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Abstract

Background: Chimeric antigen receptor T cells (CAR-T cells) therapy has been well recognized for treating B cell-
derived malignancy. However, the efficacy of CAR-T cells against solid tumors remains dissatisfactory, partially due
to the heterogeneity of solid tumors and T cell exhaustion in tumor microenvironment. PD-L1 is up-regulated in
multiple solid tumors, resulting in T cell exhaustion upon binding to its receptor PD-1.

Methods: Here, we designed a dominant-negative form of PD-1, dPD1z, a vector containing the extracellular and
transmembrane regions of human PD-1, and a CAR vector against PD-L1, CARPD-L1z, a vector employs a high-
affinity single-chain variable fragment (scFv) against human PD-L1. These two vectors shared the same intracellular
structure, including 4-1BB and TLR2 co-stimulatory domains, and the CD3ζ signaling domain.

Results: dPD1z T and CARPD-L1z T cells efficiently lysed PD-L1+ tumor cells and had enhanced cytokine secretion
in vitro and suppressed the growth of non-small cell lung cancer (NSCLC), gastric cancer and hepatoma carcinoma
in patient-derived xenograft (PDX). However, the combination of anti-mesothelin CAR-T cells (CARMSLNz T) with
dPD1z T or CARPD-L1z T cells did not repress tumor growth synergistically in PDX, as CARMSLNz T cells
upregulated PD-L1 expression upon activation and were subsequently attacked by dPD1z T or CARPD-L1z T cells.

Conclusions: In conclusion, we demonstrate CAR-T cells targeting PD-L1 were effective for suppressing the growth
of multiple types of solid tumors in PDX models though their safety needs to be carefully examined.
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Background
Recently, chimeric antigen receptor T cells (CAR-T cells)
have emerged as a promising therapy for treating B cell-
derived malignancy [1, 2]. Two CAR-T cell products have
been approved by the FDA to treat B-cell leukemia and
lymphoma [3–6]. CAR-T cells against tumor-specific

antigens (TSA), including mesothelin (MSLN) and glypi-
can 3 (GPC3) are being actively tested for treating non-
small-cell lung cancer (NSCLC) and hepatocellular carcin-
oma, respectively [7–19]. However, the effects of CAR-T
cells against solid tumors are far from being satisfactory,
partially due to the heterogeneity of solid tumors and T
cell exhaustion in tumor microenvironment [20–22].
PD-1, a well-characterized immune checkpoint mol-

ecule, plays pivotal roles in regulating T cell function. PD-
1 upregulation is associated with T cell exhaustion that in-
hibits T cell functions upon binding to its ligands, such as
PD-L1 and PD-L2 [23]. PD-L1 is widely expressed in vari-
ous solid tumors [24–26]. Its expression is influenced by
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IFN-γ and is correlated with poor prognosis [27, 28].
Antibody-based checkpoint blockade targeting PD-L1 or
its receptor PD-1 has revolutionized the clinical manage-
ment of multiple cancers [29–35]. Moreover, the ablation
of PD-1 improves the persistence of TCR-T cells in pa-
tients with solid tumors [36]. Besides diminishing the PD-
1/PD-L1 axis, a chimeric switch-receptor comprising the
truncated extracellular domain of PD-1 and the trans-
membrane and cytoplasmic signaling domains of CD28
augments the efficacy of CAR-T cells in solid tumors [37–
39]. Nevertheless, modified T cells in these studies still
rely on transgenic TCR or CAR or their own TCR to
recognize TSA in tumors. Heterogeneous cancer cells thus
can escape attacks of these T cells by reducing TSA, lead-
ing to tumor recurrence.
Here, we designed a dominant-negative form of PD-1,

dPD1z, which does not only contain the extracellular
and transmembrane domains of human PD-1, co-
stimulation domains but also CD3ζ signaling domain.
Different from the chimeric switch-receptor targeting
PD-1 that lack CD3ζ signaling domain, dPD1z T cells
were not suppressed by PD-L1 but lysed PD-L1 positive
tumor cells in vitro and eliminated multiple types of tu-
mors in xenograft.

Methods
Lentiviral vectors construction
The extracellular and transmembrane portions of dPD1z de-
rived from PD1 receptor (Uniprot Entry Q15116, amino
acids (aa) 1–191), and CARPD-L1z contained a high-affinity
anti-PD-L1 scFv that derived from Atezolizumab. The cyto-
plasmic domains of dPD1z and CARPD-L1z both contain 4-
1BB (Uniprot Entry Q07011, aa 214–255), TLR2 (Uniprot
Entry O060603, aa 636–784) and the CD3ζ (Uniprot Entry
P20963, aa 52–164). The scFvs of CARMSLNz and CAR19z
derived from SS1 and FMC63 respectively, in tandem with
CD28 (Uniprot Entry P10747, aa 180–220), TLR2 and CD3ζ.
The structure of CAR19BBz is same as CAR19z except for
that CD28 co-stimulatory domain is replaced with 4-1BB co-
stimulatory domain. GL vector contained the firefly luciferase
reporter gene (GenBank ABA41653.1, aa 1–550) and eGFP
reporter genes (GenBank YP_009062989.1, aa 1–239) linked
through 2A peptide. The gene of MSLN (GenBank NP_
001170826.1, aa 1–622) was overexpressed in H460GL gen-
erated H460-MSLNGL. The uPD-L1 contained the full-
length gene of PD-L1 (GenBank NP_001254635.1, aa 1–176)
and labeled with a truncated CD19. DNA sequences were
synthesized by Genscript (Nanjing) Co., Ltd. (Nanjing,
China) and cloned into the second-generation lentiviral vec-
tor pWPXLd.

Lentivirus manufacture
Lentivirus particles were produced in HEK-293 T cells
via PEI MAX 40 K (Polyscience, 24,765–1) transfection.

HEK-293 T cells were co-transfected with the pWPXLd-
based lentiviral plasmid and two packaging plasmids,
psPAX2 and pMD2.G. Lentivirus-containing superna-
tants were harvested at 48 and 72 h post-transduction
and filtered through a 0.45-μm filter.

CAR T cells manufacture
Peripheral blood mononuclear cells (PBMCs) were isolated
from healthy donors using Lymphoprep (StemCell Tech-
nologies, 07851). T cells were negatively selected from
PBMCs using a Pan T cell isolation kit (MiltenyiBiotec, 130–
096-535) and activated using microbeads coated with anti-
human CD2, anti-human CD3 and anti-human CD28 anti-
bodies (MiltenyiBiotec, 130–091-441) for 2 days in RPMI-
1640 medium supplemented with 10% fetal bovine serum
(FBS) and 1% penicillin/streptomycin. On day 2 post-
activation, T cells were transduced with lentiviral superna-
tants in the presence of 8 μg/ml polybrene (Sigma-Aldrich,
TR-1003-G). Twelve hours post-transduction, T cells were
cultured in fresh medium containing IL-2 (300 IU/ml), sub-
sequently, fresh medium was added every 2–3 days to main-
tain cell density within the range of 0.5–1 × 106/ml. Healthy
PBMC donors provided informed consent for the use of their
samples for research purposes, and all procedures were ap-
proved by the Research Ethics Board of the Guangzhou Insti-
tutes of Biomedicine and Health (GIBH).

Cells and culture conditions
HEK-293 T cells were maintained in Dulbecco’s modi-
fied Eagle’s medium (DMEM) (Gibco, C11995500BT).
H460 (human large cell lung cancer), MKN-28 (human
gastric carcinoma), SMMC-7721 (human hepatoma car-
cinoma), HeLa (human cervical cancer) and NALM6
(CD19+ acute lymphoblastic leukemia) cell lines were
obtained from ATCC and maintained in RPMI-1640
(Gibco, C11975500BT). GL-expressing cell lines were
generated through transduction of the parental cell line
with a lentiviral supernatant containing GL and were
sorted for GFP expression on a FACS Aria TM cell
sorter (BD Biosciences). DMEM and RPMI-1640
medium were supplemented with 10% heat-inactivated
FBS (Vigonob, XC6936T) and 1% penicillin/strepto-
mycin. All cells were cultured at 37 °C in an atmosphere
of 5% carbon dioxide. Atezolizumab (AZ) is a human-
ized anti-PD-L1 monoclonal antibody (Selleck).

Flow cytometry
Flow cytometry was performed on a BD LSRFortessa cyt-
ometer, and data were analyzed using FlowJo software.
The antibodies used, including anti-human CD3-PE-
cyanine 7 (clone: UCHT1), anti-human CD4-APC (clone:
GK1.5), anti-human CD4-APCcy7 (clone: GK1.5), anti-
human CD8-PE (clone: 53–6.7), anti-human CD8-
Pecpcy5.5 (clone: 53–6.7), anti-human CD25-PE (clone:
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PC61.5), anti-human CD69-APC (clone: H1.2F3), anti-
human CD19-APC (clone: 1D3) and anti-human PD-L1-
APC (clone: M1H1) were purchased from eBioscience.
Anti-human Mesothelin-PE (clone: sc-33,672) was pur-
chased from Santa Cruz Biotechnology. All FACS staining
was performed on ice for 30min, and cells were then
washed with PBS containing 1% FBS before cell cytometry.
PB, spleen and tumor samples from xenograft mice were
treated with a red blood cell lysis buffer (Biolegend), and
the cells were stained with the corresponding antibodies.

Cytotoxicity assays
The target cells H460GL, MKN-28GL, SMMC-7721GL,
HeLaGL and H460-MSLNGL (10^4 cell/well) were incu-
bated with CAR T or negative control T cells at the indi-
cated ratios in triplicate wells of U-bottomed 96-well
plates. Target cell viability was monitored 24 h later by
adding 100 μl/well of the substrate D-Luciferin (potas-
sium salt) (YEASEN, 40901ES03) at 150 μg/ml. Back-
ground luminescence was negligible (< 1% of the signal
from the wells with only target cells). The viability per-
centage (%) was equal to the experimental signal/max-
imal signal× 100, and the lysis percentage was equal to
the 100–viability percentage.

Cytokine release assays
Enzyme-linked immunosorbent assay (ELISA) kits for
IL-2, IFN-γ, TNF-α and GM-CSF were purchased from
eBioscience, and all ELISAs were performed according
to the manufacturer’s protocols. T cells were co-cultured
with target cells at a 1:1 E/T ratio for 24 h, then the cul-
ture supernatants were collected and analyzed by ELISA
kits.

Quantitative real-time PCR
mRNA was extracted from cells with TRIzol reagent
(Thermo Fisher, 15,596,018) and reverse-transcribed into
cDNA using a PrimeScript™ RT reagent kit (Takara,
RR047A). All reactions were performed with TransStart Tip
Green qPCR SuperMix (TransGene, AQ142–11) on a Bio-
Rad CFX96 real-time PCR machine using the following
primers: human PD-L1 forward, 5′–CCTACTGG-
CATTTGCTGAACGCAT-3′, and human PD-L1 reverse,
5′-ACCATAGCTGATCATGCAGCGGTA-3′.

Xenograft models and in vivo assessment
Animal experiments were performed in the Laboratory
Animal Center of the GIBH, and all animal procedures
were approved by the Animal Welfare Committee of
GIBH. All protocols were approved by the relevant insti-
tutional animal care and use committee (IACUC). All
mice were maintained in specific pathogen-free (SPF)-
grade cages and provided autoclaved food and water. To
develop the lung cancer cell line xenograft models, 5 ×

105 H460GL cells in 200 μl of PBS were injected sub-
cutaneously into the right flanks of NOD-SCID-IL2Rg
−/−(NSI) mice aged 6–8 weeks. Ten days after tumor
cell transplantation, 5 × 106 CAR T cells were injected
through the tail vein of mice. Tumors were measured at
indicated days with a caliper to determine the subcuta-
neous growth rate.
To develop the first-generation PDXs, surgical tumor

samples, including lung cancer, gastric carcinoma and
hepatoma carcinoma were transplanted subcutaneously
into 3 to 6 NSI mice. Tumors that reached an approxi-
mate size of 1000mm3 were removed and passed into
secondary recipients for expansion for further cancer re-
search. Tumors were cut into 2 × 2 × 2 mm3pieces and
transplanted into the right flanks of NSI mice. Then, 10,
15, 20 or 24 days after tumor transplantation, mice were
infused with CAR T cell or control T cells. In total, 5 ×
106 CAR T cells were injected one time into each
mouse. Tumors were measured with a caliper, and
tumor volume was calculated using the following equa-
tion: (length×width×width)/2.

Results
dPD1z T and CARPD-L1z T cells efficiently lysed PD-L1+

tumor cells
To redirect T cells attack tumor cells expressing PD-L1,
we designed a dominant-negative form of PD-1, dPD1z,
a vector containing the extracellular and transmembrane
regions of human PD-1, and a CAR vector against PD-
L1, CARPD-L1z, a vector with a high-affinity scFv
against human PD-L1. These two vectors share the same
intracellular structure, including 4-1BB and TLR2 co-
stimulatory domains [40, 41], and the CD3ζ signaling
domain, tagged with a green fluorescent protein (GFP)
to facilitate the identification of transduced cells (Fig. 1a).
The transduction efficiency of these CAR T cells was de-
tected following lentiviral infection (Figure S1A).
To evaluate the functions of these two types of T cells,

we performed in vitro functional assays, and found that
dPD1z T cells exhibited potent cytotoxicity against
H460GL, MKN-28GL, and SMMC-7721GL cells, three
of which are PD-L1 positive, but not for HeLaGL cells
(Fig. 1b-e), in which PD-L1 expression is much lower
(Figure S1C-E). In addition, dPD1z T cells secreted sig-
nificantly more IL-2, IFN-γ, GM-CSF, and TNF-α once
co-cultured with PD-L1+ H460GL cells, compared with
control CAR19z T cells (Fig. 1f). Of interest, the cytotox-
icity of CARPD-L1z T cells was significantly higher than
that of dPD1z T cells (Fig. 1g), possibly due to higher af-
finity of scFv in CARPD-L1z against PD-L1, compared
with natural PD-1. As expected, the amounts of IL2 and
IFN-γ secreted by CARPD-L1z T cells were significantly
higher than those from dPD1z T cells (Fig. 1h). Thus,
both dPD1z T and CARPD-L1z T cells are capable of
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specifically recognizing and lysing PD-L1+ tumor cells
and secreting cytokines in vitro.

dPD1z T and CARPD-L1z T cells inhibited the growth of
multiple types of tumors in vivo
The anti-tumor efficacy of dPD1z T and CARPD-L1z T
cells were subsequently examined in a cell line-derived
xenografts (CDX). Consistent with results of in vitro
cytotoxicity assays, both dPD1z T and CARPD-L1z T
cells inhibited the growth of H460GL cells in

immunodeficient NSI (NOD/SCID/IL-2 g−/−) mice [42,
43], and CARPD-L1z T cells showed superior anti-
tumor effects (Fig. 2a-b).
We next evaluated the tumor-suppressive capacities of

dPD1z T cells in several PD-L1+ personal derived xeno-
grafts (PDX). We first confirmed the anti-tumor activity
of dPD1z T cells in a non-small cell lung cancer
(NSCLC) PDX (P1) (Figure S2A-B) [44]. Remarkably, tu-
mors in the dPD1z T-cell group stopped growth after
twice infusions of dPD1z T cells, whereas tumors in the

Fig. 1 dPD1z T and CARPD-L1z T cells efficiently lysed PD-L1+ cancer cells. a Schematic diagram of the CAR construction of dPD1z, CARPD-L1z,
and CAR19z. b-e In vitro killing of dPD1z T cells against PD-L1+ tumor cells. dPD1z T and CAR19z T were co-cultured with four different types of
human cancer cell lines at the indicated effector to target (E: T) ratios for 24 h, and the luciferase activities were calculated to determine the
percentages of cytolysis. f The production of IL-2, IFN-γ, GM-CSF, and TNF-α after dPD1z T or CAR19z T cells co-culture with H460GL cell line for
24 h at a definitive E: T ratio (1: 1). Error bars denote SD, and the results were compared by unpaired t-test. *** P < 0.001. g In vitro killing of
CARPD-L1z T and dPD1z T cells against H460GL cell line. Each type of cell was co-cultured with H460GL cell line at the indicated effector to
target (E: T) ratios for 24 h, and the luciferase activities were calculated to determine the percentages of cytolysis. h The production of IL-2 and
IFN-γ of CARPD-L1z T, dPD1z T or CAR19z T cells post co-cultured with H460GL cell line for 24 h at a definitive E: T ratio (1: 1). Error bars denote
SD, and the results were compared by unpaired t-test. ** P < 0.01, and *** P < 0.001
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Fig. 2 dPD1z T and CARPD-L1z T inhibited the growth of multiple types of PD-L1+ tumors in vivo. a Tumor volumes and b tumor weights of
H460GL cells xenograft mice after treatment with CARPD-L1z T, dPD1z T, CAR19z T cells or untreated controls (Blank). NSI mice were transplanted
with H460GL cells (5 × 105) at day 0, subsequently, CARPD-L1z T, dPD1z T or CAR19z T (5 × 106) cells were infused at day 10. Tumor volumes were
monitored at indicated days and tumor weights were measured after mice euthanasia. The result of tumor volume represent mean ± SEM, and
was compared by two-way ANOVA with Tukey’s multiple comparisons test. ** P < 0.01, and *** P < 0.001. The result of tumor weight represent
mean ± SD, and was compared by unpaired t-test. * P < 0.05, ** P < 0.01, and *** P < 0.001. c Tumor volumes and d tumor weights of NSCLC PDX
mice after treatment with dPD1z T, CAR19z T cells or untreated controls (Blank). NSI mice were transplanted with primary NSCLC cells at day 0,
subsequently, dPD1z T or CAR19z T (5 × 106) cells were infused twice at day 15 and day 20. Tumor volumes were monitored at indicated days
and tumor weights were measured after mice euthanasia. The result of tumor volume represent mean ± SEM, and was compared by two-way
ANOVA with Tukey’s multiple comparisons test. ** P < 0.01. The result of tumor weight represent mean ± SD, and was compared by unpaired t-
test. * P < 0.05. e Percentages of GFP+ T cells in peripheral blood (PB), spleen, and tumors after treated with dPD1z T or CAR19z T cells (gated on
live cells) are shown. Error bars denote SD, and the results were compared by unpaired t-test. * P < 0.05, ** P < 0.01, and *** P < 0.001. f Primary
and secondary tumor images of gastric cancer PDX models after treatment with dPD1z T, CAR19z T cells or untreated controls (blank). g Primary
tumor weights and h spleen weights of gastric cancer PDX after treatment with dPD1z T, CAR19z T cells or untreated controls (Blank). NSI mice
were transplanted with primary gastric cancer cells at day 0, subsequently, dPD1z T or CAR19z T (5 × 106) cells were infused twice at day 20 and
day 24. Tumor weights and spleen weights were measured at day 45 after mice euthanasia. The results represent mean ± SD, and were
compared by unpaired t-test. * P < 0.05, ** P < 0.01, and *** P < 0.001. i Percentages of T cells in peripheral blood (PB), spleen, and tumors after
treated with dPD1z T or CAR19z T cells (gated on live cells) are shown. Error bars denote SD, and the results were compared by unpaired t-test. *
P < 0.05, and ** P < 0.01
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CAR19z T-cell group grew robustly (Fig. 2c-d). Consist-
ent with this observation, the percentages of GFP+ T
cells in the peripheral blood (PB), spleen, and tumors of
the dPD1z T-cell group were significantly higher than
those of CAR19z T-cell group (Fig. 2e).
We found that dPD1z T cells not only repressed the

growth of subcutaneous tumors but also impeded cancer
cell metastasis in metastatic gastric cancer (P2) PDX
(Figure S2A-B). Both primary and secondary tumors in
dPD1z T-cell group were smaller than those of the con-
trol groups (Fig. 2f-g). HE staining suggested that tumor
cells invaded into the spleens (Figure S3A) and caused
splenomegaly (Figure S3B). In contrast, the spleens of
the dPD1z T-cell group were smaller (Fig. 2h and S3B)
compared with those of the control groups. Consistently,
the T-cell percentage in spleens and tumors of dPD1z
T-cell group were greater than those in the control
groups (Fig. 2i). Similar to the NSCLC and gastric PDXs,
dPD1z T cells also inhibited tumor growth in a hepa-
toma carcinoma PDX (P3) (Figures S2A-B and S3C-D).
Taken together, dPD1z T cells suppressed tumor growth
and metastasis in multiple cancer PDXs and elevated the
percentages of tumor-infiltrating lymphocytes.

Combined CARMSLNz T with CARPD-L1z T or dPD1z T
cells failed to achieve a synergistic anti-tumor effect
in vivo
It has been reported that PD-L1 expression by tumor cells
can inhibit the anti-tumor activities of CAR-T cells target-
ing tumor-specific antigens (TSAs) [45], so we hypothe-
sized that elimination of PD-L1 expressing tumor cells by
CARPD-L1z T or dPD1z T cells will show synergistic ac-
tivities with traditional CAR-T cells targeting TSAs. To
test our hypothesis, we firstly mixed CARPD-L1z T cells
and anti-mesothelin CAR T cells (CARMSLNz T cells)
(Fig. 3a) with 1: 1 ratio and co-cultured them with H460-
MSLNGL that expressed Mesothelin (Figure S4A), an
antigen widely expressed in lung cancer and gastric can-
cers [46, 47]. Remarkably, the combination of CARPD-
L1z T and CARMSLNz T cells showed the more potent
lysing capacity than individual CARPD-L1z T or
CARMSLNz T cells, though the total CAR T cell numbers
were equivalent (Fig. 3b). IL2 and IFN-γ secretion was de-
tected in all three co-cultures but not in the co-culture
with CAR19z T cells (Figure S4B-C). Similarly, the cyto-
toxicity of dPD1z T and CARMSLNz T cells in the com-
bination group was the highest (Fig. 3c).
To further test our hypothesis in vivo, we next trans-

planted tumor cells from an NSCLC patient sample (P4)
that highly expressed both PD-L1 and Mesothelin in
NSI mice (Figure S2C), followed by injection of equiva-
lent numbers of CARMSLNz T, CARPD-L1z T, and a
combination of CARMSLNz T and CARPD-L1z T cells,
or CAR19z T cells with similar transduction efficiencies

(Figure S1B). Compared with CAR19z T cells, both
CARMSLNz T and CARPD-L1z T cells individually
inhibited tumor progression in xenografts (Fig. 3d). To
our surprise, tumors in the combination group were sig-
nificantly larger and heavier than that in the
CARMSLNz T or CARPD-L1z T-cell groups (Fig. 3d-e).
In addition, much fewer CARMSLNz or CARPD-L1z T
cells were detected in the spleen from the combination
group (Fig. 3f and S5). Similarly, suppression of tumor
growth in the combination group of CARMSLNz T and
dPD1z T cells is not as efficient as the individual treat-
ment of CARMSLNz T or dPD1z T cells (Fig. 3g-h).
Therefore, combining CARMSLNz T with CARPD-L1z
T or dPD1z T cells did not achieve a significant syner-
gistic anti-tumor effect in vivo.

CARPD-L1z T cells lysed PD-L1+ T cells
Previous studies suggested that PD-L1 is expressed not
only in tumor cells but also in activated T cells [48, 49].
Indeed, we found that both CD4+ T (Fig. 4a and S6A)
and CD8+ T cells (Fig. 4b and S6B) up-regulated PD-L1
expression upon CD3 and CD28 antibodies activation
within 1 day. Moreover, both CD4+ (Fig. 4c and S7A)
and CD8+ (Fig. 4d and S7B) CARMSLNz T cells started
to express PD-L1 and kept its expression for 40 h after
co-cultured with H460-MSLNGL tumor cells. Surpris-
ingly, we didn’t observe any PD-L1 up-regulation of
CARPD-L1z T cells either activated by CD3/CD28 anti-
bodies or co-cultured with PD-L1+ tumor cells (Fig. 4e-
f), even the percentage of CD25 and CD69 double-
positive T cells confirmed they fully activated (Figure
S8A-B). Both CAR19z and CARMSLNz adopted CD28
co-stimulatory molecules, but CARPD-L1z contained 4-
1BB co-stimulatory molecules. To exclude the possibility
that different co-stimulatory molecules result in different
PD-L1 expression on CAR-T cells after activation, we
constructed CAR19BBz, whose structure is same as
CAR19z expect for 4-1BB co-stimulatory domain. We
found that the PD-L1 expression of CAR19BBz T cells
was up-regulated after co-culturing with NALM6 cells
(Fig. 4g). The scFv of CARPD-L1z is derived from anti-
PD-L1 antibody AZ. Interestingly, when we added AZ
into the co-culture system of CARMSLNz T cells with
H460-MSLNGL tumor cells, we failed to detect PD-L1
expression on CARMSLNz T cells (Fig. 4h). We hypoth-
esized that CARMSLNz T cells were killed by CARPD-
L1z T in xenografts when CARMSLNz T cells up-
regulated PD-L1 expression upon activation with tumor
cells, but CARPD-L1z T cells didn’t kill each other. In-
deed, when we co-cultured T cells that overexpressed
PD-L1 (uPD-L1 T) (Figure S8C-E) with CARPD-L1z T,
or CARMSLNz T cells as negative control, we found
that CARPD-L1z T cells up-regulated CD25 and CD69
expression, suggesting that they were activated by PD-L1
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Fig. 3 Combined CARMSLNz T with CARPD-L1z T or dPD1z T cells failed to achieve a synergistic anti-tumor effect in vivo. a Schematic diagram of
the CAR construction of CARMSLNz. b In vitro killing of CARPD-L1z T, CARMSLNz T, the combination of CARMSLNz T and CARPD-L1z T and CAR19z T
cells against H460-MSLNGL cell line. Each type of cell was co-cultured with H460-MSLNGL cell line at the indicated effector to target (E: T) ratios for 24
h, and the luciferase activities were calculated to determine the percentages of cytolysis. c In vitro killing of dPD1z T, CARMSLNz T, the combination of
CARMSLNz T and dPD1z T and CAR19z T cells against H460-MSLNGL cell line. Each type of cell was co-cultured with H460-MSLNGL cell line at the
indicated effector to target (E: T) ratios for 24 h, and the luciferase activities were calculated to determine the percentages of cytolysis. d Tumor
volumes and e tumor weights of NSCLC PDX (P4) after treatment with CARPD-L1z T, CARMSLNz T, the combination of CARMSLNz T and CARPD-L1z T
or CAR19z T cells. NSI mice were transplanted with primary NSCLC cells at day 0, subsequently, CAR T (5 × 106) cells were infused on day 10. Tumor
volumes were monitored at indicated days and tumor weights were measured after mice euthanasia. The result of tumor volume represent mean ±
SEM, and was compared by two-way ANOVA with Tukey’s multiple comparisons test. * P < 0.05, ** P < 0.01, and *** P < 0.001. The result of tumor
weight represent mean ± SD, and was compared by unpaired t-test. * P < 0.05, and ** P < 0.01. f Percentages of CAR T cells in the spleen after treated
with each type of CAR T cells (gated on live cells) are shown. Error bars denote SD, and the results were compared by unpaired t-test. * P < 0.05. g
Tumor volumes and h tumor weights of NSCLC PDX (P4) after treatment with dPD1z T, CARMSLNz T, the combination of CARMSLNz T and dPD1z T or
CAR19z T cells. NSI mice were transplanted with primary NSCLC cells at day 0, subsequently, CAR T (5 × 106) cells were infused twice at day 10 and day
20. Tumor volumes were monitored at indicated days and tumor weights were measured after mice euthanasia. The result of tumor volume represent
mean ± SEM, and was compared by two-way ANOVA with Tukey’s multiple comparisons test. ** P < 0.01, and *** P < 0.001. The result of tumor weight
represent mean ± SD, and was compared by unpaired t-test. * P < 0.05, ** P < 0.01, and *** P < 0.001
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overexpressing T cells (Fig. 4i). In addition, percentages
of PD-L1 expressing T cells tagged with tCD19 de-
creased (Fig. 4j) and large amounts of IL-2 and IFN-γ
were detected (Fig. 4k) in the co-culture with CARPD-
L1z T cells. In summary, these results suggest that
CARPD-L1z T cells killed CARMSLNz T cells that up-
regulated PD-L1 expression upon activation by tumor
cells in xenografts, this may be the reason why we failed
to achieve a synergistic anti-tumor effect when combin-
ing CARMSLNz T with CARPD-L1z T or dPD1z T
cells.

Discussion
The expression of PD-L1, which serves as a ligand for
PD1 on T cells to protect tumor cells from immune con-
trol mediated by T cells, is elevated in many types of
solid tumors [50]. Compared with anti-PD1 and anti-
PD-L1 antibodies, several groups have reported the
modification of traditional CAR-T cells with a PD1
switching receptor containing a CD28 intracellular do-
main [37–39]. These CAR-T cells convert PD-L1 inhibi-
tory signals into CD28 co-stimulatory signals, which
protect CAR T cells from PD-L1 mediated suppression.
However, these CAR T cells have to rely on the recogni-
tion of TSAs by traditional CARs due to the lack of CD3
domain in their PD-1 switching receptor, limiting their
efficacy against heterogeneous tumors. Here, dPD1z T
and CARPD-L1z T cells not only switch inhibitory sig-
nals into activating signals upon encountering PD-L1 li-
gands by their CAR molecules, which contain both
CD3ζ and co-stimulatory domains, but also are capable
of eliminating PD-L1-expressing tumor cells.
The dPD1z was a dominant-negative form of PD-1, its

extracellular and transmembrane regions is derived from
natural PD-1, so dPD1z T cells can target PD-L1 and
PD-L2 simultaneously. But the binding affinity with PD-
L1 and PD-L2 of dPD1z is limited. In order to improve

the safety and binding affinity of anti-PD-L1 CAR-T
cells, we design CARPD-L1z, which contain a high-
affinity scFv against human PD-L1, and can only target
PD-L1. The in vitro killing assay suggested that the cyto-
toxicity of CARPD-L1z T cells was significantly higher
than that of dPD1z T cells, and the amounts of IL2 and
IFN-γ secreted by CARPD-L1z T cells were significantly
higher than those from dPD1z T cells.
Besides tumor cells, PD-L1 is also expressed in various

types of cells, including activated T cells, NK cells, den-
dritic cells (DC) and myeloid-derived suppressor cells
(MDSCs) [49, 51–54]. In this study, we preliminarily
verified the feasibility and efficacy of CAR-T cells target-
ing PD-L1 for the treatment of solid tumors, and we
found that PD-L1 was up-regulated in T cells that were
activated through either endogenous TCR or CAR sig-
naling, making these activated T cells be the target of
anti-PD-L1 T cells. This explains why a combination of
CARMSLNz T with dPD1z T or CARPD-L1z T cells did
not achieve synergistic anti-tumor effects in PDX. In the
future work, we will improve and optimize these CAR-T
cells to reduce their potential off-target toxicity, for ex-
ample, by combining anti-PD-L1 CAR-T cells with Syn-
Notch system [55]. In this sense, only when another
CAR is activated by its cognate tumor antigen, anti-PD-
L1 CARs will be expressed, and then activated.
Despite we detected PD-L1 expression on activated T

cell or CAR-T cells, however, we failed to observed PD-
L1 expression on CARPD-L1z T cells no matter being
activated by CD3 and CD28 antibodies or PD-L1+ tumor
cells. In order to exclude the influence of co-stimulatory
molecules on the expression level of PD-L1, we detected
the PD-L1 expression of CAR19BBz T cells which con-
taining FMC63 scFv, 4-1BB and TLR2 co-stimulatory
molecules, and the result showed that 4-1BB co-
stimulatory molecule did not affect the expression of
PD-L1. We consider that the low expression of PD-L1

(See figure on previous page.)
Fig. 4 CARPD-L1z T cells lysed PD-L1+ T cells. Percentage of PD-L1+ T cells in a CD4+ T cells (gated on CD3+CD8− cells) and b CD8+ T cells
(gated on CD3+CD8+ cells) post activated by CD3 and CD28 antibodies. FACS detection of PD-L1 expression at indicated time points. Percentage
of PD-L1+ T cells in c CD4+ CARMSLNz T cells (gated on CD3+GFP+CD4+ cells) and d CD8+ CARMSLNz T cells (gated on CD3+GFP+CD8+ cells)
post co-cultured with H460-MSLNGL cells. CARMSLNz T cells were co-cultured with H460-MSLNGL cells for 0 h, 16 h, 24 h, 40 h and 48 h at a
definitive E: T ratio (1: 1), then the expression of PD-L1 was detected by FACS. e Percentage of PD-L1+ T cells in CAR19z T and CARPD-L1z T cells
(gated on CD3+GFP+ cells) post activated by CD3 and CD28 antibodies for 16 h. f Percentage of PD-L1+ T cells in CAR19z T cells (gated on
CD3+GFP+ cells) post co-cultured with NALM6 cells for 24 h at a definitive E: T ratio (2: 1), and percentage of PD-L1+ T cells in CARPD-L1z T cells
(gated on CD3+GFP+ cells) post co-cultured with H460GL cells for 24 h at a definitive E: T ratio (2: 1). g Percentage of PD-L1+ T cells in CAR19BBz
T cells (gated on CD3+GFP+ cells) post co-cultured with or without NALM6 cells. CAR19BBz T cells were co-cultured with or without NALM6 cells
for 12 h, at a definitive E: T ratio (2: 1), then the expression of PD-L1 was detected by FACS. h Percentage of PD-L1+ T cells in CARMSLNz T cells
(gated on CD3+GFP+ cells) post co-cultured with H460-MSLNGL cells with or without AZ (20 μg/mL) for 24 h at a definitive E: T ratio (1: 1). i
Percentage of CD25+CD69+ T cells in CARPD-L1z T and CARMSLNz T cell (gated on GFP+ cells) post co-cultured with uPD-L1 T cells at a definitive
E: T ratio (1: 1) for 24 h. j Percentage of CD19+ T cells (uPD-L1 T cells) after co-cultured with CARPD-L1z T or CARMSLNz T cell at a definitive E: T
ratio (1: 1) for 24 h (gated on live cells). k The production of IL-2 and IFN-γ of CARPD-L1z T or CARMSLNz T cells post co-culture with uPD-L1 T
cells for 24 h at a definitive E: T ratio (1: 1). Error bars denote SD, and the results were compared by unpaired t-test. * P < 0.05, ** P < 0.01, and
*** P < 0.001
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on CARPD-L1z T cells was due to the binding of anti-
PD-L1 scFv with PD-L1 on the membrane of individual
cells, and then caused PD-L1 endocytosis. This was sup-
ported by the fact that when we add anti-PD-L1 anti-
body AZ into the co-culture system of CARMSLNz T
cells with H460-MSLNGL tumor cells, we failed to de-
tect PD-L1 expression on CARMSLNz T cells. The scFv
of CARPD-L1z is derived from AZ, further and deeper
reason need us to be carried out.

Conclusions
In conclusion, we demonstrate that dPD1z T and CARPD-
L1z T cells were effective for suppressing the growth of mul-
tiple types of PD-L1+ solid tumors in PDX models and the
combination of CARMSLNz T with dPD1z T or CARPD-
L1z T cells did not show synergistic efficacy. Since PD-L1 is
expressed in some normal tissues, we need to fully evaluate
the safety of dPD1z T and CARPD-L1z T cells in animal
models before conducting a clinical trial for treating solid
tumors.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s40364-020-00198-0.

Additional file 1: Supplemental Figure 1. Transduction efficiency of
CAR-T cells and GFP and PD-L1 expression of GL transduced cancer cell
lines. (A) Transduction efficiency of CAR-T cells used in in vitro cytotox-
icity assays. (B) Transduction efficiency of CAR-T cells used to evaluate the
anti-tumor efficacy of the combination of CARMSLNz T and dPD1z T and
the combination of CARMSLNz T and CARPD-L1z T cells in NSCLC (P4)
PDX. (C) Schematic diagram of the GL vector. FACS analysis of (D) GFP
and (E) PD-L1 expression levels in multiple cancer cell lines transduced
with GL. Supplemental Figure 2. PD-L1 expression in primary tumor
samples. (A) qRT-PCR and (B) FACS analysis PD-L1 expression in primary
NSCLC cells (P1), gastric cancer cells (P2) and hepatoma carcinoma cells
(P3). (C) The expression of PD-L1 and Mesothelin (MSLN) in primary
NSCLC (P4) cells. Supplemental Figure 3. dPD1z T cells inhibit tumor
growth in gastric cancer and hepatoma carcinoma PDXs. (A) IHC images
of a normal spleen (left) and a spleen with metastatic tumors (right). (B)
Images of spleens from gastric cancer PDXs after treatment with dPD1z
T, CAR19z T or untreated controls (blank). (C) Tumor volumes and (D)
tumor weights of hepatoma carcinoma PDXs (P3) after treatment with
dPD1z T, CAR19z T cells or untreated controls (Blank). NSI mice were
transplanted with hepatoma carcinoma cells at day 0, subsequently,
dPD1z T or CAR19z T (5 × 106) cells were infused twice at day 15 and day
20. Tumor volumes were monitored at indicated days and tumor weights
were measured after mice euthanasia. The result of tumor volume repre-
sent mean ± SEM, and was compared by two-way ANOVA with Tukey’s
multiple comparisons test. * P < 0.05. The result of tumor weight repre-
sent mean ± SD, and was compared by unpaired t-test. ** P < 0.01. Sup-
plemental Figure 4. The production of IL-2 and IFN-γ of CARMSLNz T,
CARPD-L1z T, the combination of CARMSLNz T and CARPD-L1z T or
CAR19z T cells post co-cultured with H460-MSLNGL cells. (A) FACS detec-
tion of Mesothelin (MSLN) expression of H460GL and H460-MSLNGL cells.
The production of (B) IL-2 and (C) IFN-γ after CARMSLNz T, CARPD-L1z T,
the combination of CARMSLNz T and CARPD-L1z T or CAR19z T cells co-
cultured with H460-MSLNGL cell line for 24 h at a definitive E: T ratio (1:
1). Error bars denote SD, and the results were compared by unpaired t-
test. * P < 0.05, ** P < 0.01, and *** P < 0.001. Supplemental Figure 5.
Percentages of CAR T cells in the spleen of NSCLC PDXs (P4) after treated
with CARMSLNz T, CARPD-L1z T, the combination of CARMSLNz T and
CARPD-L1z T or CAR19z T cells (gated on live cells). Supplemental

Figure 6. The expression of PD-L1 in the activated T cells. Percentage of
PD-L1+ T cells in (A) CD4+ T cells (gated on CD3+CD8− cells) and (B)
CD8+ T cells (gated on CD3+CD8+ cells) post activated by CD3 and CD28
antibodies. FACS detection of PD-L1 expression at indicated time points.
Supplemental Figure 7. The expression of PD-L1 in CARMSLNz T cells
post co-cultured with H460-MSLNGL cells. Percentage of PD-L1+ T cells in
(A) CD4+ CARMSLNz T cells (gated on CD3+GFP+CD4+ cells) and (B) CD8+

CARMSLNz T cells (gated on CD3+GFP+CD8+ cells) post co-cultured with
H460-MSLNGL cells. CARMSLNz T cells were co-cultured with H460-
MSLNGL for 0 h, 16 h, 24 h, 40 h and 48 h at a definitive E: T ratio (1: 1),
then the expression of PD-L1 was detected by FACS. Supplemental Fig-
ure 8. Overexpression PD-L1 in T cells. (A) Percentage of CD25+CD69+ T
cells in CARPD-L1z T and CAR19z T cells (gated on CD3+GFP+ cells) post
activated by CD3 and CD28 antibodies for 16 h. (B) Percentage of
CD25+CD69+ T cells in CAR19z T cells (gated on CD3+GFP+ cells) post co-
cultured with NALM6 cells for 24 h at a definitive E: T ratio (2: 1), and per-
centage of CD25+CD69+ T cells in CARPD-L1z T cells (gated on CD3+GFP+

cells) post co-cultured with H460GL cells for 24 h at a definitive E: T ratio
(2, 1). (C) Schematic diagram of uPD-L1 vector. FACS detection of the ex-
pression of (D) CD19 and (E) PD-L1 in T cells after transduced with uPD-
L1.
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