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Abstract

Resting-state analyses evaluating large-scale brain networks have largely focused on

static correlations in brain activity over extended time periods, however emerging

approaches capture time-varying or dynamic patterns of transient functional net-

works. In light of these new approaches, there is a need to classify common transient

network states (TNS) in terms of their spatial and dynamic properties. To fill this gap,

two independent resting state scans collected in 462 healthy adults from the Human

Connectome Project were evaluated using coactivation pattern analysis to identify

(eight) TNS that recurred across participants and over time. These TNS spatially over-

lapped with prototypical resting state networks, but also diverged in notable ways. In

particular, analyses revealed three TNS that shared cortical midline overlap with the

default mode network (DMN), but these “complex” DMN states also encompassed

distinct regions that fall beyond the prototypical DMN, suggesting that the DMN

defined using static methods may represent the average of distinct complex-DMN

states. Of note, dwell time was higher in “complex” DMN states, challenging the idea

that the prototypical DMN, as a single unit, is the dominant resting-state network as

typically defined by static resting state methods. In comparing the two resting state

scans, we also found high reliability in the spatial organization and dynamic activities

of network states involving DMN or sensorimotor regions. Future work will deter-

mine whether these TNS defined by coactivation patterns are in other samples, and

are linked to fundamental cognitive properties.
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1 | INTRODUCTION

The coordinated activity of spatially distributed brain systems gives

rise to large-scale brain networks that are believed to reflect or con-

tribute to cognitive and behavioral functioning (Biswal et al., 2010;

Smith et al., 2009), including functions relevant to health and disease

(Buckner, Andrews-Hanna, & Schacter, 2008; Buckner & Krienen,

2013). Methods for evaluating large-scale brain networks have

focused on resting-state functional connectivity, that is, correlations

in activity of distributed regions during periods of rest, usually focus-

ing on static or overarching temporal correlations over an extended

period of time (6 min or longer). Of note, large-scale networks derivedBlaise B. Frederick and Roselinde H. Kaiser contributed equally to this study.
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from this approach appear to mirror structural brain connectivity

(Greicius, Supekar, Menon, & Dougherty, 2009), supporting their use

as a functional proxy for (relatively) stable aspects of network organi-

zation. However, these static approaches are not designed to capture

time-varying or dynamic patterns of functional coordination among

distributed brain systems, for example, as transient networks form

and dissolve, or as transitions occur between networks over time

(Hutchison et al., 2013). Such dynamic properties may be critical for

understanding essential features of large-scale network functioning

(Bray, Arnold, Levy, & Iaria, 2015; Chang, Liu, Chen, Liu, & Duyn,

2013), and may provide critical insight into the neural properties that

underlie or reflect human cognition and health.

In recent years, interest in large-scale network dynamics has moti-

vated a surge of methods development (related reviews in Cabral,

Kringelbach, & Deco, 2014; Hutchison et al., 2013; Liu, Zhang,

Chang, & Duyn, 2018; Preti, Bolton, & Van De Ville, 2017). For exam-

ple, one set of sliding window methods evaluates changes in the mag-

nitude of functional connectivity by truncating the timeseries into a

sequence of (often overlapping) windows and computing correlations

in activation within each window. Then, estimates of functional con-

nectivity across the brain and over time can be subjected to additional

analyses depending on the dynamic property of interest,

(e.g., variability in functional connectivity; Kaiser et al., 2016;

Pelletier-Baldelli, Andrews-Hanna, & Mittal, 2018) or to determine

recurring spatial patterns of functional connectivity among regions

(or intrinsic connectivity states; Allen et al., 2014). Of note, careful

motion correction and confound analysis are especially important

when using these methods, as motion may give rise to spurious vari-

ability in estimates of functional connectivity across windows

(Hindriks et al., 2016; Laumann et al., 2016). A second set of methods

does not rely on sliding windows, but instead evaluates synchrony in

the magnitude (Chen, Chang, Greicius, & Glover, 2015; Liu, Chang, &

Duyn, 2013) or phase (Cabral, Hugues, Sporns, & Deco, 2011; Deco &

Kringelbach, 2016) of activation across spatial areas of the brain at a

single time-point (volume of data). For example, coactivation pattern

(CAP) analysis is a data-driven analytic technique that uses the spatial

distribution and magnitude of activation at each timepoint of whole-

brain data as input to a clustering analysis to identify recurring states

of relative-coactivation across the brain, thereby identifying transient

network states (TNS) of coactivation (Liu et al., 2018). The data-driven

nature of the CAP approach, and its robustness to sources of noise,

make this particularly appealing approach for investigating network

dynamics.

The application of the above methods has indicated that net-

work dynamics are relevant to psychological processes. For example,

research has yielded early evidence that network dynamics are asso-

ciated with individual differences in development (Faghiri, Stephen,

Wang, Wilson, & Calhoun, 2018; Hutchison & Morton, 2015;

Marusak et al., 2017; Tian, Li, Wang, & Yu, 2018) and cognitive func-

tioning (Cohen, 2018; Kaiser et al., 2018; Medaglia et al., 2018), and

can provide insight into mental health (Damaraju et al., 2014; Kaiser

et al., 2016, 2018; Kaiser, Snyder, et al., 2018; Ma, Calhoun,

Phlypo, & Adali, 2014; Rashid et al., 2016; Rashid, Damaraju,

Pearlson, & Calhoun, 2014). However, more work is needed to eval-

uate the reliability of the spatial organization of TNS, and to under-

stand the extent to which these properties are common across

people or time. This is a necessary first step, to link transient net-

works to cognitive processes or individual differences in cognition.

Moreover, relatively little work has focused on the dynamic activi-

ties of transient networks, including the time spent in a network

state, or the frequency of transitions from one network state to

another. Investigation of such dynamic properties may provide novel

information about the dominance or role of particular network

states, as well as how states interact. Further, these analyses have

the ability to deepen the field's understanding of the prototypical

static resting-state networks. It is plausible that the states defined

on a smaller timescale may overlap with the more classically defined

resting state networks, while also revealing new insight into the

temporal qualities of large-scale networks. To achieve this goal, a

large sample of healthy adults from the Human Connectome Project

(HCP) were evaluated using the CAP analytic approach (Liu et al.,

2013, 2018). The reliability of state properties was also assessed

within-subject across two resting state acquisitions.

2 | METHODS

2.1 | Participants

Data used in these analyses include resting state scans from individ-

uals gathered as part of the Human Connectome Project (HCP)

1200 subject release. A detailed description of the recruitment for

the HCP is provided by others (Glasser et al., 2016; Van Essen et al.,

2013). Briefly, individuals were excluded by the HCP if they

reported a history of major psychiatric disorder, neurological disor-

der, or medical disorder known to influence brain function. Given

our objective to characterize the dynamic activities and organization

of transient networks in a relatively neurotypical sample, individuals

from the HCP database were further excluded if they reported a

family history of schizophrenia, met DSM-IV criteria for alcohol

dependence, or reported a lifetime history of repeated substance

use (>10 instances of cocaine, hallucinogen, opiate, sedatives, or

stimulant use, >20 instances of tobacco use or >100 instances of

marijuana use). In addition, participants included in the present ana-

lyses provided a breath sample indicating <0.05 blood alcohol con-

tent on the day of scan and a urine sample that was negative for any

substances of abuse (cocaine, marijuana, opiates, amphetamine, or

methamphetamine).

The final data set included 462 individuals (Female = 281) who

were an average age of 28.66 years of age (±3.65, range 22–36) and

reported completing an average of 15.34 years of education (±1.59,

range 11–17). Three hundred and fifty-one participants self-identified

as White, 64 identified as Black or African American, 35 identified as

Asian, Native Hawaiian, or Pacific Islander, six identified as multiracial,

and six were unknown or not reported.
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2.2 | fMRI data acquisition

Neuroimaging data were acquired with a standard 32-channel head coil

on a Siemens 3T Skyra modified to achieve a maximum gradient strength

of 100 mT/m (Glasser et al., 2016; Ugurbil et al., 2013; Van Essen et al.,

2013). Gradient-echo EPI images were acquired with the following

parameters: TR = 720 ms, TE = 33.1 ms, flip angle = 52�, FOV = 208

× 180 mm (POxPE), Matrix = 104 × 90 (ROxPE), Echo spacing = 0.58 ms,

BW = 2,290 Hz/Px. Slice thickness was set to 2.0 mm, 72 slices, 2.0 mm

isotropic voxels, with a multiband acceleration factor of 8.

Resting state data were acquired across two sessions on consecu-

tive days (REST1, REST2) with a total of four runs of approximately

14.4 min each. Within each session, one run was acquired with a

right-to-left phase encoding and the other run was acquired with a

left-to-right phase encoding. Thus, REST1 and REST2 are each com-

prised of 28.8 min of data. During each of these runs participants

were instructed to lie with their eyes open and fixated on a bright

cross-hair on a dark background.

2.3 | Preprocessing

The current study used the “fix extended” resting state data from the

HCP 1200 subjects release. Preprocessing steps included gradient

unwarping, motion correction, fieldmap-based EPI distortion correction,

brain-boundary-based registration of EPI to structural T1-weighted

images, nonlinear FNIRT registration to the MNI152, and grand-mean

intensity normalization using tools from FSL and Freesurfer (Glasser

et al., 2013) and noise identification and removal using the FSL program

FIX (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014).

Time courses were extracted from all REST1 and REST2 data using

129 regions of interest (ROIs) consisting of cortical and striatal regions

in a large sample of 1,000 adult subjects (drawn from a parcellation:

Choi, Yeo & Buckner, 2012: Yeo et al., 2011, http://www.freesurfer.net/

fswiki/StriatumParcellation_Choi2012, http://www.freesurfer.net/fswiki/

CorticalParcellation_Yeo2011), and the amygdala (from the automated

anatomical labeling atlas (http://www.gin.cnrs.fr/en/tools/aal-aal2/).

For REST1 and REST2 data separately, 20 volumes were removed

from the start of each timeseries to allow for signal stabilization, and

timeseries were concatenated within and across participants.

2.4 | Coactivation pattern analysis

A summary of the analytic steps is presented in Figure 1. Within REST1,

a k means clustering analysis of coactivation patterns (CAPs) was con-

ducted to identify “states” of resting brain activity after an initial PCA

dimensionality reduction step. Silhouette scores were calculated to

evaluate the optimal clustering solution, and k means clustering solu-

tions employing between 4 and 18 clusters were explored. The k = 8

was selected, as this solution had the highest mean silhouette score

(average silhouette scores shown in Table S1) and the lowest number of

individuals for which the solution failed to fit the data (n = 1). To con-

firm that these CAPs represent reliable states of resting brain activity

rather than noise, the CAP analysis for k = 8 was run 100 more times

on the REST1 data, and a PCA was run to verify congruence among the

states. State data within k = 8 were then normalized (by subtracting the

within-state global average) and projected back into anatomic space for

visualization (Figure 2, raw unnormalized representation of each state is

shown in Figure 3, see the supplement Table S2 for the tabulated repre-

sentation of this data). All CAP analyses were performed using the

open-source “capcalc” package (Frederick, B, capcalc [Computer Soft-

ware] (2017) which was based on a prior version of the CAP pipeline

reported in Kaiser et al. (2019) and similar to Chen et al. (2015).

Retrieved from https://github.com/bbfrederick/capcalc).

After the analytic steps above to characterize recurring TNS, four

types of dynamic measures were calculated for each state across the

~30 min REST1 period: total dwell time (defined as total time spent in

each state over the timeseries), persistence (defined as the average

dwell time spent in a state after entering that state, and before

transitioning to a new state), frequency of transitioning into states,

and frequency of each type of state-to-state transition (i.e., from State

A to State B, State A to State C, etc.). Collectively, these steps yielded

dynamic measures for each of the eight TNS.

F IGURE 1 Methods
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2.5 | Network state descriptive statistics and
reliability

Analyses were performed to describe dynamic measures across the

group. Using the REST1-defined states, dwell time, persistence, transi-

tions into states, and state-to-state transitions were calculated for

REST1 and REST2 separately. Dynamic measures calculated for

REST1 were compared between TNS using paired samples t tests to

evaluate differences in total dwell time, persistence, and state-to-state

transitions. Statistics were Bonferroni corrected to p < .001 and

Cohen's d scores were calculated to aid in interpretation.

Next, two types of analysis were performed to evaluate the reliabil-

ity of TNS. First, the network organization derived from REST1 was

applied to REST2 to determine the generalizability of dynamic proper-

ties using the eight states defined in REST1. This was accomplished by

using the states found in the REST1 analysis to partition the REST2

data. Dwell time, persistence, and state-to-state transition statistics

F IGURE 2 Normalized (by subtracting the within-state global average) state representation projected back into anatomic space for visualization. Warm
colors represent activation (relative to within-state global average) while cool colors represent deactivation (relative to within-state global average) within
each state. Montreal Neurological Institute (MNI) Coordinates for each TNS are as follows: State 1 (x = −26, y = −48, z = 12), State 2 (−38, 8, 22), State
3 (−6, 44, 6), State 4 (−2, −86, 42), State 5 and 6 (−4, 46, 0), State 7 (−6, 44, 0), State 8 (0, 0, 0)

F IGURE 3 Raw unnormalized representation of each state grouped by prototypical resting state network divisions. The color bar represents
the relative activation (warm colors, higher activation relative to raw average) and deactivation (cool colors, lower activation relative to raw
average) for each region, within each transient network state. Specific values for each ROI are listed in the supplement. ROIs, regions of interest
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were extracted from REST2. Then, these dynamic measures were com-

pared between REST1 and REST2 to evaluate reliability (or changes in)

dynamic measures within-subject over consecutive scans, using

repeated measures ANOVAs simultaneously considering each variable

of interest and REST1 and REST 2. Second, independent clustering with

k = 8 was also performed on REST2 data. The independently defined

REST1 and REST2 states were then compared using two methods. Dice

similarity coefficients (Dice, 1945) were calculated using MATLAB

(MathWorks, Natick MA) to evaluate the extent to which pairs of 3D

network images showed relative activation in the same spatial locations.

Finally, correlations were performed to test the extent to which vari-

ance in activation across ROIs in once state corresponded with variance

in activation across ROIs in another state.

3 | RESULTS

3.1 | Spatial organization of transient network states

The spatial organization of each transient network state is displayed

in Figures 2 and 3. Below is a description of the patterns of relative

activation and deactivation that characterized each transient net-

work state. Dynamic measures for each transient network state

(total dwell time in state, average persistence per state entry, transi-

tions into a state, and state-to-state transitions) are shown in

Table 1 and Figures 4–7. A more detailed written description of

state dynamics is provided in the supplement. Effect sizes comparing

these metrics between each state are displayed in Table 2. In addi-

tion to the comprehensive report provided by these Tables and Fig-

ures, key findings from REST1 are also summarized below. A visual

summarization of TNS interactions is provided in Figure 8. All abso-

lute numbers given are averages for each run.

3.1.1 | State 1

Relative Activations: Regions of relative activation overlapped with

the canonical default mode network (DMN), and also extended to

the insula, striatum, and other areas of prefrontal cortex (PFC).

These included primarily midline bilateral areas of the prefrontal cor-

tex (PFC; BA 6, 8, 9, 10) extending into the orbitofrontal cortex

(OFC), anterior cingulate cortex (ACC), frontal pole and inferior fron-

tal gyrus (IFG). Coactivation in insular cortex was observed in ante-

rior insula, and a region of posterior ventral insula. Coactivation in

temporal areas included temporal pole, fusiform cortex, and middle/

inferior temporal gyri. In the parietal lobe, coactivation was evident

in posterior cingulate cortex, cuneus, and the angular gyri. Finally,

State 1 was also characterized by relative activation of amygdala

and striatal regions (nucleus accumbens [NAc], caudate, and

putamen).

Relative Deactivations: Areas of relative deactivation included

motor and somatosensory regions, areas of mid-cingulate cortex,

and dosolateral prefrontal cortex (DLPFC, BA 8, 9, and 46), superior

and rostral portions of temporal lobe, and lateral areas of the parie-

tal cortex.

TABLE 1 State characteristics observed during REST1

Total dwell time
in seconds

Frequency of
transitions to

Persistence in
seconds

Mean (SD) Mean (SD) Mean (SD)

State 1 347.59 (72.01) 106.42 (14.59) 3.29 (0.65)

State 2 96.38 (48.50) 27.92 (12.06) 3.39 (0.77)

State 3 154.05 (55.52) 48.51 (14.50) 3.14 (0.64)

State 4 245.54 (47.94) 81.30 (12.95) 3.04 (0.50)

State 5 102.69 (55.47) 25.64 (12.03) 3.93 (1.10)

State 6 223.51 (68.49) 63.14 (14.34) 3.58 (0.66)

State 7 365.68 (77.62) 115.06 (16.63) 3.22 (0.74)

State 8 163.76 (55.76) 66.52 (18.24) 2.48 (0.63)

F IGURE 4 Total time in seconds spent in each state
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Network Dynamics: Participants showed relatively high total

dwell time in State 1 (approximately 6 min). The frequency of

transitioning to State 1 was also relatively high (~106 times), and

participants persisted on average ~3 s in State 1 before transitioning

away. Participants exhibited a diverse range of transition patterns

out of State 1 into other TNS (Figure 7).

3.1.2 | State 2

Relative Activation: Regions of relative activation overlapped with the

frontoparietal network (FPN) including lateral PFC regions (BA 6, 8, 9,

10, 46) and lateral parietal lobe. In addition, coactivation was evident

in dorsomedial PFC (BA 8, 9, 10), left OFC, and left anterior insula.

Coactivation in temporal regions included superior/middle temporal

gyrus, and temporal pole. State 2 also showed relative striatal activa-

tion in areas of caudate and putamen.

Relative Deactivation: Midline regions that generally overlap with

the prototypical DMN showed relative deactivation, including in areas

of the medial PFC, mid/posterior aspects of the ACC, PCC, and

precuneus. In addition, State 2 was characterized by relative deactiva-

tion in sensory cortices, and in ventral striatum (bilateral NAc).

Network Dynamics: Out of all TNS, participants showed the lowest

total dwell time in State 2 (approximately 1.5 min), and rarely trans-

itioned into this state (~28 times).

3.1.3 | State 3

Relative Activation: Regions of relative activation overlapped with, and

were largely restricted to, the prototypical DMN. These included

F IGURE 5 Average dwell time in seconds spent in each state per transition

F IGURE 6 Total number of transitions into each state
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dorsal and ventral mPFC extending to OFC and ACC, as well as the

PCC and precuneus. Parietal and temporal regions of coactivation

included the bilateral angular gyri, the parahippocampal gyrus, tempo-

ral pole, and superior/middle temporal gyri. Relative activation was

also observed in some prefrontal regions that are beyond the

boundaries of the prototypical DMN, including IFG, frontal pole, and

dorsolateral portions of BA 8, 9; and in left NAc.

Relative Deactivation: Areas of relative deactivation included dorsal

regions of the ACC, DLPFC (BA 9, 10, 46), the insula, dorsal striatum,

amygdala, and sensory cortices.

F IGURE 7 State-to-state transitions out of each state and into another state
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Network Dynamics: Participants showed relatively low to moderate

dwell time in State 3 (approximately 2.5 min) and moderate frequency

of transitions into State 3 (~49 times).

3.1.4 | State 4

Relative Activation: Relative activation was evident in areas of the

prototypical dorsal attention network (DAN), including DLPFC,

inferior parietal lobule, IFG, lateral frontal pole, supplementary

motor cortex, pre/post central gyri, auditory cortex, and occipital

cortex. In addition, coactivation was observed in insular regions

including right anterior insula, and mid and posterior insula

bilaterally.

Relative Deactivation: Relative deactivation was observed in medial

frontal cortex and ventrolateral regions (BA 6, 8). Temporal regions

showing relative deactivation included temporal pole and superior

TABLE 2 Relative effect size of differences in REST1 state characteristics

Total dwell time in seconds Frequency of transitions to Persistence in seconds
Cohen's d Cohen's d Cohen's d

State 1 compared with:

State 2 4.09 5.86 −0.14

State 3 3.01 3.98 0.23

State 4 1.67 1.82 0.43

State 5 3.81 6.04 −0.71

State 6 1.77 2.99 −0.35

State 7 −0.24 −0.55 0.10

State 8 2.85 2.42 1.27

State 2 compared with:

State 3 −1.11 −1.54 0.35

State 4 −3.09 −4.27 0.54

State 5 −0.12 0.19 −0.57

State 6 −2.14 −2.66 −0.18

State 7 −4.16 −6.00 0.23

State 8 −1.29 −2.50 1.30

State 3 compared with:

State 4 −1.76 −2.39 0.18

State 5 0.93 1.72 −0.87

State 6 −1.11 −1.01 −0.58

State 7 −3.14 −4.27 −0.11

State 8 −0.17 −1.09 1.05

State 4 compared with:

State 5 2.76 4.45 −1.04

State 6 0.37 1.33 −0.82

State 7 −1.86 −2.26 −0.28

State 8 1.57 0.93 0.99

State 5 compared with:

State 6 −1.94 −2.83 0.46

State 7 −3.90 −6.16 0.76

State 8 −1.10 −2.65 1.62

State 6 compared with:

State 7 −1.94 −3.34 0.42

State 8 0.96 −0.21 1.62

State 7 compared with:

State 8 2.99 2.78 1.08

Note: Cohen's d values represent the effect size of the differences between states. Effect sizes are shown to aid in interpretation as all p values were

significant, despite small differences in values. Cohen's d values are discussed as meaningful if ≥2 and moderate if ≥0.8.

380 JANES ET AL.



temporal gyrus; relative deactivation was also observed in distributed

regions of striatum, and in the amygdala.

Network Dynamics: Total dwell time in State 4 was moderately

high at approximately 4 min, and participants transitioned into this

state with moderate frequency (~81 times).

3.1.5 | State 5

Relative Activation: Regions of relative activation overlapped with the

prototypical salience network, as well as limbic structures. These

included coactivation of OFC, striatum, dorsal ACC, bilateral insula,

bilateral amygdala, IFG, frontal pole, medial temporal pole, middle/

inferior temporal gyrus, and frontal gyrus.

Relative Deactivation: Regions showing relative deactivation

included midline areas of mPFC (dorsal to the OFC and anterior of the

dACC), PCC, and precuneus. Deactivation was also observed in the

occipital lobe, and in sensory and motor cortices.

Network Dynamics: Participants showed relatively low total dwell time

in State 5 (approximately 1.7 min) and the lowest frequency of transitioning

into this state (~26 times); however, persistence in this state was relatively

higher than any other state (average persistence of nearly 4 s).

3.1.6 | State 6

Relative Activation: This state was characterized by relative activation

in the occipital cortex and sensory-motor regions. Regions of

coactivation included occipital cortex and distributed regions of parie-

tal cortex, and somatosensory and motor regions of precentral and

postcentral gyri. Frontal areas showing coactivation included posterior

regions of the insula, and a region of lateral middle frontal gyrus.

Relative Deactivation: Areas of relative deactivation included fron-

tal regions spanning OFC, ACC, frontal pole, and anterior insula. In

addition, deactivation was observed in striatum, amygdala, and ventral

and anterior portions of the temporal lobe.

Network Dynamics: Total dwell time in this state was moderate at

approximately 3.7 min, with moderate frequency of transitioning into

State 6 (~63 times).

3.1.7 | State 7

Relative Activation: State 7 was characterized by relative activation in

areas of occipital cortex, sensory, and motor regions. In addition,

coactivation was evident in midline structures including the PCC,

F IGURE 8 Visual summarization of transitions between transient network states. The middle column of brain states are the two most
frequently transitioned-into states, while the left most and right most columns represent moderate and infrequent transition states respectively.
Thicker arrows represent more frequent transitions, while thinner arrows represent relatively few transitions. Specific values and statistics
regarding state dynamics can be found in the supplement
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precuneus, ventral and dorsal mPFC, and OFC. Relative activation was

also observed in right NAc.

Relative Deactivation: Relatively deactivated areas overlapped

with regions of the prototypical FPN including areas of DLPFC and

parietal cortex. In addition, deactivation was observed in striatal

regions (with the exception of right NAc, above), and in left ante-

rior insula.

Network Dynamics: Participants showed relatively high total dwell

time in State 7 (approximately 6 min), and relatively high frequency of

transitioning into this state (~115 times).

3.1.8 | State 8

Relative Activation: State 8 was characterized by a pattern of rela-

tive activation that overlapped with the prototypical salience net-

work, including the ACC and bilateral insula. In addition,

coactivation was evident in regions of striatum, occipital lobe

(visual cortex), frontal lobe (BA 9, left lateralized BA4), and areas

of parietal lobe.

Relative Deactivation: Relative deactivation included medial and

lateral aspects of PFC (mPFC dorsal to the dACC, BA 8) and frontal

pole. Deactivation was also observed in parietal areas of PCC and

precuneus; and in temporal areas including inferior temporal gyrus,

temporal pole.

Network Dynamics: Total dwell time in State 8 was moderate at

2.7 min, as was the frequency of transitions to State 8 (~67 times).

3.2 | Reliability of state organization and
characteristics

As outlined above, two types of analysis tested the reliability of TNS.

First, the transient network organization derived from REST1 was

applied to REST2, and dynamic measures (total dwell time, average

dwell time and state-to-state transition frequency) for each state were

compared between REST1 and REST2 using RMANOVAs. Second,

the spatial organization of TNS from an independent REST2 CAP anal-

ysis were compared to network states from the REST1 CAP analysis,

using dice scores (to test spatial overlap in coactivation in indepen-

dent 3D images) and correlations (to test covariance in level of activa-

tion at each ROI between independent 3D images). The results of

these tests are outlined below.

3.3 | Comparing dynamic measures from a single
transient network clustering solution between
sequential scans

The spatial organization of TNS derived from CAP analysis on

REST1 data was applied to partition REST2 data, and dynamic

measures were compared between sequential scans within sub-

jects. This analysis showed that participants showed similar total

dwell times, and similar average dwell time (i.e., persistence) in the

majority of network states, compared between REST1 and REST2

(no significant differences at the p < .05 level). The exception to

this evidence for stability in dynamic measures was State 7, which

showed higher total dwell time in REST2 (F(1,461) = 6.661,

p = .01), and higher average dwell time in State 7 in REST2 (F

(1,461) = 7.433, p = .007). Specifically, participants spent an aver-

age of 10.34 more seconds in State 7 during REST2 than REST1,

and persisted in State 7 for 0.103s longer in REST2 than REST1,

although the effect sizes for these differences are small (Cohen's

ds of 0.135, 0.138).

The average number of times that participants entered each

transient network state was similar for REST1 and REST2 (all

ps > .05). Considering patterns of transition between network

states compared between REST1 and REST 2, participants showed

similar transition patterns for State 2, State 4, and State

7 (ps > .05). However, differences were observed in the transition

patterns for other states (although small effect sizes suggest cau-

tion is warranted in interpreting these differences). Compared with

REST 1, during REST 2 participants showed more frequent transi-

tions from State 1-to-State 4 during REST2 (F(1,461) = 5.675,

p = .018, Cohen's d = 0.139), and from State 8-to-State 7, F

(1,461) = 5.365, p = .021, Cohen's d = 0.0153 (however, base rate

of this transition was low). In contrast, compared with REST1, dur-

ing REST2 participants showed fewer transitions from State 3-to-

State 1 (F(1,461) = 4.934, p = .027, Cohen's d = 0.128), from State

5-to-State 4, F(1,461) = 8.029, p = .005, Cohen's d = 0.186 (how-

ever, base rate of this transition was low), and from State 6-to-

State 5, F(1,461) = 4.427, p = .036, Cohen's d = 0.12.

3.4 | Comparing spatial organization of independent
transient network clustering solutions between
consecutive-day scans

The TNS derived from independent CAP analyses performed on

REST1 and REST2 were compared by calculating Dice Similarity Coef-

ficients (DSC; values closer to 1 indicate higher spatial overlap in

regions showing above-within-network-average activation; Dice,

1945) for each pair of 3D network images (8 from REST1, and 8 from

REST2; Figure 9). Results showed that the clustering solution inde-

pendently derived from REST2 yielded several network states that

showed relatively high and specific correspondence with states

yielded by the clustering solution from REST1. In particular, States

1, 3, and 6 from REST1 were a high and relatively specific match with

States 3, 2, and 1 from REST2 (DSC of 0.93, 0.84, and 0.96, respec-

tively). Other states derived from REST1 either showed moderately

high but less specific spatial match (States 2, 4, and 8), or relatively

lower and nonspecific spatial match (States 5 and 7) with states

derived from REST 2 (Figure 9).

Next, the TNS derived from independent CAP analyses with

REST1 and REST2 were compared by calculating covariance in level

of activation at each ROI between each pair of 3D images

(Figure 10). Consistent with the results of DSC calculations, above,

several states from REST1 showed relatively specific and high corre-

lations in activation with states derived from REST2, including

REST1 State 1 with REST2 State 3, r = .98; REST1 State 3 with
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REST2 State 2, r = .92; and REST1 State 6 with REST2 State

1, r = .98. Other states from REST1 (States 2, 4, and 8) showed high

but less specific correlations in spatial activation with REST2 states,

or (States 5, and 7) showed moderate and nonspecific correlations

with REST2 states.

4 | DISCUSSION

The organization and activity of transient networks may help us to

understand new dynamic properties of large-scale brain networks. In

a large sample of healthy adults, the present study aims to evaluate

spatial organization and dynamic activities (total dwell time, persis-

tence, frequency of transitions into, and patterns of state-to-state

transition) of transient networks, and to test the reliability of these

properties over time. Key results include the finding that, first,

although transient networks share some spatial characteristics with

prototypical static resting-state networks, they also diverge from

static networks in important ways. Second, transient networks show

unique profiles of dynamic activity, that is, specific networks show

notably higher dwell time and transition frequency, especially those

sharing spatial characteristics with the prototypical default mode net-

work (DMN). Third, results generally support the reliability of transient

resting-state networks within subjects over time (sequential scans),

but also highlight potential differences in reliability of different tran-

sient networks (see discussion of limitations below).

The spatial organization of transient networks (defined by single-

timepoint coactivation) have both similarities and differences with the

spatial organization of prototypical static networks (defined by correla-

tions in activation over extended periods of rest). For example, States

1, 3, and 7 all feature higher coactivation in midline and temporal

regions that are often grouped within the DMN. Indeed, State

F IGURE 9 Dice Similarity Coefficients representing correspondence in states between REST1 and REST2. Values closer to 1 indicate higher
spatial overlap in regions showing above-within-network-average activation

F IGURE 10 Covariance in the level of activation at each ROI between each pair of REST1 and REST2 3D images. ROIs, regions of interest
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3 appeared to be a close match with the prototypical DMN, and did not

extend beyond DMN boundaries. However (in addition to midline and

temporal coactivation), State 1 also showed coactivation of regions of

anterior insula, lateral PFC, and frontal pole extended to ventral PFC;

and State 7 also showed coactivation in visual and sensorimotor regions

(although note that State 7 was one of the lowest in spatial reliability

over time). These findings are consistent with early evidence from

other, independent samples (Kaiser et al., 2019) and have the interest-

ing implication that, rather than a singular DMN (which can be

decomposed into subnetworks [Andrews-Hanna, Reidler, Sepulcre,

Poulin, & Buckner, 2010], but has relatively sharp boundaries), there are

several versions of the DMN that reliably extend to nonprototypical

regions. But, the spatial variety of transient “complex” DMN states may

have been historically obscured because coactivation of midline and

inferior temporal regions is more temporally consistent than

coactivation of nonprototypical regions, that is, DMN regions usually

tend to show coordinated activation with one another at rest, but

frontoinsular or sensorimotor regions sometimes coactivate with DMN

regions, and also sometimes coactivate with other regions (here, ante-

rior insula was coactive in both State 1 and State 8; lateral PFC was

coactive in both State 1 and State 2). Therefore, the classic organization

of the DMN is the version that is most commonly detected using stan-

dard analytic methods (in which correlated activity is estimated over 5+

min) or many dynamic approaches (e.g., sliding window analyses which

average over 30 s or more of data) in which the rapid transitions

between states are obscured over longer time scales. While speculative,

it is plausible that the shared spatial overlap of DMN-regions across

these TNS means they share a similar overarching function, such as

supporting self-referential thought. However, coactivation of DMN-

regions with either frontoinsular (State 1) or sensorimotor (State 7)

areas suggests these TNS may support different types of self-referential

thought that require the integration of either frontoinsular or sensori-

motor regions. For example, such self-referential processes may involve

more affective/salience aspects (State 1), such as recalling an emotional

event, or sensory processes, such as thinking about a morning run

(State 7). Collectively, this suggests that TNS may share broad func-

tional roles, while differing in specifics. This conjecture is based on the

coactivation patterns alone, and future work applying the CAPS method

to task-related data is needed to better understand the specific function

of each TNS.

In addition to the spatial organization of transient networks, the

present study also explores the dynamic activity of those networks over

time, focusing on four inter-related measures. We investigated network

dwell time, (the average proportion of the scan spent in a specific

coactive network state); network persistence, (the average duration of

time spent in a particular network [both used in prior studies using

dynamic methods; Cabral et al., 2014; Calhoun, Miller, Pearlson, & Adali,

2014; Ma et al., 2014]); transitions into each network, (the frequency of

moving into a specific network); and state-to-state transitions, (the fre-

quency of moving from one network state to another [e.g., State A to

State B]). Consistent with prior research in an independent sample

(Kaiser et al., 2019), on average subjects showed the highest dwell time

in networks that shared spatial characteristics with the prototypical

DMN: together, dwell time in States 1, 3, and 7 accounted for more

than half the total duration of both resting-state scans. Of note, dwell

time in either “complex” DMN state (States 1 or 7) was higher than

dwell time in the prototypical DMN state (State 3), challenging the idea

that the prototypical DMN is the primary or dominant resting-state net-

work. The most frequent transitions were transitions into complex

DMN states (States 1 or 7), indicating that individuals not only spent

the most time in these TNS but more readily transitioned into these

states. Furthermore, these states showed the highest diversity of transi-

tions that is, subjects could move into any other network state from

States 1 or 7. In turn, there were some states that appeared to prefer-

entially transition into either State 1 or State 7: for example, State

2 transitioned exclusively into State 1, whereas State 5 exclusively

transitioned into State 7, suggesting these complex DMN states may

preferentially interact with specific states.

Considering other TNS, another frequently recurrent network was

State 4, which showed spatial overlap with the prototypical dorsal

attention network (DAN); the frequency of transitioning into this net-

work state was third only to complex DMN States 1 and 7. Given the

putative role of overlapping DAN regions in top-down attention selec-

tion (Vossel, Geng, & Fink, 2014) the high frequency of entry into this

state suggests that individuals may be shifting their attention toward

the external environment even when state occupancy across the

entire scan is dominated by DMN-like states. In contrast, the least fre-

quent transitions were into network states exclusive to frontoparietal

regions involved in goal-directed, externally directed attention

(e.g., State 2). There were, however, no differences in persistence

across network states. Together, these results suggest a pattern of

dynamic activity in which subjects move fluidly between transient

networks, frequently returning to complex DMN states.

There are several potential interpretations of these dynamic pat-

terns. One interpretation is that dwell time in, and transitions into, tran-

sient networks represent the cognitive activities or “modes” in which

subjects tend to engage in the absence of task demands. From this per-

spective, subjects spend more time in, and frequently return to, TNS

that encompass regions involved in internally oriented thinking (medial

PFC, posterior cingulate cortex, inferior temporal cortex) because intro-

spection is the main cognitive mode during a state of rest. The variety

of transient DMN states may therefore reflect diverse forms of intro-

spection, and the high frequency of transitions into complex DMN

states may correspond with the process by which we direct the content

of introspection according to goals, or how introspection is directed by

the salience of emotions or bodily cues, or how we move from intro-

spection to attention to the external world. A second interpretation is

that dynamic network activities represent intrinsic features of those

networks, for example, that some network states are inherently more

flexible, therefore the brain must move through those TNS to reach

less-flexible network states, irrespective of cognitive activities. From

this perspective, network states involving midline cortical regions may

constitute “neutral gear,” through which the brain must shift to move

into other “gears” of coactive network states. A third possibility is that

elements of both interpretations have merit, for example, that dwell

time and transitions into complex DMN states reflect both the
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dominance of introspection during resting-state neuroimaging, and an

inherent flexibility of both the network state and the cognitive mode:

when engaging in introspection, the mind may flexibly wander to goals,

physical sensations, or the environment, and then wander back. Future

research may test these various interpretations by applying similar

methods to other neuroimaging procedures that evaluate introspection

(e.g., resting-state neuroimaging with thought-sampling) or manipulate

cognitive mode (e.g., task-based neuroimaging that is designed to

enable comparing introspection with other cognitive activities), and by

replicating these patterns in new samples.

Because large-scale network dynamics is a rapidly growing area in

neuroscience, and a wide range of methods have been introduced in

recent years, another goal of this study was to evaluate the reliability of

transient network properties over time using the CAP approach. To test

spatial reliability, independent CAP analyses were applied to separate

within-subject datasets. Overall, there were better network state

“matches” across scans than within a scan. Comparing between REST

1 and REST 2 the range of maximal scores was 0.7–0.98 while the max-

imal correlation values within REST 1 was 0.35–0.57. This shows that

K means applied to REST 1 is separating out transient networks within

the scan and that there is a relatively good match between REST 1 and

REST 2 states. As shown in Figure 9, each REST 1 state has both high

and low dice similarity coefficients when compared to each REST

2 state, indicating that REST 1 TNS are matching with their REST

2 counterpart with some specificity. However, as discussed above some

spatial overlap between states is to be expected as some states may

share functional aspects or a more fine-grained anatomical evaluation is

needed to differentiate spatially overlapping states.

These reliability tests specifically revealed similar organization of

specific transient networks involving the prototypical DMN (State 3),

DMN regions together with frontoinsular and subcortical systems

(State 1), or sensorimotor regions (State 6). The spatial reliability of

other transient networks was more mixed, for example, a transient

network involving coactivation of frontoparietal and striatal regions

(State 2) showed moderately high but nonspecific spatial overlap with

two different network states derived from independent analysis in a

subsequent scan. It may be that specific transient networks are inher-

ently more reliable in their organization over time, or that transient

networks that relate to common resting-state cognitive activities

(e.g., introspection; Andrews-Hanna et al., 2010) are more likely to

emerge reliably over time. Along these lines, the reliability of dynamic

activities of transient networks was supported by analyses that indi-

cated similar dwell time and transition frequency from REST 1 to

REST 2. As above, stability over time in these measures could suggest

that these are reliable properties that are intrinsic to network states

(e.g., that brains tend to dwell in State 1) or that are related to cogni-

tive activities (e.g., that brains tend to dwell in State 1 during task-free

rest, and similarity in cognitive mode from REST 1 to REST 2 is driving

measure stability). There were some differences between REST 1 and

REST 2, which should be interpreted with caution as the related effect

sizes were small; ranging from 0.12 to 0.186. Thus, while the p-value

was significant, the small effect size calls the meaning of these differ-

ences into question. The fact that there was some level of variance

between these two scanning sessions was not surprising as it is likely

that outside factors influence TNS characteristics. Unfortunately, the

current dataset did not allow for a systematic evaluation of potential

factors that may have contributed to such minor differences between

scanning sessions. Future research aimed at evaluating and replicating

the reliability of transient networks, and determining how outside

influences impact such networks may address these questions.

There are several limitations to the present study, which suggest

directions for future research. First, this study evaluated the organization,

dynamic activities, and reliability of transient resting-state networks in a

large sample of healthy adults, focusing on general patterns that charac-

terize the group on average. Therefore, caution is warranted when

predicting how these properties generalize to other samples. Also, individ-

ual differences in these properties (e.g., how transient network dynamics

correspond with individual differences in cognitive ability or cognitive

style) were not the focus of this study, but may hold important informa-

tion about the significance of network dynamics to human health. For

example, in a study which applied the CAP method to adolescents, net-

work dwell and transition frequency were related to the trait tendency

toward maladaptive introspection and depressive symptom severity

(Kaiser et al., 2019). Together, the present study provides a perspective

on transient network functioning in a large, healthy adult sample; future

research will show whether these effects can be replicated under similar

conditions in independent, healthy samples, extended to other samples,

and reliably linked to meaningful cognitive and behavioral variables.

Second, we used CAP analysis to define transient functional brain

networks, but other methods may provide a complementary perspec-

tive. Here, CAP analysis was selected because it is a data-driven

approach that is robust to sources of noise, requires few assumptions,

and does not rely on estimates of correlated activation (Chen et al.,

2015; Liu et al., 2013, 2018). However, CAP may, in the future, be

implemented together with other methods of evaluating network

dynamics. For example, in another Human Connectome Project study

focused on resting-state network dynamics, researchers reported a lin-

ear relationship between age and increasing variability in the BOLD sig-

nal of frontoinsular networks (Nomi, Bolt, Ezie, Uddin, & Heller, 2017).

Those findings complement the present finding that the network state

showing the highest transition frequency was characterized by

coactivation in areas including anterior insula, and lateral and medial

PFC. Together, a useful direction for future work will be to apply differ-

ent methods for evaluating network dynamics to the same dataset, with

the goal of evaluating the consistencies (or inconsistencies) of dynamic

network properties that are uncovered by different approaches.

In conclusion, the present study investigated the functioning of

transient large-scale resting-state brain networks in a sample of

healthy adults. Key findings included the observation that the spatial

organization of transient networks differed in critical ways from pro-

totypical static resting-state networks, and showed unique profiles of

dynamic activity that suggest the dominance (at rest and in healthy

adults) of transient networks involving midline cortical regions. These

results also support the reliability of transient networks, as defined

with the CAP analytic approach. Critical next steps will be replication

in similar samples and using complementary methods, and research
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that investigates transient large-scale brain networks across the spec-

trum of psychiatric health and in relation to other dimensions of cog-

nitive and behavioral functioning.
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