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Abstract

Improved methods are needed to model CRISPR screen data for interrogation of
genetic elements that alter reporter gene expression readout. We create MAUDE
(Mean Alterations Using Discrete Expression) for quantifying the impact of guide
RNAs on a target gene’s expression in a pooled, sorting-based expression screen.
MAUDE quantifies guide-level effects by modeling the distribution of cells across
sorting expression bins. It then combines guides to estimate the statistical
significance and effect size of targeted genetic elements. We demonstrate that
MAUDE outperforms previous approaches and provide experimental design
guidelines to best leverage MAUDE, which is available on https://github.com/
Carldeboer/MAUDE.
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Background
Pooled CRISPR/Cas9 screens with a readout of a reporter gene’s expression have im-

proved our understanding of how both cis and trans regulators control gene expres-

sion. CRISPR/Cas9 and related systems use complementarity between an RNA guide

and the genomic DNA to direct Cas9 to specific loci. Engineered Cas9 proteins with

different enzymatic and regulatory activities now allow researchers to mutate DNA [1],

modify the chromatin state [2] of the targeted locus, inertly bind loci to inhibit tran-

scription [3], or recruit activators [4]. Using these tools, pooled screens with libraries

of guides targeting genes or the non-coding genome and measuring the impact on a

reporter gene’s expression can identify trans regulators or cis-regulatory elements that

affect the reporter’s expression [1, 2, 5–7]. For instance, CRISPR interference (CRIS-

PRi) and CRISPR activation (CRISPRa) have been used to respectively repress or acti-

vate elements in a targeted cis-regulatory region and identify enhancers of a gene’s

expression [2, 4, 8, 9]. In each case, we estimate how each guide affects the targeted

(or reporter) gene’s expression by sorting cells into discrete expression bins and meas-

uring the guide’s abundance in the bins. Such screens help dissect enhancer regulatory
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logic [5, 8] and identify the genetic variation most likely to contribute to common hu-

man disease [9].

Despite the growing number of gene expression CRISPR screening strategies, compu-

tational methods to determine which guides and elements alter gene expression remain

relatively ad hoc. In general, detecting guides that impact expression relies on finding

those with a biased distribution across the expression bins. While tools have been cre-

ated to model and analyze the data for selection-based screens [10], the analysis re-

quirements for sorting-based screens differ significantly. Most methods used to analyze

sorting-based screens rely on one of two strategies: (1) using the log fold change be-

tween the guide abundances in the high and low expression bins directly [5, 6, 9], or

(2) repurposing RNA-seq differential expression tools [11, 12] to find changes in guide

abundance between high and low bins, taking advantage of their ability to account for

differences in sequencing depth [6, 13]. However, both strategies are difficult to apply if

more than two sorting bins are used and do not leverage the unique character of these

data.

Here, we describe MAUDE (Mean Alterations Using Discrete Expression), an analyt-

ical framework for estimating the effect of CRISPR guides (or other perturbagens) on

expression, as measured by sorting into discrete expression bins and sequencing.

MAUDE maximizes the likelihood of the observed sequencing data over the cell-

sorting bins to estimate the mean expression for cells containing each guide. It then

combines the resulting Z-scores from multiple guides targeting the same element into

element-level effect sizes and estimates statistical significance. Elements can be defined

a priori, by annotating guides with the element they target, or identified de novo by

using a sliding window to combine guides targeting neighboring chromosomal loca-

tions. MAUDE is highly sensitive at finding expression-altering guides and elements, is

adept at estimating effect sizes, and outperforms existing approaches. Finally, we pro-

vide guidance on the design of expression-based CRISPR screens to maximize the in-

formation gleaned.

Results
MAUDE identifies expression-altering guides by their distribution across bins

A sorting-based screen takes the following form: (1) A set of possible perturba-

tions, each of which is encoded in DNA and may or may not modify the mean

gene expression level by some amount (for sorting-based CRISPR screen, these per-

turbations are guide RNAs), is introduced into (2) a population of cells, such that

each receives one or more of these perturbations, and is allowed to grow. (3)

Afterwards, the cells are sorted by Fluorescence Activated Cell Sorting (FACS) into

discrete bins based on their expression level of a gene of interest (a continuous

value). FACS expression measurements are often log-normal, but are not required

to be so. (4) The sorted cells, as well as unsorted control cells, are then lysed and

their DNA isolated. (5) Guide DNA barcodes are usually amplified with PCR and

sequenced. This sequencing-mediated sampling process can be represented as a

sampling from a negative binomial distribution [11, 14, 15]. Consequently, (6) at

the end of the experiment, we have guide RNA read counts for each of several

bins, and an unsorted control bin.
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MAUDE aims to learn the mean expression level that results from each guide-

directed perturbation. If expression is bimodal (e.g., perturbations alter the

fraction of expressing cells), MAUDE guide-level effect sizes correspond to the

average effect of the perturbation (see below). MAUDE requires as input that

the sorting bins be sequenced and the sizes of each bin (% of total cells in the

distribution) are known, that the screen includes negative control guides that

should not affect expression, and that the unsorted input library be sequenced

to quantify overall library composition. The unsorted input library should be

harvested from the same population of cells used to sort at the time of sorting

to minimize differences in composition that might result from guides altering

cellular fitness. Furthermore, the negative control guides included should either

be non-targeting (as in a CRISPRi or CRISPRa screen), or target an irrelevant

locus (if using enzymatically active Cas9, since DNA damage can induce global

expression changes).

MAUDE estimates the most likely mean expression level effect of a given guide

g, μ̂g , by maximizing the likelihood of the observed reads per bin under these as-

sumptions (Fig. 1). To do so, it estimates the number of reads of guide g ex-

pected to be in each expression bin b, for a given mean expression level μg. It

estimates the optimal μ̂g as the one that maximizes the log likelihood of the ob-

served number of reads given the expected number of reads in each bin

(Fig. 1a—left).

Fig. 1 MAUDE approach to scoring expression-based screens. a Method overview. b–d MAUDE approach
to estimating the optimal mean expression level per guide. b Estimation of cell density distribution for each
guide. Cell density distribution (y axis) of target gene expression (x axis) for each guide is modeled as a
normal distribution, with mean μg. μg is optimized by calculating, for each bin (bins A and B, top), the
fraction of cells expected to be in the bin under the null model (no overall change in expression; S(b, 0))
and the fraction of cells expected in the bin given the current value of μg (S(b, μg)). c Estimation of optimal
μg. We find the optimal μ̂g by calculating the log likelihood (y axis) of the observed bin read abundances
given each value of μg (x axis). d Expected number of guide reads per bin. The fraction of reads (y axis) of
guide g (Pb(g| μg)) expected in each bin b (x axis), for different values of μg (colors)
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To achieve this, MAUDE proceeds in several steps. First, it uses the unsorted (input)

library to estimate the library composition, defined as r∅g/R∅, the fraction of reads from

guide g (r∅g) out of the total reads (R∅). Next, using the overall fraction of cells ob-

served in each expression bin (recorded during cell sorting), it quantile normalizes the

sorting expression space to a standard normal reference (μ = 0 and σ = 1). For each bin,

it calculates the Z-scores in standard normal space (Zb0 and Zb1 for lower and upper

limit, respectively) that capture the same quantile as the bin captured in the original

(FACS) data. Since most guides in such screens do not alter expression, the vast major-

ity of the overall distribution represents the expression σ associated with no effect (e.g.,

wild type). Thus, for modeling simplicity, we can assume that each guide has the same

σ—that of the overall distribution. It then defines S(b, μg) as the fraction of cells con-

taining guide g expected by the model to have been sorted into bin b (with the bin de-

fined by Zb0 and Zb1, respectively). S(b, μg) is calculated using the normal cumulative

distribution function, CDFnorm(), yielding the probability that a cell sampled from a

normal distribution with mean μg will have an expression (x) less than the sorting

upper bin bound Zb1, but not smaller than the lower bin bound Zb0:

S b; μg
� �

¼ CDFnorm xþ μg ≤Zb1

� �
−CDFnorm xþ μg ≤Zb0

� �
ð1Þ

For a given μg, MAUDE calculates the expected expression distribution (Fig. 1b). The

expected fraction of cells in bin b that contain guide g is:

Pb gjμg
� �

¼ r∅g

R∅
�
S b; μg
� �
S b; 0ð Þ ð2Þ

Intuitively, if guide g does not affect expression, μg is 0, and so Pb(g| μg) is just the

fraction of the overall library occupied by the guide (r∅g/R∅); if the value of μg results

in a higher fraction of cells containing guide g in bin b, the guide is enriched in that

bin (Pb(g| μg) > r∅g/R∅; Fig. 1b—right); depletion results when fewer cells end up in the

bin (Pb(g| μg) < r∅g/R∅; Fig. 1b—left).

Finally, MAUDE learns the optimal μg given the observed guide reads, by maximizing

the (log) likelihood of observing the reads from the guide g in each bin b (rgb), given

the overall number of reads observed in that bin (Rb; Fig. 1c, d). To reduce the impact

of cases where a guide cannot be quantified reliably due to low coverage, MAUDE also

includes a prior favoring no change in expression via a pseudocount added uniformly

to all expression bins (see the “Methods” section). We assume reads are sampled using

a negative binomial distribution (with probability density function PDFNB()) [11, 14,

15]. Thus, MAUDE maximizes the following equation separately for each guide g to

learn its optimal μ̂g :

μ̂g ¼ argmax
μg

Xbins b
log PDFNB rgb;Rb; Pb gjμg

� �� �� �
ð3Þ

Once MAUDE learned μ̂g for each guide, it subtracts from each the average μ̂g of the

negative control guides (μ̂NT ) to convert each guide’s effect on expression to a Z-score

(Zg; Fig. 1a—middle):

Boer et al. Genome Biology          (2020) 21:134 Page 4 of 16



Zg ¼ μ̂g−μ̂NT ð4Þ

This step is necessary because targeting guides, whose true mean is sometimes not 0,

are also included in the overall distribution and may have shifted the overall mean.

Thus, Zg represents the number of standard deviations (SDs) by which guide g has al-

tered gene expression compared to the negative control guides. Importantly, these

guide Z-scores can easily be inspected to detect possible off-target effects or other out-

liers, and nominate specific guides for further validation.

MAUDE calculates element-level effect size and significance by aggregating signal across

guides

With a Z-score representing the expression change for every guide, MAUDE calculates

element-level effect size and statistical significance (Fig. 1a—right), using either (1)

known element annotations or (2) a sliding window across the locus of interest to de-

fine elements. Examples of potential annotated elements are putative enhancers or pro-

tein coding genes. Sliding windows require that the region be tiled with guides, with

the final resolution and sensitivity proportional to the tiling density, but require no

prior knowledge about the region. We combine all guides within a pre-specified win-

dow size (e.g., 500 bp), requiring a minimum number of guides per window (e.g., 5),

and testing all possible windows with distinct guide sets. The element’s effect size,

expressed as a Z-score, is the average Z-score of the guides targeting that element.

To estimate statistical significance, we combine guide-level Z-scores for all guides tar-

geting that element (by Stouffer’s method) into a single Z-score, representing a signed

significance of the regulatory change (Z > 0 representing upregulation and Z < 0 repre-

senting downregulation). To minimize the effects of outliers, the experimental noise,

and the number of guides per element (which can greatly affect the robustness of these

Stouffer Z-scores), we repeatedly sample the negative control guides for each experi-

ment and every possible number of guides/element, to create null distributions. We

then scale the Stouffer Z-scores by the standard deviation of the corresponding nega-

tive control null (i.e., the null for that experiment with the same number of guides/

element). Finally, the resulting significance Z-scores are converted into P values using

the normal cumulative distribution function (μ = 0, σ = 1), for the upper tail (upregula-

tion), the lower tail (downregulation), or the minimum of the two (either), with corre-

sponding Benjamini-Hochberg FDR correction. Although MAUDE does not require

biological replicates, replicates allow the detection of replicate-specific experimental

noise, and so we recommend having at least two replicates and considering only those

elements that are active in multiple replicates.

MAUDE correctly identifies differential elements in simulated data

To test MAUDE’s performance and underlying assumptions, we next simulated two ex-

periments, each with 200 targeted elements and 5 guides per element. We compared

two ways in which expression might be altered by targeting of an element: (1) a shift

from one unimodal distribution of expression levels to another, reflecting an impact on

expression affecting each perturbed cell (μg ranging from 0.01 to 1 SDs, in 0.01 incre-

ments; “mean-altering”; Fig. 2a), or (2) having two fixed distributions of expression

levels, as would be the case in two sub-populations, with the perturbation causing a
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shift in the relative proportion of cells in each expression mode (μg = 1; the fraction of

affected cells rg ranges from 1 to 100%, in 1% increments; “proportion-altering”; Fig. 2b).

In either case, 100 “effective” elements have an impact, and the other 100 “ineffective”

elements have no effect on expression. We generated these synthetic data, simulating

sorting cells by expression into six different 10% bins on the extremes of expression

(see the “Methods” section).

MAUDE analysis was adept at identifying effective elements and accurately estimated

effect sizes and fractions of responding cells. In both simulations, it detected as signifi-

cant (1% Benjamini-Hochberg FDR) 97 of the 100 effective elements, with effect sizes

as low as 0.03 SDs (mean-altering; Fig. 2c) or 3% of cells responding (proportion-alter-

ing; Fig. 2d), indicating that MAUDE is sensitive to even small changes. As expected,

each simulation included 1–2 false positives (2/99 and 1/98 for mean-altering and

Fig. 2 MAUDE correctly identifies functional elements and effect sizes in simulated data. a Simulation for
mean-altering elements. A mean-altering element is modeled as changing the mean expression μg
(between 0.01 and 1) of cells with the effective element (red curve) compared to cells with ineffective
elements or negative control guides (gray curve). b Simulation of proportion-altering elements. A
proportion-altering element is modeled as resulting in a different proportion of cells with altered expression
(rg), from 1 to 100%. On average, rg% of cells would have expression increased by μg = 1 (dark red curve),
and (1 − rg)% of cells would have no change in expression (μg = 0; light red curve) relative to ineffective
elements and negative control guides (gray curve). c, d Effect sizes are correctly estimated. The true effect
used to generate the simulated data (x axis) vs. the inferred effect size (y axis) for c mean-altering elements
(where the true effect is μg) and d proportion-altering elements (where the true effect is rg). Elements
meeting a 1% FDR are shown in red and others in gray. Pearson’s r is shown in lower right (considering
effective elements only). Black line: y = x
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proportion-altering simulations, respectively; estimated effect size of ~ 0.04 SDs for

both), consistent with our 1% FDR, indicating that our P values are well-calibrated. The

correlation between inferred and actual effect size was very high (Pearson’s r = ~ 0.998

for both simulations; only considering the 100 simulation-defined effective elements).

In the proportion-altering simulation, the estimated effect size corresponds to the aver-

age affect size (e.g., 10% of cells shifting by 1 SD results in an average effect size of 0.1).

Overall, MAUDE performs extremely well on synthetic data and can identify perturba-

tions that shift the mean expression or the fraction of expressing cells with high sensi-

tivity and specificity.

MAUDE outperforms other approaches on a variety of experimental datasets

We next evaluated MAUDE’s performance on two previously published experimental

datasets: a CRISPRa tiling screen for CD69 expression using cell surface CD69 protein

as a readout in Jurkat cells [9], which was conducted in duplicate, and both CRISPRi

and CRISPRa screens performed at the TNFAIP3 locus using TNFAIP3 mRNA-based

expression readout in a variety of cell types, each performed in at least duplicate [16].

We compared MAUDE to the log fold change calculated relative to unsorted cells

(“log(high/unsorted)”), the log fold change comparing the two most extreme sorting

bins (“log(high/low)”), edgeR [11], and DESeq2 [12], looking for differential guides be-

tween the high and low expression bins, following previous studies [6, 13].

We assessed the sensitivity and accuracy of each approach by three criteria, where

possible: (1) higher similarity between effect sizes of adjacent guides, which are ex-

pected to more often target the same regulatory element, compared to pairs of ran-

domly selected guides; (2) ability to distinguish promoter-targeting guides from other

targeting guides because promoter-targeting guides are a positive control expected to

greatly alter expression; and (3) similarity between the effect sizes estimated for each

replicate, which should be high if a method is successful.

MAUDE performed well on all three measures, outperforming the other approaches

on most datasets and criteria (Fig. 3a–c). MAUDE most easily distinguished adjacent

from randomly paired guides in 3 of 5 datasets (by AUROC, considering only datasets

with at least one method having significant (rank sum P < 0.01) performance; Fig. 3a).

As expected, adjacent guides had more similar effect sizes than randomly paired guides.

MAUDE most easily distinguished promoter-targeting guides from other genome-

targeting guides in 6 of 8 datasets (by AUROC; Fig. 3b). Finally, the estimated guide-

level effects were much more highly correlated between replicates for MAUDE than for

the two potential log fold change approaches for all (10 of 10) datasets (edgeR and

DESeq2 do not return replicate-level statistics; Fig. 3c).

MAUDE highlights new elements regulating CD69 expression

We next asked if MAUDE yielded any new insights into CD69 regulation, which were

not highlighted in the original analysis. We generated element-level statistics using a

200-bp sliding window across the locus, combining the two experimental replicates by

requiring elements to have FDR < 0.01 in both replicates and consistent expression

changes. The minimum element effect size that was reproducibly found by MAUDE

was a change of 0.12 SDs.
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Fig. 3 MAUDE outperforms other methods and yields insight into CD69 regulation. a–c MAUDE
outperforms other methods by three criteria. Comparison between methods (x axes) in the analysis of
CRISPRi and CRISPRa screens (y axis), including TNFAIP3 RNA expression-based screens [16] and a CD69
CRISPRa protein expression-based tiling screen [9]. We evaluated the performance of each method on each
dataset (color; higher values correspond to better performance) and indicated the best performing
approach for each dataset and criterion with an asterisk (only indicated in cases where one or more
methods had a statistically significant performance (P < 0.01 for rank sum test (a, b) or Pearson’s correlation
(c))). Three evaluation criteria were used: a relative similarity in effect sizes of adjacent guides (compared to
randomly selected pairs of guides, by AUROC), (b) ability to distinguish promoter-targeting guides from
other targeting guides, and (c) Pearson’s correlation between the effect size estimates of both replicates.
Correlation between replicates was not possible for edgeR or DESeq2 as they combine replicates to
estimate effect sizes and statistics. d Reanalysis of CD69 CRISPRa screen data with MAUDE’s sliding window
approach highlights additional plausible regulatory elements. Effect size (y axes) vs. genomic position (x
axis) for two replicates (top and bottom), with elements (points) colored by those that significantly
increased (red) or decreased (blue) expression of CD69 and those that did not (black). Bottom: gene
annotations (blue) and Jurkat DNaseI hypersensitivity (black). Vertical bars: clusters of significant elements
identified by MAUDE—regions that increase CD69 expression (red) and regions that decrease CD69
expression (blue), with previously identified regions indicated (gray border)
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MAUDE re-discovered the four regions previously called as being CRISPRa-sensitive

(Fig. 3d, gray bars), and called 15 additional regions as responsive to CRISPRa. Of these,

10 appeared to cause a downregulation of CD69 when activated by CRISPRa (Fig. 3d,

red bars). Although none of these are in open chromatin regions in Jurkat cells, two are

adjacent to the promoters of other nearby genes (CLECL1 and CLEC2B), suggesting

these may act by competition with the CD69 promoter. Similar opposing effects on ex-

pression have been previously reported when targeting the promoters of neighboring

genes with CRISPRi [8, 13]. The remaining five CRISPRa-sensitive regions we identified

caused upregulation of CD69; all five of these regions overlapped with Jurkat open

chromatin regions (Fig. 3d, red bars), as did the CRISPRa-sensitive regions originally

identified [9]. Overall, 85% of CD69-upregulating elements identified by MAUDE were

within Jurkat open chromatin and were closer to open chromatin than expected by

chance (rank sum P < 10−15; distances to open chromatin vs. distances to randomly

placed open chromatin; see the “Methods” section).

MAUDE helps design bin number and width to enhance screen sensitivity

While an experimenter can set the sizes of the expression bins, finding an optimal bin

configuration experimentally is laborious and costly, and typically not pursued in prac-

tice. We reasoned that our simulation framework can readily test different expression

bin configurations to help choose the best one under our assumptions.

To this end, we accounted for several experimental considerations. First, cell sorters

can have between two to six bins available, and the optimal bin size may differ when

different numbers of bins are used. Second, the tails of the distribution are the most in-

formative because they show the greatest ratios of effective vs. ineffective guides, and

this ratio increases as bins get more extreme. However, the more extreme the bins, the

fewer cells will be captured, resulting in higher sampling noise. Finally, it is desirable to

have each bin capture approximately the same number of cells to facilitate uniform

treatment of samples (e.g., genomic DNA isolation and library preparation).

With these considerations in mind, we tested by simulation how bin size and number

altered the ability to identify differentially active elements (Fig. 4a). We altered our

simulation framework to include more elements (1000 ineffective and 1000 effective)

and, to make the recovery of effective elements more challenging, focused on smaller

effect sizes (100 each with effect sizes from 0.01 to 0.1, at 0.01 increments). Here, the

smallest effect sizes are the most difficult to recover and only the most sensitive ap-

proaches will recover them. Our bin configurations included both uniform percentile

bins and more complex bin configurations, always placing bins symmetrically at both

tails of the distribution, and within each tail, bins are contiguous (Fig. 4a, right). Uni-

form binning schedules were also tested with two and four bins, always retaining the

most extreme bins. Otherwise, six bins were used. We evaluated bin configurations for

their accuracy in predicting effect sizes (Pearson’s r) and their sensitivity in recovering

functional elements (true positives).

The best bin configurations include more bins and cover of most of the distribution.

When using non-uniform bins, greater resolution (i.e., smaller bin sizes) at the tails of

the distribution (i.e., A/F scheme, Fig. 4a) resulted in both greater sensitivity and accur-

acy than greater resolution at the inner bins (Fig. 4b, c). Having more sorting bins was
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always better, but particularly when bins are small, and going from two to four bins

was a much more significant increase than from four to six bins (Fig. 4b, c). Overall,

performance was relatively poor when bins covered less than 20% of the overall distri-

bution (Fig. 4b, c—indicated at left). However, performance is also poor if bins are too

large, presumably because resolution is reduced. For example, having two 50% bins was

worse than two 25% bins, and four 25% bins was worse than four 12.5% bins (Fig. 4b,

Fig. 4 MAUDE simulations propose optimal cell-sorting bin configurations. a Evaluation of expression bin
configurations by simulation. Left: an experiment is simulated (10 replicates, top), followed by selection of
each bin configuration, MAUDE analysis, and evaluation of performance for true positive recovery and effect
size prediction (by Pearson’s r). Right: each bin configuration had 2–6 bins that are contiguous on each end
and symmetric about the center, progressing gradually with inclusion from outer to innermost: A and
F—outermost and always included, B and E (when present)—contiguous with A and F (respectively) and
more central, and C and D (when present)—contiguous with B and E (respectively) and innermost. b, c
Identification of optimal bin configurations. Performance (y axis) of each bin configuration (x axis) for b
Pearson’s r between the true effect sizes (as defined in the simulation) and the predicted effect sizes (by
MAUDE), and c the number of true positives (elements defined as having an effect in the simulation that
are predicted to have an effect by the analysis). x axis labels: bin sizes expressed as the percent of the
distribution covered by each of the paired corresponding bins, sorted in order of increasing performance.
Error bars: standard error of the mean (SEM) for the 10 simulated experiments. Gray shading: number of
bins in the configuration
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c). The best configuration tested by both measures had A and F cover 5%, B and E

cover 10%, and C and D cover 20%, but uniform bins covering 12.5–15% had similar

performance (Fig. 4b, c) and yield uniform cell numbers per sample, and so are more

practical. Consistent with a previous simulation [17], we found that the top and bottom

quartiles are optimal when only two sorting bins are available. Overall, this simulation

indicates that the greatest sensitivity and accuracy is achieved by having more bins,

good performance can be achieved with uniform bins, and each of the bins should

cover about ~ 15% of the distribution (~ 25% if using only two bins).

Discussion
MAUDE is a principled framework for the analysis and design of pooled CRISPR

screens with an expression readout. By estimating the effects of guides and elements

from the distribution of guides across bins, we show that MAUDE is both sensitive and

specific on simulated data and more accurate on real data, allowing the recovery of

additional regulatory elements. Notably, although our sliding window approach can be

used for identifying regulatory regions in a tiling experiment, MAUDE can also be used

in combination with other approaches [18]. MAUDE’s simulation framework can help

experimental design to maximize a screen’s success.

Although we focus our testing on CRISPR screens aiming to identify regulatory ele-

ments with a guide RNA perturbagen, which are the current common examples, we ex-

pect any experiment with a binned expression readout and sequencing to quantify

perturbations could use MAUDE analysis. This could include perturbations of genes

[6], other types of perturbagens (e.g., RNAi), direct readouts of mutation (e.g., via base

editors), or even reporter assays [19].

Conclusions
MAUDE is a highly sensitive and accurate approach for identifying functional elements

in a binned expression screen. MAUDE estimates the effect size on expression of indi-

vidual perturbagens (e.g., CRISPR guide RNAs) and combines perturbagens to estimate

the effects of genetic elements. MAUDE performs well in simulations and outperforms

other methods on experimental data by all three independent evaluation criteria. Fi-

nally, by simulation, we identify which cell-sorting bin configurations are optimal.

As research focused on the function on regulatory variants and regions, which are

disproportionately contributing to the genetic basis of common disease [20], we expect

that pooled genetic screens with expression readouts will become much more common.

Moreover, many such variants and elements are expected to have smaller effect sizes,

emphasizing the need for sensitive detection and accurate effect size estimates. We an-

ticipate that MAUDE—which we implemented as an R package available on GitHub

(https://github.com/Carldeboer/MAUDE)—will become an important tool in the effort

to map from variants to function.

Methods
Implementation and usage

MAUDE is implemented in R. Tutorials are provided on the MAUDE website (https://

github.com/Carldeboer/MAUDE). Users provide a data.frame, with columns containing
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the bin counts (one column per bin, plus one for the unsorted cells), as well as columns

annotating the data included in each row, including guide ID, experimental identifiers

(e.g., replicate, condition, etc.), whether or not the guide is a negative control guide,

and any other guide-associated data (e.g., genomic locus). Users also provide a data.-

frame containing the bin sizes, with one row per bin per experiment, and columns cor-

responding to the Z-score bounds of each bin (“binStartZ” and “binEndZ”) and the

corresponding bin cumulative distribution function percentiles (“binStartQ” and

“binEndQ”). Using MAUDE’s “findGuideHitsAllScreens” function, and providing the

experimental design data.frame, read count data.frame, and bin bound data.frame,

MAUDE will calculate the optimal mean expression for each guide, separately for each

experiment, returning the mean guide expression (μ̂g ), Z-score (Zg), and log likelihood

ratio for each guide/experiment pair. By default, for each guide g and bin b, 10 pseudo-

counts are added to the read count (rg,b) for every million reads of coverage in that bin

(Rb) to reduce the noise resulting from poor coverage. R’s “optimize” function is used

for finding the guide mean expression with the highest log likelihood. The fraction of

cells expected to be in a bin given the current μg is calculated with the “pnorm” func-

tion, scaled by the overall abundance in the library of that guide and the fraction of

cells sorted into the bin, as in Eq. (2). The log likelihood for each guide/bin is calcu-

lated as using the “dnbinom” function, with x = number of reads for this guide in this

bin, size = number of reads total for this bin, and prob = 1 − the fraction of this bin ex-

pected to be occupied by this guide, as in Eq. (3). The “findGuideHitsAllScreens” will

return the guide-level statistics as a data.frame.

Once guide-level statistics have been calculated for each experiment, they can then

be combined to obtain element-level statistics. Using MAUDE’s “getTilingElementwise-

Stats” function, one can identify elements de novo by tiling across the region, providing

the experimental design data.frame and the guide-level statistics data.frame, including

columns denoting the genomic coordinates of the guide (chromosome, position). By

default, all guides within each 500 bp window are combined in this sliding window ap-

proach, requiring a minimum of five guides per window (parameters which can and

should be customized, dependent on the density of tiled guides), and testing all possible

windows with unique guide sets. Alternatively, MAUDE provides the “getElementwise-

Stats” function to calculate element-level statistics given element annotations as an

additional column in the guide-level statistics data.frame.

In either case, element-level statistics are calculated by combining all Z-scores for

guides in the element. Three Z-scores are calculated for each element: (1) an effect

size—the mean of the guides’ Z-scores; (2) the Stouffer Z-score—the guides’ Z-scores

combined with Stouffer’s method (“stoufferZ”); and (3) a significance Z-score—the

Stouffer Z-score scaled using the appropriate negative control null model (“significan-

ceZ”). To create robust null models used to scale the statistical Z-scores, we sample

each negative control guide up to 10 times each. For each experiment and number of

guides per element, we calculate the standard deviation of the null Stouffer Z-scores.

By dividing by this standard deviation, we ensure that the null now has a standard devi-

ation of 1, and so we can treat them as true Z-scores, calculating P values with the

“pnorm” function. P values can be calculated with one tail (up-/downregulation) or two

tails (either). FDRs are then calculated per-experiment using the Benjamini-Hochberg

procedure.
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MAUDE Z-scores as a percentage of normal expression

Effect sizes as estimated by MAUDE represent a deviation (Z-score) from the overall

distribution. If one desires to estimate expression as a percentage of normal expression,

two additional measurements are required: the mean expression of wild type (ELWT)

and of a null mutant (ELNULL), as measured by FACS (here expressed in log space). In

the case of Flow-FISH data, ELNULL could be more easily obtained by performing the

FISH component without the RNA-recognizing probe. Here, a log expression value x’s

percentage of normal expression is defined as:

%EL xð Þ ¼ 100%� 10x−10ELNULL
� �
10ELWT−10ELNULL
� �

Z-scores as output by MAUDE (Z) are linearly related to log FACS expression values

(x) as follows, with the mean μ and standard deviation σ calculated from the sorting ex-

periment FACS data:

x ¼ σZ þ μ

In practice, this μ should be very close to ELWT when most guides in the library do

not affect expression of the target gene.

Synthetic data generation

For each simulation, we included 1000 targeting guides (5 per element for 200 ele-

ments) and 1000 negative control guides designed to have no effect. Using a larger

number of negative controls produces more robust statistics, and we chose this

number to be on the low end of what other studies have used. The underlying

abundance of each guide (Ag) followed a Poisson distribution with mean 1000

(representing library construction noise; Ag ~ Pois(1000)). The number of cells

sorted for each guide (Sg) followed another Poisson distribution with a mean corre-

sponding to the abundance of that guide within the library (Sg ~ Pois(Ag)). For the

mean-altering simulation (Fig. 2a, c), expression levels of cells (Egc) were simulated

by sampling from a normal distribution with a mean corresponding to the assigned

mean expression of that guide (Egc ~Norm(μg)) for each sorted cell c. For the

proportion-altering simulation (Fig. 2b, d), cells were partitioned into responders

and non-responders with a probability proportional to the assigned fraction of cells

whose expression is changed by the perturbation (rg), and the expression followed

a normal distribution with a mean 0 for non-responder cells and 1 for responder

cells. The number of cells “sorted” into each bin (Sbg) using the bounds of each

bin is:

Sbg ¼
Xi

Zb0≤Egi≤Zb1

Reads were simulated with a negative binomial distribution with the number of

reads for each bin equal to ten times the number of cells sorted into that bin and

the probability of selecting a guide equal to its fraction of cells within that bin

(Fig. 2c):
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rbg � NB 10�
Xi

Sbi;
SbgPiSbi

 !

MAUDE, log fold change, edgeR, and DESeq2 application to CD69 data

Raw count data for the CD69 CRISPRa screen was downloaded from PubMed Central

(Simeonov et al. Supplementary Table 1) [9]. TNFAIP3 CRISPRi and CRISPRa data

were downloaded from NCBI’s GEO database (accession GSE136693) [16]. The log fold

change values were calculated using the counts per million (CPM) values for each bin,

with “log(high/low)” as log2((CPMhigh + 1)/(CPMlow + 1)). The case of “log(high/un-

sorted)” was calculated as log2((CPMhigh + 1)/(CPMunsorted + 1)). For CRISPRi data,

CPMlow and CPMhigh were swapped since the perturbation aimed to reduce expression.

EdgeR (v 3.16.1) analysis was done with default parameters by comparing high to base-

line bins, for each of the two replicates, together, normalizing the data (calcNormFac-

tors) and performing a likelihood ratio test (estimateDisp, glmFit, glmLRT), and the

significance P values and estimated log fold change retrieved (topTags). DESeq2 (v

1.14.1) analysis was done with default parameters by creating a DESeq2 experiment

using the count data, comparing the high and low bins, using both replicates (DESeq-

DataSetFromMatrix), and then comparing the expression between these bins (using the

“DESeq” function). MAUDE analysis was performed with default parameters on the

count data for each bin, including the unsorted bin. We estimated the fraction of cells

in each bin for use in MAUDE analysis by reconstructing the expression distribution in

Simeonov et al. Extended Data Fig. 1a [9] using the “digitize” R package [21], using the

same data for both replicates. Using the actual bin proportions for each replicate would

likely increase MAUDE’s performance. Bin fractions for the Ray et al. TNFAIP3 screens

[16] were as provided on GEO (GSE136693).

For each evaluation criterion, we used effect sizes or significance values, as appropri-

ate. Effect sizes were the mean of the two replicates’ guide Z-scores (MAUDE), the esti-

mated log fold change (edgeR and DESeq2), or the mean log fold changes for the two

replicates (for log(high/low) and log(high/unsorted)). Significance values were com-

bined replicates’ Z-scores by Stouffer’s method (MAUDE), estimated P values (edgeR

and DESeq2), and the mean of the two replicates’ log fold changes (others).

For testing whether adjacent guides have similar effect sizes, we sorted the guides by

the genomic coordinates of the target site and, for each pair of adjacent guides, calcu-

lated the absolute difference in effect sizes. To create the random-pairing distribution,

this was repeated, including each guide 10 times (to improve our “random” estimate),

and randomizing the order of the guides. The distributions in absolute effect size differ-

ences between adjacent and randomly paired guides were compared with the area

under the ROC curve statistic (AUROC), and how much it differed from that expected

by chance (0.5; i.e., AUROC-0.5). Here, the AUROC is equivalent to the fraction of ran-

domly paired guides whose absolute effect size differences are greater than those of ad-

jacent guides.

The AUROC statistic was also used to compare the guide significance distributions

between promoter-targeting guides and other genomic targeting guides, where the

AUROC is proportional to the fraction of promoter-targeting guides that are more sig-

nificant than non-promoter-targeting guides. Promoter-targeting guides were defined
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as those surrounding the CD69 and TNFAIP3 TSSs (between 9912997 and 9913996 on

chromosome 12, and 138187040 and 138189439 on chromosome 6, respectively; hg19).

For testing the correlation between replicates, the log fold changes and MAUDE

guide Z-scores were used directly. When there were more than two replicates, the lar-

gest correlation coefficient was used as the performance measure.

Element-level statistics for CD69 screen were calculated with the sliding window ap-

proach, using a 200-bp window and requiring a minimum of five guides per element.

To estimate the significance of the overlap between CD69-activating elements and

Jurkat open chromatin (DNaseI hypersensitivity), the distance distributions between

open chromatin sites and MAUDE-identified CD69-activating elements were compared

for actual vs. randomized open chromatin sites. The randomization placed open chro-

matin elements in between the starts of the first and last open chromatin sites in the

locus (chr12: 9885788–9973087), accepting only random placements with no overlap

between open chromatin sites, and preserving their widths. One hundred such random-

izations were created, each time computing the distances between the MAUDE-

identified CD69-upregulating elements and the nearest randomly placed open

chromatin element. The distance distributions for the actual open chromatin data vs.

the randomized open chromatin data were then compared using a two-tailed Wilcoxon

rank sum test.
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