing approaches. While it has long been known that effects

of head motion persist longer than the motion itself (Power et al.,

2012), the existing literature would suggest that such residual motion

effects should be mitigated by our use of global signal regression

(Byrge & Kennedy, 2018; Power et al., 2014; Power, Schlaggar, &

Petersen, 2015). A priori, the residual associations with FDfilt that we

observed could reflect effects of data quantity—higher FDfilt corre-

sponds with more censoring and thus fewer data points included,

potentially leading to less precise FC estimates and reduced similarity

to others. However, this association persisted in the downsampled

supplemental preprocessing approach (Supplemental Table S1, Col-

umn 4), in which data quantity is equated across all individuals. We

also cannot rule out the possibility that what we are calling residual

associations with motion might be due to some other individual differ-

ence, potentially ASD related, that also happens to covary with FDfilt.

It is certainly plausible, for instance, that more severely affected mem-

bers of a clinical group may also move more in the scanner. However,

the associations between FDfilt and within- and across-subject similar-

ity in the control group seem to undermine this possibility while not

ruling it out. It is also worth recognizing that our understanding of

how nuisance factors influence the fMRI signal and fcMRI measures is

incomplete and continually evolving. Our indices of data quality are

far from perfect; while framewise displacement is a good proxy for

data quality, it is not the only measure that is informative (Byrge &

Kennedy, 2018; Power et al., 2017, 2018, 2019). Regardless of the

underlying causes, these associations point to the need to carefully

examine potential residual effects of data quality even after following

best practices.

One initial hypothesis was that adding a video stimulus with

social content to the commonly used resting state fcMRI paradigms

might improve detection of ASD-specific patterns of brain function,

because processing social content may be more related to the
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behavioral domains in which ASD symptoms are observed, and

because driving the brain with a common stimulus might better

permit detection of individual and group differences that the

unconstrained resting state might obscure. We found instead that

patterns of results were generally comparable between rest and

video scans. We did find that prediction accuracy was reliably

higher using video scans, but in the context of overall very low

accuracy for both scan types, it is not prudent to interpret this fur-

ther. Whether video scans provide a benefit to diagnosis group

prediction in a sample where resting state scans achieve above-

chance accuracy remains an open question. Contrary to other work

showing improvements in discriminability and reliability during

video watching in the scanner (Vanderwal et al., 2017; Wang

et al., 2017), we found no differences in those measures in the

current study. We speculate that this may be due to the temporal

sampling in the current data set and ceiling-level discriminability,

and that such an advantage for video watching could potentially

still be observable across shorter FC epochs such as in a dynamic

FC paradigm. These are important questions for future study.

Limitations of this study predominantly include the relatively

small sample size and limited phenotyping, which, as noted previously,

prevent us from addressing pressing questions about heterogeneity in

ASD. Due to our relatively small sample size and interest in group-

level effects, we used nonparametric statistical tests for their reduced

susceptibility to outliers. While the pattern of results did not materi-

ally change under parametric tests, it is possible that the conservative

tests we used under-emphasized real small effects in our data that

could become more robust in a larger sample. It is important to make

clear that while we do not have strong evidence for ASD-specific dif-

ferences, we also do not have strong evidence for a lack of differ-

ences. We note that we the current study included a relatively large

age range and unbalanced ratio of males and females; we balanced

age and sex between our groups in an attempt to best mitigate any

effects of these variables on our results. However, complex interac-

tions between age, sex, and diagnosis, together with a whole host of

other variables, could still be present, and our sample size is under-

powered to detect these interactions. Future studies might examine

similar questions within a more narrow age range or separately within

males or females. Finally, we used video stimuli with social content to

drive brains in a coordinated manner, in a way potentially more

related to ASD symptomology than the resting state. However, it is

possible that scanning individuals in a manner even more closely

approaching the behavioral domains of ASD—such as during more

complex and subtle social interactions (as in, e.g., Byrge et al.,

2015) than the movie trailers included here, or even during actual

social interactions (Redcay et al., 2010, 2013)—may serve to better

differentiate the groups. Finally, there are of course existing ana-

lytic approaches we have not yet applied to this data set and that

could be promising directions for differentiating diagnosis groups,

including time-varying functional connectivity (see, e.g., Falahpour

et al., 2016; Mash et al., 2019) and inter-subject functional correla-

tion (Simony et al., 2016) approaches. Future work will explore

these directions.

5 | CONCLUSIONS

It was not possible to predict ASD diagnosis much above chance

in a high quality and extensively sampled data set including rest

and video scans; a data set that permitted predicting individual

identity and scan type with effectively perfect accuracy. We found

no conclusively ASD-associated effects for which data quality was

not also implicated. Individuals from both groups contributed high

quality, discriminable, consistent data, and the overarching picture

was that scans from the ASD group were indistinguishable from

the control group. Inconsistent and null results in the ASD fcMRI

literature cannot be solely attributed to insufficiently sampled scans

and limited scan tasks.
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Additional supporting information may be found online in the

Supporting Information section at the end of this article.
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