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Abstract

Background: The majority of copy number callers requires high read coverage data that is often achieved with
elevated material input, which increases the heterogeneity of tissue samples. However, to gain insights into smaller
areas within a tissue sample, e.g. a cancerous area in a heterogeneous tissue sample, less material is used for
sequencing, which results in lower read coverage. Therefore, more focus needs to be put on copy number calling
that is sensitive enough for low coverage data.

Results: We present MetaCNV, a copy number caller that infers reliable copy numbers for human genomes with a
consensus approach. MetaCNV specializes in low coverage data, but also performs well on normal and high
coverage data. MetaCNV integrates the results of multiple copy number callers and infers absolute and unbiased
copy numbers for the entire genome. MetaCNV is based on a meta-model that bypasses the weaknesses of current
calling models while combining the strengths of existing approaches. Here we apply MetaCNV based on
ReadDepth, SVDetect, and CNVnator to real and simulated datasets in order to demonstrate how the approach
improves copy number calling.

Conclusions: MetaCNV, available at https://bitbucket.org/sonnhammergroup/metacnv, provides accurate copy
number prediction on low coverage data and performs well on high coverage data.
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Background
An important aspect of genome analysis is the study of
genetic alterations between individuals in a cohort, or
between samples from one individual, for instance to
understand cancer progression. One type of genetic al-
teration is copy number variation (CNV), which de-
scribes the fact that a segment of a genome, for example
spanning one or more genes, is amplified or deleted.
Up to 10% of the human genome has been estimated

to contribute to CNVs, and abnormal copy numbers
have been linked to mutation-prone diseases like cancer

[1]. Knowledge about CNVs is not only crucial to under-
standing such diseases, especially with regards to their
evolution, but also their effects on various phenotypes.
Next-generation sequencing has revolutionized the

possibilities to study inter- and intra-individual genome
alterations. For accurate CNV analysis, typically tissue
samples with 200–500 ng of DNA are required for se-
quencing with high coverage [2]. However, new genera-
tions of sequencing techniques arise and new
approaches to sequence even single cell genomes are be-
ing developed that only require 50 ng of DNA [2–4].
Copy number callers applicable to sequenced samples
with very small amounts of DNA would create the possi-
bility to investigate CNVs of smaller areas within a larger
tissue sample, such as regions microdissected by laser,
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and thus offer spatial information of CNVs within
formerly bulk-sequenced samples.
CNVs can be detected experimentally with various as-

says, such as comparative genomic hybridization (CGH,
e.g. bacterial artificial chromosomes (BAC) array), fluores-
cent in situ hybridization (FISH), and genotyping array.
Another option is calling CNVs from genome sequences,
although calling correct copy numbers this way is a chal-
lenging task. To develop a solution, four different ap-
proaches have emerged, each built on certain assumptions
and each with advantages and disadvantages [5, 6].
Callers purely based on a read coverage approach (i)

predict copy number changes using the read coverage of a
segment of the genome relative to the coverage of the
whole genome. To achieve good results for both deletions
and amplifications, this approach requires high sequen-
cing depth (Fig. S1). Further, short CNVs are often missed.
The majority of existing copy number callers apply this
concept, for example ReadDepth [7], CNV-seq [8], cn.
MOPS [9], Control-FREEC [10], and CNVnator [11].
Callers based on a paired-end (read-pair) mapping ap-

proach (ii) predict copy numbers based on changes in
the insert size of paired-end reads. This approach re-
quires paired-end sequenced data and only considers
those pairs of reads where both ends of a pair have been
mapped which decreases the number of reads and thus
the amount of data that can be used for copy number
calling. It is appropriate to identify structural variants in
general (e.g. inversions, inter and intra-chromosomal
translocations) [5, 12]. Discordantly mapped reads (i.e
mapping span or paired-end orientation are inconsistent
with the reference genome) indicate a structural variant
[13]. The paired-end mapping approach is relatively in-
dependent from the sequencing depth. A popular pack-
age is BreakDancer [14].
The split-reads approach (iii) takes only discordant

mapped reads; that is, only one mate was aligned con-
cordantly. For the unmapped read, alignment to a refer-
ence genome is reattempted by splitting the read and
aligning both parts separately. A popular package doing
this is PINDEL [15].
Callers that apply combinations of the above described

approaches, i.e. hybrids, represent the fourth type (iv).
Combining a paired-end read and a read depth approach
seems to be the most beneficial [5], for instance used by
the callers SVDetect [16] and CNVer [17].
The rapidly growing field of single cell DNA (scDNA)

sequencing challenges calling of variants, e.g. copy num-
bers, for individual cells having coverages ~1x. Examples
of such callers specified for scDNA are Ginkgo [18] and
SCNV [19]. They are both based on a read depth ap-
proach and correct for GC content bias. A limitation
with these methods is that in order to deal with tech-
nical artefacts introduced by single cell sequencing

leading to high noise, they require pools of at least 3
cells for calibration or normalisation. SCNV is further
an example of adapting an established bulk method,
SeqCBS, to scDNA data [19]. Another method is Lumpy
[20], a structural variant caller applicable to low cover-
age data. However, it only outputs cnv types, i.e. deletion
or amplification.
However, in general callers require relatively high se-

quence coverage to achieve good results, or if specialised
in scDNA, callers require multiple cells to be applied on.
Although higher sequencing depth can be achieved with
technologies like polymerase chain reaction (PCR), this
leads to unevenly distributed copies of unique molecules,
and fewer unique molecules with increasing sequencing
depth influencing mutation calling. We here introduce
MetaCNV, a method that combines different approaches
in order to create a caller that is sensitive enough to de-
tect CNVs in low coverage data (below 10x), even one
single cell, but also works on normal and higher cover-
age data (above 30x and 100x, respectively). It is a gener-
ally applicable method that in contrast to previous low
coverage methods can be applied to single samples.

Algorithm and implementation
Implementation
MetaCNV v1.4 is intended for use on unix operating
systems. The graphical user interface was created with
the GTK+ toolkit, a free library available for the majority
of current unix distributions (Additional file 1).

MetaCNV algorithm
MetaCNV combines the prediction of copy number cal-
lers based on different approaches and builds a consen-
sus to achieve higher prediction accurateness. Some
copy number callers (e.g. SVDetect) require a matched
sample, for example to be able to distinguish somatic
(only detected in the primary sample) from germline
mutations (also found in the matched sample, e.g.
blood). One of the current input callers for MetaCNV,
SVDetect, was run with three different matched sample
versions: a matched blood sample, a simulated normal
sample with 20x read coverage, and a simulated null
(simNull) alignment with constant zero read coverage,
to test if this choice affects the prediction accurateness
and increases sensitivity especially on low coverage data.
Running MetaCNV comprises five steps (Fig. 1).

Choice of current input callers
The current input callers for MetaCNV were chosen due
to their relatively good prediction accurateness on low
coverage data (Figs. 4 & S13). Further, they belong to
different calling approaches which perform differently
depending on the type of a CNV. In low coverage data,
we observed that ReadDepth v0.9.8, which applies a read
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depth approach, predicts mid-sized (104–106 bp) and lar-
ger deleted segments (> 106 bp) more accurately than
other callers, whereas amplifications were more accur-
ately predicted by SVDetect v1.3, a representative of the
hybrid approach.
Finally, a caller’s prediction coverage (Fig. S7A, Table S3)

is considered. Only ReadDepth and CopyCat [21] predict
gapfree CNVs for an entire genome. Gapfree means that
for each base pair of an investigated genome, a copy
number is calculated which resulted in a high prediction
coverage. SVDetect predicted for more than 90% of the ge-
nomes. The prediction coverage of Control-FREEC and
CNVnator varied in cancer cell data sets from 33 to 65%
and 35 to 80%, respectively.
ReadDepth is built on the coverage-based approach,

predicting copy numbers gapfree for the whole genome.
It applies a negative binomial distribution to approxi-
mate an overdispersed Poisson distribution [7]. Further,
it outputs absolute copy numbers for equally-sized, non-
overlapping bins (Table S15). The optimal bin size is cal-
culated by ReadDepth, but can be indirectly adapted by
changing the false discovery rate.
SVDetect is a tool used to detect general structural

variants and is based on the hybrid approach for copy
number calling, meaning both the coverage and any
change in the insert size of read-pairs are considered
when inferring copy numbers [16]. SVDetect copy num-
bers are not predicted gapfree, and in contrast to Read-
Depth and CNVnator it requires for copy number
calling a matched normal sample with which to relate
the studied sample (Table S16).
CNVnator v0.3.2, like ReadDepth, is based on the

coverage approach, but with an additional mean-shift
approach that produces a probability distribution

function from the coverage data, and links each data
point, i.e. bin, to its maxima. Further, CNVnator is cali-
brated using the extensive validation done by the 1000
Genomes Project [11, 22]. Similar to SVDetect, it does
not calculate copy numbers for the entire genome. As
with SVDetect, the bin size can be modified by the user.
Despite achieving good prediction accurateness on high
coverage data, CNVnator predicts extremely high copy
numbers on low coverage data (Figs. S8, Table S17).
However, it still produced reliable classification of seg-
ments into deletions and amplifications for low coverage
data as accurately as SVDetect and ReadDepth, and
complements their predictions (Fig. S13, Table S17).
Based on this, ReadDepth, SVDetect, in combination
with CNVnator as a referee for conflicts between Read-
Depth and SVDetect were chosen as input callers for
MetaCNV.

Matched sample in SVDetect
When SVDetect was run as part of MetaCNV, a simu-
lated null sample with zero read coverage (simNull) was
used. The simNull alignment as matched sample is a
novel idea to increase sensitivity and to remove an add-
itional source of noise for low coverage data. If compar-
ing a low coverage sample with a matched sample
having high coverage it will disturb a correct copy num-
ber calling. Ideally, a matched sample should have the
same constant coverage as the sample to investigate.
With current tools this constant coverage on each base
pair of the genome is not achievable (Fig. S21). There-
fore, we developed the novel idea of a simulated null
alignment containing zero coverage, and thus no noise.
When SVDetect was run outside of MetaCNV for

comparison, two different types of such matched

Fig. 1 MetaCNV workflow to call copy numbers. MetaCNV requires as input an SVDetect prediction using a simulated null alignment (simNull) as
matched sample (Fig. S19)
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samples were tested: a matched normal sample (match-
edNormal) and a simulated normal sample with constant
read coverage (simNormal).
The matched normal was taken from the cancer cell

lines HCC1187 and HCC2218 (Table 1) for which such
samples are available (blood samples HCC1187BL and
HCC2218BL). The simulated normal was inferred using
Pirs [24].

Segmentation of the genome
ReadDepth divides a given genome into bins of a calcu-
lated minimum or a multiple of the minimum bin size.
The bin size can only be manipulated indirectly by in-
creasing the false discovery rate. For both, the high and
low coverage study of sequenced single cells, it was set
to 0.01 (default). SVDetect accepts a bin size given by
the user. Several bin sizes were tested for SVDetect but
the best results were achieved with a bin size of 400 bp
and no bin overlap. Based on the calculated bin sizes
from both callers hidden in the start and end position in
the output files, new bins were calculated with different
sizes while also considering all breakpoints given by the
input callers (Fig. 2). At the end of the MetaCNV predic-
tion process, bins with a similar copy number to one
decimal place were merged into one segment.

MetaCNV model
The MetaCNV model contains rules to be applied to
each bin, depending on the predicted copy numbers of
the input callers representing different approaches of
copy number calling; the strength of rules is in the de-
creased risk of overfitting. In general, MetaCNV accepts
deletions and normal copy numbers if they are predicted
by a coverage approach (current ReadDepth), and ampli-
fications if they are predicted by a read-pair approach or
hybrid approach of coverage and read-pair (current
SVDetect). More detailed rule descriptions are listed in
Table S18. To distinguish between deletions and normal
copy numbers from amplifications, two thresholds T1
and T2 are introduced. T2 is the local minimum of the
frequency of copy numbers produced by ReadDepth

between 2 and 2.3; the other threshold T1 is calculated
as 2 * P - T2 where P is the ploidy value (Fig. 3).
Due to gaps in the predictions from at least one

current input caller (no copy number predicted) or con-
flicting predicted copy numbers from both callers, the
MetaCNV model comprises additional rules and in-
cludes CNVnator as the referee in such conflicting cases.

Normalisation of input data
When developing a consensus approach, the results of
the considered input callers need to be normalised in
order to compare their results correctly. The detected
bias in the predicted copy numbers of each input caller
was corrected with a copy-number-dependent normal-
isation. The bias (systematic error) is the difference be-
tween frequency peak and ploidy (Fig. 3, eqs. 1), where
CN is the predicted copy number by a caller, CNnorm is
the normalised CN, and P is the ploidy value which is
for the autosomes 2 and for the allosomes either 2 if fe-
male or 1 if male. The maximum absolute bias correc-
tion is 0.5.

CNnorm ¼ CN þ factor � biasð Þ ð1Þ

bias ¼ P−CN at max frequency CNð Þð Þ ð1aÞ

factor ¼ min
1
2
� CN ; 1

� �
ð1bÞ

Converting log2 values into absolute copy numbers
In general, callers predict copy numbers either as abso-
lute copy numbers or as log ratio values which can be
converted into absolute copy numbers with.

CNcorrected ¼ P � 2CN log2;corrected ð2Þ
Absolute copy numbers reflect the number of repeats

of the sequence [7]. The log2 values represent log2 trans-
formed ratios to a matched sample or the ploidy P [6].

Table 1 Cancer cell lines used for accurateness testing. Coverage and number of deleted and amplified genes extracted from
COSMIC are presented. Copy numbers were called from sequenced genomes and experimentally confirmed with PICNIC [23]

Cancer cell line Coverage # of amplified genes # of deleted genes Total # of genes
with CNVs

Ratio amplified/
deleted genes

HCC1187 104x 154 46 200 3.48

HCC2218 93x 200 36 236 5.55

MCF7 62x 49 30 79 1.63

PC3 76x 179 222 401 0.81

Single-cell SKBR3 6 stepwise merged single cells
with 1x to 6x

161 29 190 5.55

Friedrich et al. BMC Medical Genomics           (2020) 13:76 Page 4 of 12



Fig. 2 Genome segmentation by MetaCNV. a Segmentation of the genome according to the bins and breakpoints from the input callers. b
Consensus segment prediction by MetaCNV is marked as a thick line. Bins c is predicted as amplified and bin d as deleted. Here there is no
conflict between the input callers, hence the consensus is that c is amplified and d is deleted. Bin f is not predicted by SVDetect, but because
ReadDepth predicts it as an amplification, this becomes the consensus. Bins b, e and g have conflicting ReadDepth and SVDetect predictions.
CNVnator judges that e and g are amplifications, hence this becomes the consensus. Bin b is set to CN 2 because only ReadDepth predicts it as
an amplification and CNVnator makes no prediction (Table S18)

Fig. 3 Distribution of absolute copy numbers. Copy numbers were called with ReadDepth of cancer cell line HCC2218 after segmentation
(6,867,679 segments with an average segment length of 450 bp). a The bias occurs around each integer copy number and is lower for CNRD ~ 1,
but increases for CNRD ~ 2. The factor for normalisation is a linear function (eq. 1b) which serves to adjust the bias for different CNRD. b
Distribution of absolute copy numbers called with ReadDepth after normalisation
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When MetaCNV is run with input from SVDetect
using a simulated normal sample, the formula above (eq.
2) is applied to convert log2 values into absolute copy
numbers for each bin. Before this, the log2 values CNlog2

are corrected with a genome wide median:

CNlog2;corrected ¼ CNlog2 − median ðCNlog2Þ: ð2aÞ
When MetaCNV is run with input from SVDetect

using a simulated null alignment, the predicted values
are accepted as copy numbers. This produces CNlog2

values that are always non-negative, because in the case
of the simulated null alignment, they are relative to 0.
Further, a distortion was observed which increases expo-
nentially with the true amplification. This distortion is
corrected with an equalizer factor q (Fig. S20, eq. 3). The
net effect corresponds to a back log transformation that
is calibrated to result in absolute copy numbers.

CNmeta ¼ CN log2 � q ð3Þ

q ¼
�
1þ 1

100
� CN log2

�0:75 CN log2

ð3aÞ

Calculating error scores
Each MetaCNV bin is annotated with an error score e
mirroring the prediction similarity of the input callers.
The score depends on the consensus of the input callers
per bin and is averaged for the optimised segments con-
sidering the bin length per segment. The error score per
bin is calculated as the squared absolute copy number
difference between ReadDepth and SVDetect:

ebin ¼ ðCNRD−CNSVDetectÞ2 ð4Þ
For bins where ReadDepth did not predict a copy

number, we assume CN = 0. ReadDepth predicts copy
numbers gapless for a genome. Although, rare large gaps
happen to occur but they are caused by non-sequenced
regions which not contain genetic regions according to
the reference genome GRCh38 [25]. If SVDetect did not
predict a copy number, CN = Ploidy is used. SVDetect
does not predict copy numbers gapless for a genome al-
though the coverage is sufficient in case of the high
coverage data and no other obvious reason could be
identified. (Pre-processing and application of calling
methods, Suppl., Tables S19 and S20).

Accurateness evaluation
To evaluate the accurateness of a caller, its result needs
to be compared to true copy number variations. Differ-
ent ways were taken to set such a gold standard: simu-
lated data, for example for the validation of CNV-seq;

clinical data with experimentally confirmed CNV, e.g.
for the validation of CNVnator; or cancer cell lines, e.g.
for the validation of Control-FREEC and ReadDepth.
Further, the comparison between true and predicted

copy number has either been performed for segments,
e.g. validation of Control-FREEC and ReadDepth, or for
genes [26]. Different accurateness measures have been
applied, including accuracy, false discovery rate, F1-score
[27], receiver operating characteristic with true positive
and false positive rates [28], Spearman correlation, and
root mean squared error [29].
Finally, absolute copy numbers, log2 ratio values or the

class of a copy number [27], which is either a deletion or
an amplification, were considered. Absolute copy num-
bers are decimal or integer values mirroring the number
of repeats of the sequence [7] whereas the log2 ratios
stand for log transformed ratios to a matched sample or
the ploidy [6].
The prediction accurateness of a regression model,

which is the case if comparing copy numbers, can be
evaluated using the mean squared error (MSE, eq. 5)
and mean absolute error (MAE). In general, an error
based measure calculates the difference between a true
and a predicted value, which in this case is the difference
between true and predicted copy number per gene. The
mean absolute error presents the average error, whereas
the mean squared error combines systematic and ran-
dom error into one value [30]. It also penalizes outliers:
each distance is squared, and larger distances thus get
more weight.
The true copy number per gene, xi, was compared

with the predicted one, x̂i , by calculating the residuals xi
−x̂i for all genes N.

Mean squared error MSE ¼ 1
N

XN
i¼1

xi−x̂ið Þ2 ð5Þ

To avoid outlier penalty we compare additionally the
prediction accurateness with the mean log ratio error:

Mean log ratio error MLRE ¼ 1
N

XN
i¼1

LRi;

LRi ¼ abs

 
In
� xi þ 1
x̂i þ 1

�!

ð6Þ
If a caller predicts highly different copy numbers for

genes of a genome having the same true copy number
but also predicts similar copy numbers for genes with
different true copy numbers, then the analysis of copy
number variations can become difficult. Therefore, copy
number callers were also evaluated by the variance of
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the residuals, which mirrors how close the predicted
values surround each unique true copy number (eq. 7.
For each unique true copy number (integer) value, the
variance of the predicted values was calculated, however,
default elements were replaced with the residuals zi (the
difference between actual xi and predicted value x̂i). The
variances are then averaged for the total number of
unique true copy numbers M.

Variance of residuals σ2
Res ¼

1
M

XM
j¼1

1
N

XN
i¼1

zi−zð Þ2
 !

ð7Þ

Matthew’s correlation coefficient (MCC) [31] can be
applied for classification models and is especially applic-
able for unbalanced ratios of the four confusion matrix
categories, which is the case for the cancer cell lines
used in this paper (ratio of amplified/deleted genes from
0.8 to 5, Table 1). To define the classes of deletions and
amplifications for ploidy P = 2, copy numbers > 2.75
were set as amplifications and copy numbers < 1.75 were
set as deletions, while values in between were set as nor-
mal. In order to deal with these three classes (deletion,
normal, amplification), the values for true positives, true
negatives, false positives and false negatives were micro-
averaged. This means that for example the true positive
value TP is equal to TPclass1 + TPclass2 + TPclass3 .
The prediction accurateness of several copy number

callers and MetaCNV was evaluated using known ampli-
fied or deleted genes that were publicly available along
with well-studied cancer cell lines (Additional file 2).
MetaCNV was developed for low coverage data. There-
fore, MetaCNV’s accurateness was verified on single se-
quenced cells of a cancer cell line (SKBR3) having 1x to
6x read coverage. Additionally, the accurateness was
assessed on four cancer cell lines with normal and high
coverage (62x to 104x coverage, Table 1). The range of
copy numbers among the cancer cell lines was limited.
To validate MetaCNV on a wider range of copy num-
bers and also genome-wide, mutated genomes of differ-
ent coverages were simulated. MetaCNV’s accurateness
was compared with other callers’ accurateness by
MLRE and MCC (MSE, MAE, and Spearman’s correl-
ation in Figs. S11, S13, S14).
For each caller, we map the output (segments and cor-

responding copy numbers) per cancer cell line and simu-
lated genome to the human assembly GRCh38 Ensembl
(release 84) [25]. Due to different segment sizes, this
mapping resulted in one or several predicted copy num-
bers per gene. In such cases, the total copy number per
gene was the sum of the weighted copy numbers, de-
pending on their segment length within the gene (Fig.

S9). There were gaps in the prediction of SVDetect,
CNVnator, and Control-FREEC, that is, no copy number
for a segment was called. Such gaps within a gene were
filled using the ploidy value. Some segments of the can-
cer cell lines given by COSMIC [32] (Cosmic, Suppl.)
did not cover a gene completely. In these rare cases, the
gene was reduced to the covered segment length within
this gene.

Cancer cell lines
Cancer cell lines, like the HeLa cancer cell line, which
can theoretically be divided and replicated indefinitely,
contain cells taken from e.g. naturally-occurring cancer
tissues [33]. They are publicly available and well-studied
objects; mutations like CNVs and other structural varia-
tions are experimentally confirmed [34].
The use of cancer cell lines is advantageous due to the

fact that the reviewed callers have to perform on real se-
quencing data, and the result can be compared to known
CNVs. Using cancer cell lines can also be a disadvantage
because of the lower heterogeneity found in them; high het-
erogeneity is a common characteristic of cancerous clinical
samples. Further, variance and grades of deletions and am-
plifications are lowered, since a cancer cell line contains
only a limited number of cells, compared to a bulk-
sequenced clinical sample containing million of cells. Des-
pite the disadvantages, testing a copy number caller’s accu-
rateness on cell lines is easy, transparent, and replicable.
The cancer cell lines HCC1187 (with matched blood

sample), HCC2218 (with matched blood sample), MCF7,
PC3, and SKBR3 (Tables 1, S1, S2, Figs. S2-S4, S7B)
were chosen to compare MetaCNV’s accurateness with
other callers’ accurateness. The sequenced DNA of a
single cell of SKBR3 (1x per cell) by using a novel
method to sequence both, genome and transcriptome of
the same single cell [4], was used as low coverage data.
The sequenced and aligned single cell genomes were
stepwise merged to present increasing coverages.

Simulated mutated genomes
For each of four coverages (1x, 2x, 5x, and 10x), three mu-
tated human genomes were simulated (gw1, gw2, lcd).
The paired-end reads for the chromosomes 1–22 were
generated using CNVsim v0.9.2, aligned using Bowtie2
v2.2.9 [35], and converted, sorted and indexed using Sam-
tools v1.2 [36]. For each of the three genomes, 30 to 50
segments per chromosome and each segment with a copy
number unequal to 2 and a length of 10 kbp to 100 kbp
were generated (Figs. S5 and S6). The simulated genomes
were mapped to GRCh38 (Table 2). Two simulated ge-
nomes (gw1, gw2) were used to compare the callers’ re-
sults for a genome wide copy number prediction.
CNVnator and Control-FREEC only gave partial predic-
tions, see Table S4. The third simulated genome (lcd) was
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therefore used to compare the callers’ results on a reduced
data set comprising segments for which a prediction of all
callers (MetaCNV, SVDetect, CNVnator, ReadDepth,
Control-FREEC) was available. This, however, limited the
range of copy numbers from 0 to 4.

Results
The consensus copy number caller presented here,
MetaCNV, combines a number of primary callers by
rules that optimally harness the strengths of each
method. MetaCNV’s and other callers’ accurateness were
evaluated by calling copy numbers for cancer cell lines
and comparing the results with experimentally con-
firmed deleted or amplified genes in the COSMIC data-
base. To consider a higher number of mutated genes
and a wider range of copy numbers, MetaCNV’s and the
other callers’ accurateness was also evaluated on three
simulated mutated human genomes for each of the cov-
erages 1x, 2x, 5x, and 10x.
True and predicted absolute copy numbers were com-

pared by the mean log ratio error (MLRE) across all genes.
We also calculated Matthew’s correlation coefficient,
MCC, on the predicted classes of deleted and amplified
genes. This measure evaluates how well callers can differ-
entiate between amplifications and deletions in general.

Prediction accurateness on low coverage data
We assessed copy number prediction accurateness on a
single-cell sequenced cancer cell line (SKBR3) with step-
wise merged alignments of one additional cell, and step-
wise increased coverage from 1x to 6x. MetaCNV was
compared to the popular copy number callers CNVna-
tor, Control-FREEC, ReadDepth, and SVDetect. In all
benchmarks, MetaCNV was the most accurate method.
MetaCNV outperformed the other methods in the

majority of coverages in the MLRE benchmark. In all
MCC benchmarks, MetaCNV was the most accurate
method. MetaCNV was the most robust method as it
was the top performer for MLRE, MSE, MAE, and MCC
in the majority of the coverage levels (Figs. 4, S13- S15,
Tables S8-S10, Additional files 7, 8, 9, 10, 11 and 12).
CNVnator produced only a reliable classification of

segments into deletions and amplifications; absolute
copy numbers were not usable. For example for the
SKBR3 cell line, sequenced single cell nr. 1, copy num-
bers for regions of deletions ranged from 0 to 2664 and
copy numbers for regions of amplifications ranged from
0 to 44,084 (Fig. S8). Increasing coverage from 1x to 6x
improved the accurateness only for Control-FREEC, a
coverage based approach, although it never reached the
accurateness of its competitors.

Prediction accurateness on high coverage data
MetaCNV’s accurateness on cancer cell lines with high
read coverage was compared to the accurateness of
other callers which are CNVnator, CopyCat, Control-
FREEC, ReadDepth, and SVDetect.
Although MetaCNV was designed for low coverage

data, it also performed well for high coverage data. In
three of four tested cancer cell lines, it was the best per-
former (Figs. 5, S12, Tables S11-S14, Additional files 3,
4, 5 and 6). Several predictors reached an MCC near 1.0
in two cell lines, hence there was no clear winner there
(Figs. 5, S10). To present an overall accurateness, MLRE
and MCC were averaged over the four tested cancer cell
lines per caller (Fig. 5c & d). MetaCNV showed the best
overall accurateness with MLRE and second best with
MCC, only 0,004 behind CNVnator.

Table 2 Simulated mutated genomes used for accurateness testing. The simulated data sets gw1 and gw2 were used to compare
the prediction results for a genome-wide prediction. The simulated data sets lcd was used to compare the prediction results for
genes for which a prediction of all tested callers was available

Simulation Depth of coverage # of amplified genes # of deleted genes Total # of genes Ratio amplified/ deleted genes

sim 1x gw1 1.1x 283 559 13,906 0.51

sim 1x gw2 1.1x 236 573 13,920 0.41

sim 1x lcd 1.5x 25 30 330 0.83

sim 2x gw1 2.2x 247 560 13,937 0.44

sim 2x gw2 2.2x 254 588 13,922 0.43

sim 2x lcd 2.9x 42 44 16 0.95

sim 5x gw1 5.7x 230 580 13,987 0.40

sim 5x gw2 5.7x 251 593 13,949 0.42

sim 5x lcd 7.3x 62 48 14 1.29

sim 10x gw1 11.3x 263 560 13,882 0.47

sim 10x gw2 11.3x 240 551 13,865 0.44

sim 10x lcd 14.9x 54 49 7 1.10

Friedrich et al. BMC Medical Genomics           (2020) 13:76 Page 8 of 12



Fig. 5 Prediction accurateness of MetaCNV and other copy number callers for high coverage data. a and b present the average benchmark
results per cancer cell line. SVDetect using matchedNormal could only be performed for HCC1187 and HCC2218, for which matched blood
samples were available. c and d show the overall results averaged across all benchmarked cell lines

Fig. 4 Prediction accurateness of MetaCNV on low coverage data, compared to CNVnator, Control-FREEC, ReadDepth, and SVDetect. a and b
present the benchmark results with MLRE and MCC per merged alignment. c and d show the overall results averaged across all
benchmarked alignments
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Prediction accurateness on simulated mutated genomes
MetaCNV’s predictive accurateness on simulated mu-
tated human genomes was compared to the predictive
accurateness of CNVnator, SVDetect, ReadDepth, and
Control-FREEC. The simulated datasets comprise the
predictions genome-wide and reduced to genes for
which an output from all callers was available. Each
dataset was simulated in different coverages (1x, 2x, 5x,
10x). MetaCNV performed best in all tested simulated
datasets using MLRE and MCC (Figs. S16- S18, Tables
S5-S7); in two datasets (2x-gw2 and 5x-lcd) MetaCNV
and ReadDepth performed equally well using MLRE.

The novel simNull alignment as matched sample
SVDetect, one of the current input callers for MetaCNV, re-
quires a matched sample for copy number calling. For the
cancer cell lines HCC1187 and HCC2218, a matched nor-
mal blood sample was used (HCC1187BL, HCC2218BL).
Additionally, a normal sample was simulated with constant
coverage. However, a simulated normal sample also contains
noise and variance in coverage which negatively influences
copy number calling for low coverage data. Further, com-
paring a low coverage sample (e.g. 3x) with a matched sam-
ple having higher coverage (e.g. 30x) will lead to an
insensitive result. Therefore, we developed the novel idea of
a simulated null alignment containing zero coverage, and
thus no noise, to improve the sensitivity of copy number
calling.
SVDetect using a simulated null alignment creates one

of the inputs for MetaCNV. For comparison, MetaCNV
was also run with input from SVDetect using a simu-
lated normal sample. MetaCNV with a simulated null
alignment achieved better overall results than with the
simulated normal alignment when evaluated using MSE
and MLRE (Fig. S19). This was true for both low and
high coverage data, although the effect was much stron-
ger for low coverage data.
However, just replacing the matched simulated normal

sample with a simulated null alignment in SVDetect did
not always improve the prediction for high coverage
data, see Fig. S19.
Taken together, the superior accurateness of MetaCNV

stems from: (i) combining the prediction of multiple cal-
lers to form a consensus, (ii) considering that the reliabil-
ity of a copy number depends on the approach the caller
was based on, and (iii) for low coverage data, using a
matched sample with zero instead of normal coverage.

Discussion
To investigate smaller areas within a tissue section or
even sequenced single cells, callers are needed that are
able to detect CNVs in low coverage alignments. We
present MetaCNV a copy number caller specialised in
low coverage data. MetaCNV is based on a consensus

approach combining different calling approaches and
achieved a better prediction accurateness on low cover-
age data than other reviewed callers. MetaCNV also per-
formed well on high coverage data. (Figs. 4 & 5).
In low coverage data, we observed that a read depth

approach is better in predicting deleted segments,
whereas amplifications were more accurately predicted
by representatives of the paired-end mapping or hybrid
approach. However, current callers, including those that
employ a hybrid model, apply the developed calling
model to each type of variation (deletions and amplifica-
tions). MetaCNV considers several calling approaches
and builds a consensus based on rules to avoid overfit-
ting, which results in predicting CN more accurately.
Due to the different approaches of the current input cal-
lers (ReadDepth, SVDetect, and CNVnator), MetaCNV
is biased towards mid-sized and large deletions and
short and mid-sized amplifications.
To identify somatic structural variants, callers such as

SVDetect require a matched normal sample. In order to
increase sensitivity for low coverage data, we developed
the novel idea of a simulated null alignment used as
matched sample. MetaCNV requires the calling result
from SVDetect using this simNull as matched sample.
For demonstration, MetaCNV was also tested with the
input from SVDetect using a simulated normal, however,
with a simNull performing a better prediction. The effect
of a simulated null alignment compared with a simulated
normal or matched normal is low if applied on high
coverage data. In contrast, the impact increased im-
mensely for low coverage data where, on the one hand,
additional noise disturbs the prediction accurateness,
and on the other hand, high sensitivity is required to
predict reliable copy numbers. The simNull alignment
leads to a distortion of predicted copy numbers that in-
creases with the copy number. This distortion is cor-
rected in a simple way, but with more alignments having
different read coverages, a more sophisticated approach
could lead to a further improvement in prediction.
The evaluation in this study was done using an error

benchmark comparing true and predicted value per in-
stance (gene), the mean log ratio error (MLRE), and
Matthew’s correlation coefficient (MCC) to assess how
well a caller can distinguish between deletions and am-
plifications. The benchmarks mirror that coverage-based
approaches are highly dependent on read coverage, and
show that MetaCNV outperforms other callers on low
coverage data and performs well on high coverage data.
It was not possible to include specialized low coverage

scDNA callers in the benchmark. Ginkgo and SCNV can
not be run for single samples and Lumpy v0.2.13 does
not output quantitative CNV values. CNV-seq v0.2–8
gave ambiguous copy numbers for overlapping bins. We
could however run Ginkgo using all SKBR3 single cell
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samples, which gives it considerably more information
than the callers presented in the benchmark have. Des-
pite this, Ginkgo achieved worse accurateness than
MetaCNV for all six SKBR3 cells when evaluated with
MCC, and worse or equal accurateness for four cells
when evaluated with MLRE.

Conclusions
We hypothesized that a CNV caller that is based on a con-
sensus approach and considers the mutation type in the
prediction, can predict copy numbers more reliably and is
sensitive enough to be applicable for low coverage data.
MetaCNV, the presented CNV caller, predicted CNs more
accurately on low coverage data than other reviewed cal-
lers. MetaCNV also performed well on high coverage data.
Using MetaCNV it is possible to investigate CNVs of

smaller areas within a larger tissue sample, such as re-
gions microdissected by laser or sequenced single cells,
for which only very small amounts of DNA are available.

Availability and requirements
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