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1 | INTRODUCTION

MS is a chronic inflammatory, demyelinating and neurodegenerative
disease of the CNS, affecting more than 2 million people worldwide
(GBD 2015 Neurological Disorders Collaborator Group, 2017). In
the past decade, cortical gray matter (GM) pathology has been
established as an important contributing mechanism in this debilitat-
ing disorder (Fisher, Lee, Nakamura, & Rudick, 2008; Geurts & Bar-
khof, 2008; Roosendaal et al., 2011). GM atrophy can be quantified
in an automated fashion in vivo using MRI (Amiri et al., 2018) and
most likely reflects a diffuse reduction in cortical neuronal density,
axonal density, and neuronal size (Popescu et al., 2015). This pro-
cess has been shown to be associated with cortical lesion volume
(Calabrese et al., 2010) and is thought to be, at least in part, the con-
sequence of a pathogenic process driven from pial lesions (Mainero
et al., 2015). Cross-sectional analyses point to an additional contri-
bution of demyelination in white matter (WM) tracts connecting the
brain cortex with subcortical structures (e.g., deep GM) to this dis-
ease component (Kolasinski et al., 2012; Steenwijk et al., 2014);
however, currently there is a lack of longitudinal data supporting
this pathomechanism.

Cortical GM atrophy is prevalent in all MS subtypes as early as at
the stage of clinically isolated syndromes and becomes more wide-
spread and severe with increasing disease duration (Eshaghi et al.,
2018; Fisher et al., 2008; Roosendaal et al., 2011). Despite the fact that
whole GM volume loss does not differ between MS disease subtypes, a
recent multicenter study showed accelerated GM atrophy rates in the
temporal lobe in secondary progressive (SPMS) compared to relapsing
remitting MS (RRMS) (Eshaghi et al., 2018). This suggests that, the rate
of GM volume loss in the temporal lobe may be a surrogate for transi-
tion from the RRMS to the SPMS phase of the disease. However, it is
unclear if this observed between-group difference concerns a specific
temporal lobe GM region or diffuse temporal cortical volume loss and
whether the observed between MS disease subtype difference may be
ascribed to the higher age of the SPMS patients.

Increasing evidence from both cross-sectional and longitudinal
analyses points towards an association of cortical GM pathology such
as cortical lesions and atrophy with physical and especially with cogni-
tive dysfunction (Bergsland et al., 2017; Eijlers et al., 2018; Fisniku
et al., 2008). However, the exact anatomical substrate of the cortical

GM loss driving disease progression is still poorly understood.

lesion load does not lead to an immediate CTh-reduction. Although CTh did not differ
between MS-subtypes, a dissociation in the correlation between CTh- and EDSS-changes
over time between RRMS and progressive-MS was shown, possibly underlining the contri-

bution of subcortical pathology to clinical progression in progressive-MS.

atrophy, biomarkers, cortical thickness, MRI, multiple sclerosis, T2 lesions

In this study, we examined the cortical thickness (CTh) changes in
a large cohort of MS patients over 6 years. We aimed at localizing dif-
ferences in the reduction of cortical GM between disease phenotypes
and to study the contribution of CTh changes to the progression of
physical and cognitive disability progression. We also examined the

effect of WM lesions on cortical GM changes over time.

2 | MATERIALS AND METHODS

2.1 | Study design and participants

We analyzed clinical and MRI data of RRMS, SPMS, and primary pro-
gressive (PPMS) patients (Table 1) from an ongoing large scale cohort
study (GeneMSA) at a single center (Multiple Sclerosis Center, Univer-
sity Hospital, Basel, Switzerland) (Tsagkas et al., 2018; Tsagkas et al.,
2019). Patients were followed over a maximum of 6 years (7 annual
time points). Both clinical assessments and the MRI examinations were
performed at least 1 month after the occurrence of a clinical relapse or
treatment with glucocorticosteroids. The diagnosis of MS was made in
accordance with international panel established criteria (McDonald
et al,, 2001). The study was approved by the local ethics committee. All
patients included in this work have been previously reported in former
studies (Tsagkas et al., 2018; Tsagkas et al., 2019).

2.2 | Clinical assessment

All patients underwent a standardized neurological examination
including the Expanded Disability Status Scale (EDSS; www.
neurostatus.org) by trained and certified examiners, Timed 25-foot
walk test (T25fwt) and Paced Auditory Serial Addition Test (PASAT)
annually. Patients also underwent an annual Symbol Digit Modali-
ties Test (SDMT) starting at the fourth follow-up time (or at the
third year of monitoring). No parallel test versions were used for the
SDMT, whereas two versions of the PASAT were deployed for
annual neuropsychological tests. Relapses that occurred 12 months
prior to each follow-up were also recorded. All clinical and neuro-
psychological metrics were recorded as cross-sectional measure-
ments at each follow-up, whereas longitudinal changes of those

metrics were not documented prospectively.
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TABLE 1 Demographics and clinical characteristics of patients with MS
Characteristics Overall RRMS
Number of patients 231 180
Baseline age (y)

Mean (SD) 44.5(11.1) 41.4(10.2)
Sex (female/male) 166/77 133/47
Baseline disease duration (y)

Mean (SD) 12.7 (9.1) 11.2(8.3)
Baseline EDSS

Median (SD) 3.0(1.7) 2.5(1.4)
Annual EDSS change

Mean (SD) 0.12 (0.35) 0.10 (0.33)
Baseline T25fwt (s)

Mean (SD) 7.55(10.60) 5.68 (7.08)
Annual T25fwt change

Mean (SD) 1.01 (4.33) 0.17 (1.94)
Baseline PASAT

Mean (SD) 43.75 (11.7) 44.9 (11.4)
Annual PASAT change

Mean (SD) 0.34 (4.23) 0.38 (3.86)
Baseline SDMT

Mean + SD 43.75(11.7) 48.5(13.7)
Annual SDMT change

Mean (SD) 0.68 (2.75) 0.91 (2.69)
ARR

Mean (SD) 0.32(0.48) 0.39(0.52)
Baseline treatment

Untreated 87 58
Azathioprine &) 4
Interferon 117 91
Glatimer acetate 29 26
Mitoxantrone 4 1

Number of follow-ups

Mean *+ SD 5.11(1.96) 5.16 (1.99)
Maximum follow-up time

Mean (SD) 4.36 (2.03) 4.41 (2.05)

SPMS PPMS p-value
51 12

Sk
55.3(7.6) 46.42 (6.6) x
27/24 6/6 x

kkk
19.0(9.7) 8.33(7.1) i

sokok
45(1.4) 425 (1.5) Tt

*
0.22 (0.41) 0.11(0.15)

kekk
14.15 (17.39) 8.73(7.27) T

sk
4.12 (8.25) 1.51 (2.44) T

ek
39.3(12.1) 44.8 (11.6)

n.s.
0.40 (5.61) -0.48 (2.61)

sk
40.9 (9.8) 43.6 (6.6)

n.s.
0.14 (3.16) -0.31(0.97)

kk
0.16 (0.30) 0(0) i

Tt
17 12 i
2 0
26 0
3 0
3 0

n.s
4.88 (2.00) 5.25 (1.48)

n.s.
411 (2.06) 4.67 (1.67)

Abbreviations: ARR, annualized relapse rate; EDSS, Expanded Disability Status Scale; PPMS, primary progressive multiple sclerosis; T25fwt, timed 25-foot
walk test; RRMS, relapsing remitting multiple sclerosis; SPMS, secondary progressive multiple sclerosis.
Note: n.s., not significant for any comparisons between PPMS, RRMS, and SPMS.

RRMS versus SPMS: # < .05, *#* < .01, *** < .001.
RRMS versus PPMS: t < .05, t1 <.01, 111 =< .001.
PPMS versus SPMS: t < .05, $f < .01, $$f < .001.

Between-group comparisons were performed using Welch's two sample t test and Pearson's chi-squared test with Yate's continuity correction where

appropriate.

23 | MRl protocol

Morphological analyses were performed on high-resolution three-
dimensional Tlw MPRAGE images acquired in sagittal plane
(TR/TI/TE = 2080/1100/3.0 ms; a = 15°, 160 slices, voxel size:
0.98 x 0.98 x 1 mm). Additionally, a double spin echo proton

density-weighted (PD)/T2-weighted sequence was acquired
(TR/TE1/TE2 = 3980/14/108 ms; flip angle = 180°, 40 slices,
3 mm slice thickness without gap with an in-plane resolution of
1mm?2). All MRI scans were performed on a 1.5 Tesla Magnetom
Avanto MRI-scanner (Siemens Medical Solutions, Erlangen,

Germany).
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2.4 | MRI analysis

All brain WM lesions were segmented on the PD-weighted images by
trained expert observers according to the standard operating procedures
used at the local institution for the analysis of clinical phase Il and phase
Il trial. T2-weighted lesion volume (T2LV) was calculated for the whole
brain as well as for each lobe as segmented by the “Automatic Nonlinear
Image Matching and Anatomical Labeling” algorithm (ANIMAL) (Collins,
Holmes, Peters, & Evans, 1995) at all available time points.

In order to avoid misclassification of lesions as GM, lesions masks
generated on PD-weighted images were used to fill the lesions on
T1-weighted images with the intensity of the surrounding white matter
tissue (Magon et al., 2014). CTh was estimated on the lesion-filled
T1-weighted images using the fully automated CIVET 1.1.10 pipeline
(Collins, Neelin, Peters, & Evans, 1994; Lyttelton, Boucher, Robbins, &
Evans, 2007). Summarizing this process, the T1-weighted images were
linearly registered to the standard stereotaxic space defined by the MNI
ICBM 152 model (Mazziotta et al, 2001). The images were then
corrected for intensity nonuniformity using N3 (Sled, Zijdenbos, & Evans,
1998) and a nonlinear registration to the model (Collins et al., 1994) was
applied. The tissue classification was performed using INSECT, whose
output was then fed to a Partial Volume Estimator, which in turn is used
for the actual surface fitting (Tohka, Zijdenbos, & Evans, 2004). Each
voxel was classified as WM, GM, or CSF. The images were then mapped
to a probabilistic atlas using the ANIMAL algorithm. Finally, the WM sur-
face was generated by using a deformable ellipsoid polygonal model that
shrinks until it fits the WM/GM interface. To generate the GM surface,
the WM surface was expanded until the GM/CSF interface (or pial sur-
face) is reached using a Laplacian approach in order to find the best fit
(Jones, Buchbinder, & Aharon, 2000; Kim et al., 2005). Specifically, to
adequately estimate the CTh, the Laplace's equation describes a smooth
trajectory between the WM and GM surfaces defining a layered set of
surfaces (Jones et al., 2000). Thus, each vertex on the WM surface maps
to a specific point in the GM surface and back to the same point in WM
surface. The CTh is estimated as the distance, in millimeters, between
WM and GM surfaces at each vertex. The surfaces are composed of
40,962 vertices for each hemisphere. After statistical analysis, we
used the Automated Anatomical Labeling (AAL) atlas to determine the
localization of the identified significant clusters (Ad-Dab'bagh et al.,
2006; Lyttelton et al., 2007; Tzourio-Mazoyer et al., 2002). Based on this
atlas, our results are reported in the form of mean t-value (MTV) + SD

and number of vertexes of each cluster in the individual cortical regions.

2.5 | Statistical analysis

Comparisons of demographic factors, clinical measurements, and num-
ber of follow-ups between MS subtypes were made using Welch's and
Pearson's chi-squared test with Yate's continuity correction. A logarith-
mic transformation of the EDSS was performed in order to correct for
its nonlinearity in representing physical disability, as conducted in previ-
ous studies (Magon et al., 2014; Tsagkas et al., 2018; Tsagkas et al.,
2019). The annualized relapse rate was calculated for each patient.

Vertex-wise longitudinal analysis was performed using a linear
mixed effect model (LMER) in order to explore longitudinal correlations
between the patients' CTh and demographic, clinical and T2LV mea-
surements. LMER was also used to examine the trends of PASAT and
SDMT changes over time in our cohort after a square transformation
for PASAT in order to approximate a normal distribution. This was done
using a random intercept and a random time slope for each subject to
allow for within-subject and between-subject variance. CTh was always
used as the dependent variable in our analysis. For the investigation of
the association between CTh and clinical outcomes or T2LV, the inde-
pendent variables were entered blockwise keeping the following
sequence: first demographics and then clinical variables or T2LV
respectively. Separate analyses were conducted for the whole brain
T2LV as well as for the left and right T2LV of the frontal, parietal, tem-
poral, and occipital WM. Each variable was tested both for its correla-
tion to the CTh intercept as well as to the CTh slope over time. All
independent variables without statistical significance were excluded
from the final model. In order to reduce the risk of type | errors the
results were corrected for multiple comparisons by using the False Dis-
covery Rate approach set at g < 0.05.

In order to assess between-group CTh differences of RRMS and
SPMS with PPMS patients, we performed propensity-score matching
baseline covariates, including sex, age and disease duration as
described in a previous study (Tsagkas et al., 2019). RRMS and SPMS
were matched with PPMS patients, based on high similarity of pro-
pensity scores, on a 2:1 basis for each group and all groups had a simi-
lar follow-up time. Comparisons of the RRMS and SPMS CTh with
PPMS were done using vertex-wise LMER using the False Discovery
Rate approach set at g < 0.01 (instead of 0.05) in order to correct for
multiple comparisons between the patient groups.

Beside the multiple comparison correction approaches discussed
above, no other approach was used in the rest of the analysis, since
the models used for the examination of the correlation between CTh
and demographical/clinical data are independent from each other.

All statistical analyses of CTh were performed in R (https://www.
r-project.org/) using the RMINC package (https://wiki.mouseimaging.
ca/display/MICePub/RMINC).

3 | RESULTS

A total of 243 MS patients (180 RRMS, 51 SPMS, and 12 PPMS) were
monitored yearly over an average time span of 4.36 + 2.03 years.
Ninety-three patients, completed all 7 scans, whereas another 35 com-
pleted 6 scans and 29 completed 5 scans. The rest of the patients
(86) completed four scans or less. Demographics and clinical charac-

teristics of our cohort are described in Table 1.

3.1 | Reduction of cortical thickness over time

Reduction of CTh in the whole cohort and each individual MS sub-
types are graphically displayed in Figure 1. In the whole cohort as well
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as in RRMS and SPMS patients separately, cortical thickness reduced
in extended cortical regions predominantly in the prefrontal, frontal,
parietal and temporal lobes (overall MTV; whole cohort: right —3.72
+0.97, left —3.92 £ 1.02; RRMS: right —-3.41 +0.69, left -3.51
+ 0.85; SPMS: right —3.11 + 0.56, left —3.31 + 0.52). No significant
CTh reduction was found in the PPMS group (n = 12).

3.2 | Association of CTh with demographic factors
Associations between demographic factors and CTh are graphi-
cally displayed in Figure 2 and Table 2. Age at baseline was asso-
ciated with a reduction of the average CTh predominantly in the
parietal, prefrontral, and frontal cortex bilaterally, while being

CTh Change ~ Time

Whole Cohort

-2.59

Not Significant

FIGURE 1

CTh reduction over time in the whole cohort and individual subgroups of disease subtypes. The gradient from yellow to red

indicates a lower to higher negative reduction respectively, as shown by the t-values extracted from our linear mixed effect models. In each
graph, the highest (or less negative) gradient value represents the threshold of the respective t-values after correction with the false discovery
rate approach for multiple comparisons set at g < 0.05. Up left: CTh reduction over time in the whole cohort. Up right: CTh reduction over time in
the relapsing remitting multiple sclerosis (RRMS). Down left: CTh reduction over time in the secondary progressive multiple sclerosis (SPMS).
Down right: no statistically significant CTh reduction over time was shown in the primary progressive multiple sclerosis (PPMS)
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slightly more extended in the right hemisphere (q < 0.05). Age at
baseline was also negatively associated with CTh changes over
time in extended cortical regions mostly involving the bilateral
prefrontal cortex, bilateral parieto-occipital regions, and the supe-
rior temporal gyri (g < 0.05). Disease duration at baseline was
also associated with extended cortical thinning of the bilateral

frontal and prefrontal cortex as well as large parietal, temporal,
and occipital CTh reduction—more extended in the left hemi-
sphere, but was not correlated with the CTh changes over time
(g < 0.05). Sex was not correlated with CTh or its changes over
time. In RRMS, the annualized relapse rate was not associated
with CTh or its changes over time.

Average CTh ~ Age at Baseline
L

-6.00

CTh Change ~ Age at Baseline*Time

L

237

237

13 -5.00

Average CTh ~ DD at Baseline

CTh Change ~ DD at Baseline*Time

Not Significant

FIGURE 2

Effect of age and disease duration (DD) on the cortical thickness (CTh) of all multiple sclerosis patients. The gradient

from yellow to red indicates a weaker to stronger negative correlation respectively, as shown by the t-values extracted from our linear
mixed effect models. In each graph, the highest (or less negative) gradient value represents the threshold of the respective t-values
after correction with the false discovery rate approach for multiple comparisons set at g < 0.05. Up left: correlation of the average
CTh with age at baseline. Up right: correlation of the CTh changes over time with age at baseline. Down left: correlation of the
average CTh with DD at baseline. Down right: no statistically significant correlation was shown between CTh changes over time and

DD at baseline
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Average CTh ~ Average T2LV

-11.34 -10.57

CTh Change ~ T2LV Change*Time

Not Significant

FIGURE 3

Effect of the whole brain T2w-lesion (T2LV) on the cortical thickness (CTh) of all multiple sclerosis patients. The gradient from

yellow to red indicates a weaker to stronger negative correlation respectively, as shown by the t-values extracted from our linear mixed effect
models. In each graph, the highest (or less negative) gradient value represents the threshold of the respective t-values after correction with the
false discovery rate approach for multiple comparisons set at g < 0.05. Left: correlation of the average CTh with the average T2LV. Right: no
statistically significant correlation was shown between CTh and T2LV changes over time

3.3 | CThdifferences between groups

CTh and its changes over time did not differ between RRMS and
SPMS patients after correcting for age and disease duration at baseline.
In sex-, age- and disease duration-matched subgroups of 60 RRMS,
SPMS, and PPMS patients (24 RRMS, 24 SPMS and 12 PPMS, mean age
at baseline 48.9 + 8.2 years, mean disease duration 10.2 * 6.6 years,
32 female), also no differences in CTh and its changes over time were

found among groups.

3.4 | Association of CTh with WM lesion load

After correcting for age and disease duration, a negative correlation
was found between whole brain T2LV and the average CTh in regions
extending symmetrically in nearly the whole cortex bilaterally (overall
right: MTV —4.00 + 1.36; left: MTV —4.24 + 1.35, g < 0.05). Whole
brain T2LV changes were not associated with the CTh changes over
time. These results are also graphically displayed in Figure 3.

When examining the relation between regional T2LV (left and
right frontal, parietal, temporal and occipital WM lesions) and CTh,
all regional T2LV were associated with a reduction of CTh in
extended bilateral cortical regions, analogous to the whole brain
T2LV (g < 0.05). In addition, left temporal T2LV changes were nega-
tively correlated with the CTh change over time in a small cluster in
the left cuneus (MTV -4.47 +0.35, 35 vertexes, q < 0.05), and
precuneus (MTV —4.43 + 0.29, 26 vertexes, g < 0.05). Left occipital

T2LV changes were also negatively correlated with the CTh change
over time predominantly in small bilateral temporal, parietal, and
occipital regions (g < 0.05). The correlation between left temporal
and occipital T2LV and CTh is shown in Figure 4, whereas the corre-
lation between occipital T2LV and CTh is displayed in detail in
Table 3.

3.5 | Association of CTh with the EDSS

3.5.1 | Whole cohort

In the whole cohort, the log(EDSS) was not associated with the aver-
age CTh, after correcting for age and disease duration. However,
log(EDSS) changes were negatively correlated with the CTh changes
over time in large extended bilateral cortical regions (Figure 5), pre-
dominantly in the right temporal and left frontal and parietal lobes
(g < 0.05). These results are also shown in detail in Table 4.

3.52 | RRMS

In the RRMS group, the log(EDSS) was not associated with the aver-
age CTh, after correcting for age and disease duration. However,
log(EDSS) changes were negatively correlated with the CTh changes
over time in large, extended bilateral cortical regions (g < 0.05)

(Figure 5). These results are also shown in detail in Table 4.



TSAGKAS ET AL Wl L EY 2207

Average CTh ~ Average Left Temporal LV CTh Change ~ Left Temporal LV Change*Time

-10.42 -10.44 -5.05

FIGURE 4 Effect of the left temporal and left occipital T2w-lesion (T2LV) on the cortical thickness (CTh) of all multiple sclerosis patients. The
gradient from yellow to red indicates a weaker to stronger negative correlation respectively, as shown by the t-values extracted from our linear
mixed effect models. In each graph, the highest (or less negative) gradient value represents the threshold of the respective t-values after
correction with the false discovery rate approach for multiple comparisons set at q < 0.05. Up left: correlation of the average CTh with the
average left temporal T2LV. Up right: correlation of the CTh and left temporal T2LV changes over time. The right hemisphere was added in this
figure solely for completion, since no correlation between CTh in the right hemisphere and left temporal T2LV changes over time was found.
Down left: correlation of the average CTh with the average left occipital T2LV. Up right: correlation of the CTh and left occipital T2LV changes
over time

353 | SPMS 354 | PPMS

In the SPMS group, the log(EDSS) was not associated with the CTh, In the PPMS group, the log(EDSS) was not correlated with the average

after correcting for age (Figure 5). CTh. However, log(EDSS) changes were negatively correlated with
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TABLE 3 Association of cortical thickness changes over time with left occipital T2LV changes

Cortical regions
Central region

Frontal lobe

Temporal lobe

Parietal lobe

Occipital lobe

Limbic lobe

Insular lobe

Gyri

Rolandic operculum

Inferior frontal gyrus, opercular part
Supplementary motor area

Paracentral lobule

Superior temporal gyrus

Middle temporal gyrus

Precuneus

Cuneus

Calcarine fissure and surrounding cortex
Lingual gyrus

Fusiform gyrus

Anterior cingulate and paracingulate gyri
Median cingulate and paracingulate gyri
Posterior cingulate gyrus
Parahippocampal gyrus

Insula

MTV

Right
-3.09 (0.13), 25
-3.24 (0.20), 34
—3.33(0.25), 59
-3.19 (0.19), 24
-3.09 (0.14), 14
—3.63 (0.46), 499
—-3.63 (0.46), 189
-3.62(0.50), 31
—-3.06 (0.09), 15
—-3.82(0.54), 96
—-3.68(0.52), 34
—3.58 (0.43), 468
—3.34(0.32), 103
—-3.58 (0.47),
),

67
-3.23(0.22), 94

Left

—3.27(0.46), 2
-3.33(0.07), 27
—3.97 (0.43), 242
-3.97(0.43),175
-3.48(0.22),7
-3.62(0.29), 63

—3.47 (0.18), 106
—3.74 (0.26), 68
—3.44(0.16), 6

Note: Correlation between left occipital T2-weighted Lesion Volume (T2LV) and the cortical thickness (CTh) of significantly associated cortical regions in all
multiple sclerosis patients. Results represent the correlation strength shown in the form of t-values extracted from our linear mixed effect models after
correction with the false discovery rate approach for multiple comparisons set at g < 0.05. Lower (or more negative) t-values reflect a stronger negative

correlation. All results are reported in the form: mean t-value (SD), number of vertexes in the respective region.

Abbreviation: NA, not applicable.

the CTh changes over time in small clusters, predominantly in the
bilateral superior parietal gyri, the left precentral gyrus, the left middle
frontal gyrus, and the left postcentral gyrus (g < 0.05). Results are also
displayed in detail in Table 4 and Figure 5.

3.6 | Association of CTh with the T25fwt, PASAT,
and SDMT

In the whole cohort as well as in all MS subgroup analyses, the
T25fwt and PASAT were not associated with the CTh. SDMT, only
analyzed for the time span between the third and sixth follow-up year
was also not associated with the CTh (corrected for the same factors
described above). However, as reported by the LMER analyses the
PASAT and SDMT were shown to significantly improve over time in
our MS patients (for the whole cohort: PASAT? B = 48.01 + 8.03/year,
p <.001; SDMT B = 0.66 £0.17/year, p <.001), whereas this
improvement in neuropsychological scores did not significantly differ
between different MS subtypes (Table 1).

4 | DISCUSSION

This is the first longitudinal study examining the relationship of CTh in
a vertex-wise manner with clinical- and lesion load measurements in a

large cohort of different MS phenotypes over 6 years. Our work

demonstrated similar temporospatial cortical changes over different
disease subtypes, which —however— were related to disease progres-
sion in a disease-type-specific manner. We also showed an associa-
tion of T2LV and CTh, although the effect of T2LV changes to
longitudinal CTh changes was shown to be only marginal.

Our study demonstrated a significant CTh reduction over time in
large prefrontal, frontal, parietal, and temporal cortical areas in all MS
patients. These results are similar to a large cross-sectional multicen-
ter study comparing RRMS patients and healthy controls (Narayana
et al., 2012). Therefore, it can be hypothesized that the observed atro-
phy demonstrated in these large cortical areas may represent a
disease-specific effect rather than the impact of aging, although our
study could not confirm this hypothesis due to the absence of healthy
controls. Similar results were shown in separate analysis for RRMS
and SPMS patients, whereas no significant CTh reduction over time
was shown in the PPMS. The latter finding should be considered with
caution, since the sample size of our PPMS group was rather small
(n = 12) and therefore this analysis may have lacked in power. This
may be also supported by the findings of a recent large longitudinal
volumetric study showing significant cortical atrophy in this group
(Eshaghi et al., 2018).

In our patients, a clear effect of aging on CTh was demonstrated,
which is in line with previous cross-sectional and longitudinal studies
of healthy individuals (Fjell et al., 2015; Thambisetty et al., 2010). In
particular —as also seen in Figure 2, older patients were found to have

reduced frontotemporal CTh as well as an accelerated cortical



TSAGKAS ET AL

WILEY_| 2

CTh Change ~ EDSS Change*Time

Whole Cohort

Not Significant

FIGURE 5 Correlation between EDSS and CTh changes over time in the whole cohort and individual subgroups of disease subtypes. The
gradient from yellow to red indicates a weaker to stronger negative correlation respectively, as shown by the t-values extracted from our linear
mixed effect models. In each graph, the highest (or less negative) gradient value represents the threshold of the respective t-values after
correction with the false discovery rate approach for multiple comparisons set at g < 0.05. Up left: correlation between EDSS and CTh changes
over time in the whole cohort. Up right: correlation between EDSS and CTh changes over time in the relapsing remitting multiple sclerosis
(RRMS). Down left: no statistically significant correlation was shown between EDSS and CTh changes over time in the secondary progressive
multiple sclerosis (SPMS). Down right: correlation between EDSS and CTh changes over time in the primary progressive multiple sclerosis (PPMS)

thinning in large cortical areas involving the prefrontal cortex, parieto-
occipital regions, and the superior temporal gyri. Aging-related pat-
terns of CTh have been shown to be driven by both genetic factors
(Matsushita et al., 2015) and functional relationships of converging
regions (Fjell et al., 2015).

Our analysis also revealed a correlation between CTh and disease
duration with diffuse cortical thinning being apparent in later stages
of the disease. The reported association between the loss of cortical
GM and increasing disease duration is independent of normal aging,

since disease duration was added after age in our LMER models.
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However, the rate of CTh reduction over time was not a function of
disease duration, suggesting a steady cortical thinning throughout the
course of the disease in patients during the monitoring time of our
study.

As opposed to previous cross-sectional studies and one recent
large-scale longitudinal volumetric studies of cortical GM in MS
(Eshaghi et al., 2018; Fisher et al., 2008; Roosendaal et al., 2011), CTh
did not differ between our RRMS, SPMS and PPMS groups, while age
and disease duration possibly took up most of the CTh between-
group variance. Our results did not confirm the accelerated reduction
of temporal cortical gray matter observed by Eshagi et al. in 2018.
The discrepancy of those results may lie in the different methodologi-
cal approaches of these studies, since the current study performed an
analysis of the cortical shape or cortical thickness, whereas previous
studies evaluated the cortical volume in different cortical areas. On
the other side, our study included significantly less patients compared
to the work done by Eshagi et al. in 2018, so that the power of our
study might have been inadequate to reveal the aforementioned dif-
ferences. In addition, differences of the two cohorts with regard to
the disease modifying therapies of the enrolled patients could have
also contributed to the discrepancy of the respective results. Finally, it
could be hypothesized that differences in the age of MS patients of
the two studies could also have been responsible for this discrepancy,
since RRMS and especially SPMS patients were older in the current
study compared to the longitudinal study conducted by Eshagi et al.
in 2018.

Our work demonstrated a correlation of widespread CTh reduc-
tion with larger whole brain T2LV. This is in line with previous cross-
sectional studies suggesting that focal inflammatory events in the
WM may—at least partially—“drive” cortical atrophy (Bergsland et al.,
2015; Bodini et al., 2009; Henry et al., 2009). However, whole brain
T2LV did not contribute to the temporal evolution of CTh over
6 years, suggesting that focal inflammatory events do not lead to an
immediate loss of cortical GM. Similarly, the annualized relapse rate
was not associated with CTh in RRMS. Further, exploration of a
potential effect of the regional T2LV changes over time on CTh reduc-
tion over time revealed a correlation of the left temporal and left
occipital T2LV with cortical changes over time, which is limited in the
neighboring and contralateral corresponding GM. Thus, it is possible
that WM lesions only produce a limited focal effect in the surrounding
and anatomically connected cortex (e.g., through forceps major) as a
result of intralesional axonal loss and following Wallerian degenera-
tion. However, our results support that GM volume may be a process
independent of focal WM pathology and MS relapses, at least to a
certain extent. Nevertheless, a connection between T2LV changes
over time or relapses with a longer-term neurodegenerative process
beyond the time span of our study affecting cortical gray matter can-
not be excluded.

Temporal CTh changes were associated with the EDSS changes
over 6 years in the whole cohort of MS patients. In particular, a large
effect over cortical areas extending primarily in the bilateral prefron-
tal, frontal and temporoparietal regions was seen. In order to investi-

gate the cortical changes responsible for disability progression in

different MS groups, we also performed a separate analysis for our
RRMS, SPMS, and PPMS patients. Herewith, it was revealed that the
observed correlation between CTh and EDSS changes over time was
driven primarily by the RRMS patients. Interestingly, in the SPMS
patients no association was found between the EDSS and cortical
changes. Moreover, in the PPMS patients the correlation between
EDSS and CTh changes over time was found only in small clusters
over the bilateral superior parietal gyri, the left precentral gyrus, and
the left postcentral gyrus. These results suggest that the clinical
impact of cortical changes is much more pronounced in RRMS than
SPMS and PPMS patients. This also indicates a clear dissociation
regarding the impact of the patients’ CTh changes to disability in
RRMS and progressive patients, especially since the CTh did not differ
between groups. This finding is also in line with a previous study
showing that other structures such as the spinal cord correlate better
with progression of physical disability than brain metrics in progres-
sive MS patients (Tsagkas et al., 2018; Tsagkas et al., 2019).

Surprisingly T25fwt, PASAT and SDMT did not correlate with the
CTh neither in the whole cohort nor in the different MS-subtypes.
Concerning the T25fwt, it could be hypothesized that the large
between-patient variability could partly be responsible for the lack of
association with CTh changes, even with motor-related cortical areas.
Moreover, other structures such as the spinal cord have been also
shown to be better explanatory variables for T25fwt compared to
brain metrics (Tsagkas et al., 2018; Tsagkas et al., 2019). Furthermore,
in contrast to previous literature (Calabrese et al., 2009; Steenwijk
et al., 2016), cognitive performance—as measured by PASAT and
SDMT—in our cohort was not associated with CTh. However, a para-
doxic significant improvement of those scores was evident in our
patients in both scores, which may be attributed to a learning effect
through repetition. This is in line with a number of studies including
healthy controls and MS patients showing improved cognitive perfor-
mance through practice or repetitive testing, even when testing was
performed with relatively long intervals between follow-up, similarly
to our study (Baird, Tombaugh, & Francis, 2007; Bartels, Wegrzyn,
Wied|, Ackermann, & Ehrenreich, 2010; Basso, Bornstein, & Lang,
1999; Johnen et al., 2019; Roar, llles, & Sejbaek, 2016).

There are some limitations of our study that have to be men-
tioned. We involved data of a big cohort of MS patients acquired
retrospectively. As a consequence, some patients were lost to
follow-up during the study, leading to incomplete datasets and
potential bias. However, all three examined MS subgroups (RRMS,
SPMS, and PPMS) were monitored for a similar time period and thus
represented in homogeneous fashion over our 6-year follow
up. Furthermore, the lack of a representative control group did not
allow us to assess the CTh changes of MS compared to healthy sub-
jects. Despite that, the correlation between CTh and clinical out-
comes is independent of this limitation. Moreover, our study
examined patients from a single center, which were scanned on a
single MRI scanner. While this eliminated potential methodological
issues arising from the utilization of different MR machines, due to
the variability of the disease the acquisition of our data within a sin-

gle center may somehow limit the generalizability of our results in
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other MS populations. However, the relatively large sample size of
the investigated cohort and the long follow-up period could have
mitigated this issue. Another limitation of our work could refer to
the different sample size between disease subtypes, which may have
influenced our results. Notably, the PPMS group included a rather
small number of patients; thus, interpretation and generalizability of
these results for other PPMS populations should be done with cau-
tion. In addition, the majority of MS patients in our cohort (180 out
of 243 patients) were classified as RRMS; therefore, it cannot be
excluded that the contrast in the results between RRMS and pro-
gressive MS (especially concerning the correlation of CTh with the
EDSS) is to be accounted for by the different MS subtype sample sizes
in our cohort. Nevertheless, in our cohort, 64% of patients were treated
with disease-modifying including primarily first-line injectables (60%).
While injectables also show an effect on brain gray matter atrophy,
based on previous studies, we believe that this effect is rather negligi-
ble (Favaretto, Lazzarotto, Margoni, Poggiali, & Gallo, 2018). During the
collection of data in this study, there was no approved treatment for
PPMS, so that no patient received treatment in this patient group.
However, the distribution of disease modifying agents in our RRMS
and SPMS patients did not significantly differ. Finally, it has to be noted
that we did not examine the association between cortical lesions and
CTh over time, since the sensitivity of T2- and PD-weighted sequences
for cortical lesions is known to be very low.

5 | CONCLUSION

In conclusion, our study demonstrated a more prominent diffuse CTh
reduction with increasing lesion load. However, only a marginal focal
effect of regional T2LV changes to CTh changes over time was shown
in neighboring and anatomically connected cortical areas, thus
suggesting that GM atrophy progresses —at least partially—
independent from focal inflammatory events. MS-subgroups did not dif-
fer in terms of CTh. However, a clear dissociation in the correlation
between CTh and EDSS changes over time between RRMS and SPMS
patients was shown. Based on this finding we can hypothesize, that
other CNS structures such as the spinal cord may be more relevant with
regard to disability progression in SPMS patients.
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