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imaging software, the main difficulty has been to automate the entire analysis pipeline
from raw data to ensemble statistics.

Results: We present DryMass, a powerful tool for QPI that covers all relevant steps
from loading experimental data (multiple file formats supported), computing the
phase data (built-in, automated hologram analysis), performing phase background
corrections (offset, tilt, second order polynomial) to fitting scattering models (light
projection, Rytov approximation, Mie simulations) to spherical phase objects for the
extraction of dry mass, radius, and average refractive index. The major contribution of
DryMass is a user-convenient, reliable, reproducible, and automated analysis pipeline
for an arbitrary number of QPI datasets of arbitrary sizes.

Conclusion: DryMass is a leap forward for data analysis in QPJ, as it not only makes it
easier to visualize raw QPI data and reproduce previous results in the field, but it also
opens up QPI analysis to users without a background in programming or phase
imaging.
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Background

Quantitative phase imaging (QPI) is a technique frequently used for the determina-
tion of the refractive index (RI) and related physical properties, such as protein con-
centration or dry mass, of biological cells and cell-sized objects [1-3]. The physical
quantity that QPI measures is the optical phase retardation introduced by the sam-
ple, which depends on its three-dimensional (3D) RI distribution. Until recently, one
of the main obstacles in QPI was the extraction of the RI from the measured phase.
This problem has been resolved, to a large extent, by optical diffraction tomography
(ODT) which takes into account multiple viewing angles to construct a 3D map of
the sample’s RI. While ODT vyields RI maps with subcellular resolution, it requires
elaborate experimental setups and computationally expensive tomographic reconstruc-
tion algorithms [4—7]. Furthermore, for objects that are homogeneous and exhibit a
regular shape, a two-dimensional (2D) phase analysis can be sufficient. For spher-
ical protein droplets and microgel beads, this approach enables an accurate evalu-
ation of refractive index and size [8]. For suspended cells, it can approximate the
average refractive index and allows the quantification of relative differences [1, 9].
Thus, many studies favor 2D QPI as a fast and efficient way to track and quantify changes
in the RL

A prominent approach in single-cell QPI analysis exploits the fact that cells assume
a spherical shape when they are put in suspension. The cell’s sphericity can be used to
extract an average value of its RI from 2D phase data. Several studies have used this
approach to characterize single cells, isolated cell nuclei, liquid droplets, or microgel
beads [1, 3, 8-10]. While this approach is powerful and yet simple, until now a con-
siderable amount of programming knowledge was required to perform the fundamental
tasks of data analysis: loading experimental data, digital reconstruction of holograms,
extraction of the phase data, identifying the objects of interest, finding a suitable strat-
egy for background correction, and determining the average RI based on light-scattering
models for spheres. To our knowledge, no open-source solution exists that can address
all of these fundamental analysis tasks while at the same time providing a simple
user interface.

Here, we present DryMass, a fundamental tool for QPI analysis which can perform
all fundamental tasks from loading data to extracting the RI of spherical objects in an
automated manner. With DryMass, it is possible to execute standard analysis pipelines
for QPI analysis using an easy-to-use command-line interface.

Implementation

DryMass is executed from a command shell. Each of the analysis steps is transparently
implemented in an analysis pipeline that can be controlled via a configuration file. Several
file formats are supported, such as raw in-line hologram data in the tagged image file
(TIF) format or the proprietary SID4Bio TIF format (Phasics S.A., France). The digital
reconstruction of holograms is done automatically and may optionally be modified by
the user, with parameters such as filter type (e.g. disk, Gaussian, square), filter size, and
sideband position, via the configuration file. If applicable, phase-unwrapping is performed
using the approach by Herrdez et al. [11] which is implemented in the scikit-image Python
library [12]. An experimental data series can be loaded from a set of files in a folder or
from a zip file.
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Fig. 1 Schematic of the DryMass pipeline (shaded area) for extracting radius and refractive index (Rl) of
spherical objects. a Four HL60 cells are shown in a split-view. The left part of the image represents the raw
hologram data. The right part of the image has been converted to quantitative phase data via an automated
Fourier analysis. Regions of interest (ROIs) are found (white rectangles) and background-corrected for
subsequent analysis steps. The cell in ROl 4 is also shown in B and D. b Under the assumption of sphericity,
the radius r and the RI n are extracted by fitting the Rytov model (black) to the phase data (orange). (c)
Alternatively, ROl data can be analyzed by other software. d Visualization of the analysis results with the Rytov
approximation. The orange dashed line indicates the position of the line profile shown in (B). The white
dashed circle highlights the fitted perimeter of the cell. Other parameters, such as the acquisition time t, are
also retained. e For each RO|, all relevant parameters are compiled (blue data point indicates the exemplary
ROI). f Final analysis steps can be performed with other software. The Fiji logo was kindly provided by the
Imagel) community. The R-project logo is licensed CC BY-SA 4.0

Once the phase data are loaded, DryMass can automatically find phase objects, such
as sparsely distributed beads or cells, and extract the corresponding ROI data (Fig. 1a).
Several background correction methods are available, including the correction using a
background image, a basic tilt correction [10], and a second-order polynomial correction
[13]. The regions containing background data can be defined as a frame border around
the ROI or via a threshold value.

Depending on the type of analysis, DryMass generates multi-page TIFs that contain
phase and amplitude data for a subsequent image analysis with e.g. Fiji [14] (Fig. 1c), or
a visualization of the analysis process for the user to examine. For instance, the determi-
nation of the RI for spherical objects produces a TIF that visualizes the fit via a line plot
through the phase image (Fig. 1b), the corrected phase data of the original ROI (Fig. 1d),
and the 2D phase residuals of the fit. The determination of the average RI for spherical
cells is accomplished via the simple edge-detection method [10], the projection approx-
imation [1], or the more accurate Rytov approximation [8]. For large data sets, DryMass
produces a statistical summary, including acquisition time, RI, and object radius (Fig. 1e),
which enables subsequent statistical analyses using other software (Fig. 1f). The detailed
level of results makes it easy for the user to verify the analysis and, if necessary, to review
the associated configuration file.

Results and discussion
To demonstrate the working principle of DryMass, we make use of a publicly available
dataset that consists of digital holograms of isolated HL60 cell nuclei measured through-
out the cell cycle [15]. This dataset was first presented by Schiirmann et al. [10] and shows
that the RI of isolated nuclei does not vary much during the cell cycle while the increase
in dry mass is counterbalanced by an increase in nuclear volume.

To analyze the dataset with DryMass, the pixel size, imaging wavelength, and medium
index must be known. Normally, it is then sufficient to simply run the following command
in a terminal or shell:

dm_convert data.zip
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Here, data.zip is a file containing the raw hologram data. An interactive prompt asks the
user to enter the parameters mentioned above. DryMass then creates the configuration
file drymass.cfg in the newly generated directory data.zip_dm (the results directory). In
addition, DryMass generates a multi-page TIF file containing the phase and amplitude
data extracted from the raw data.

To extract and analyze individual phase objects, a different command is used:

dm_extract roi data.zip

This command generates an additional multi-page TIF file containing the background-
corrected ROI data. Modifications of the configuration file may be necessary and can
be optimized manually in an iterative manner by re-executing the above command. In
this example, we set the approximate specimen size to 7 um to reflect the small diame-
ter of cell nuclei. For hologram analysis, we chose a smooth disk filter, which results in an
unbiased frequency spectrum when compared to a Gaussian filter and does not exhibit
ringing artifacts when compared to a plain disk filter. To detect the isolated nuclei in the
extracted phase data, we employed a custom thresholding method: Since cell nuclei have
a low RI and the nucleoli within have a comparatively high RI, conventional threshold-
ing algorithms either cannot detect the nuclei reliably or segment the nucleoli only. Our
thresholding method copes with this situation by disregarding the top 1% of the phase
data and then taking the threshold at 20% of the resulting maximum phase relative to
the mean of the original phase data. This thresholding method is implemented in Dry-
Mass and can be set via threshold=dm-nuclei in the [roi] section of the configuration. For
background correction, we increased the ROI border padding to 35 pixels and employed
a second order polynomial fit to correct for the skewed background phase commonly
observed in digital holographic microscopy.

Finally, to extract the RI and radius of the isolated nuclei, we chose the image fit-
ting method using the systematically corrected Rytov approximation as described by
Miiller et al. [8]. To perform the sphere fit for each ROI found in the previous step, the
command

dm_analyze sphere data.zip

can be used. This command creates a multi-page TIF file containing summary plots of
the fits performed. An exemplary plot is shown in Fig. 2. Please note that for each analy-
sis step, DryMass also creates a hierarchical data format (HDF5) file, which in the case of
the sphere analysis also contain the fitted phase data. The changes we made to the con-
figuration file are available as supplement 1 (HL60nuc.cfg). This DryMass configuration
file can be directly used to perform the entire analysis from scratch (skipping all of the

commands mentioned above) using:
dm_analyze sphere -p HL60nuc.cfg data.zip

Since some of the nuclei were not detected correctly and some of the fits failed, we man-
ually checked each image and sorted out individual ROIs. This can easily be done by
loading the TIF files produced by DryMass (see Fig. 2 for an exemplary image) in Fiji
and noting down the corresponding ROI identifiers in the variable ignore data in the [roi/
configuration section. The above command must be executed again for the changes to
take effect. The ROIs we excluded from the analysis are given in supplement 2. A full
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Fig. 2 Exemplary visualization of the fitting results for a representative nucleus (stage G1, run #1) given in the
stacked TIF file sphere_image_rytov-sc_images.tif as produced by DryMass. The title of the image contains the
dataset identifier (63e2b), the image number (9), the ROl identifier (4), and the fitting method (rytov-sc: the
systematically-corrected Rytov approximation [8]). The first column shows (a) the background-corrected
phase image and (d) the intensity image of the isolated nucleus. The second column shows (b) the fitted
phase and (e) the resulting intensity (all-one for rytov-sc). The fitted radius is shown as a dashed circle in A, B,
D, and E. The last column shows (e) the fit residuals and (f) a line plot through the fitted center of the isolated
nucleus for the original and the fitted phase data

description of the configuration file is available online in the DryMass documentation
(see project home page below).

Overall, a total of 1079 isolated nuclei where analyzed (In the original study, 367 nuclei
were analyzed manually). The results are shown in Fig. 3 and confirm the results found
previously (see figure 5 in [10]). Figure 3a shows the mean dry mass of the two mea-
surement runs for each cell cycle stage. Although the absolute nuclear dry mass varies
in-between the two measurement runs, it increases as the cell progresses through the
cell cycle. Figures 3b and ¢ summarize the fitted parameters of the two measurement
runs. Overall, the RI exhibits only a small change, but the radius of isolated nuclei clearly
increases from stage G1 to G2. Notably, it appears as if the nuclei in stage S exhibit two
populations. This observation was not made in the original analysis [10] which did not
employ phase model fitting, but used the (less accurate) contour data to determine the
radius of isolated nuclei (data not shown). Furthermore, the RI values presented here
are considerably lower than those in the original analysis, which is a result of the more
accurate analysis with the Rytov approximation as well.

The example presented above emphasizes the great potential a simple and cost-effective
2D phase analysis may have. Recent developments in RI tomography have enabled
detailed 3D analyses with subcellular resolution (e.g. [16]). However, this great level of
detail is not always necessary, for instance when comparing statistical distributions where
only the mean values of RI, radius, or dry mass are relevant. Furthermore, a simple 2D
phase analysis is not only easier to realize experimentally, but it is now also possible to
automate the entire analysis pipeline with DryMass.

The present manuscript showcased only one possible use case of DryMass. The
software is capable of exactly characterizing homogeneous hydrogel beads or liquid
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Fig. 3 Dry mass, refractive index, and radius of isolated HL60 cell nuclei during the cell cycle. (@) The box
plots show the mean dry mass of the nuclei throughout the cell cycle stages and for two independent
measurement runs. Whiskers indicate the standard deviation. The number of isolated nuclei analyzed is
displayed in white for each box. (b,€) The contour plots show the fit parameter distribution (phase image fit
based on the Rytov approximation; see main text for details) of the two measurement runs. The color code is
identical to that in (a). The contour lines follow a multivariate kernel density estimate and correspond to the
95th, 75th, 50th, and 25th percentiles (from dark to bright). The crosses indicate the mean value of each
distribution

droplets. Conversely, it can be used to verify the homogeneity of artificially produced
beads or to verify the optical alignment of QPI microscopes using well-known reference
beads. Since DryMass also keeps track of the temporal information, it can be used for
time-lapse experiments. Undoubtedly, with the capability to reuse configuration data,
DryMass is well-suited for the analysis of arbitrarily large datasets.

Data analysis with DryMass is fully automated and only needs minimal supervision.
Manual intervention is required when ROIs are not detected correctly. This may happen,
for instance, when the analyzed objects are densely packed or when imaging artifacts
occur. In such case, the user may choose to revisit the parameters for ROI detection via
the configuration file or, if necessary, to manually exclude false ROIs from the analysis. In
any event, the entire analysis pipeline is recorded in the configuration file and is executed
in an automated manner, making it fully reproducible and less biased than methods that
involve manual analysis steps.

Additional analysis methods or extensions can easily be incorporated into DryMass. For
instance, important enhancements, such as the thresholding method for HL60 cell nuclei
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as described here, can easily be included in future releases of DryMass. Another example
is the introduction of the Rytov approximation for a more accurate analysis of spherical
objects [8]. For the example presented here, this novelty led to more accurate results (with
the overall message remaining unchanged). The modular design of DryMass makes it
straightforward to improve the software and to create new analysis pipelines based on
DryMass. We welcome bug reports or feature requests and endorse external contributions
via pull requests to the DryMass repository at https://github.com/RI-imaging/DryMass.

Conclusions

DryMass is a command-line tool for the analysis and visualization of QPI data. The data
analysis can be controlled via a simple configuration file and thus does not require any
prior programming knowledge. The implemented QPI analysis pipelines were designed
to be transparent (visualization of intermediate steps), user-friendly (sensible default
paramters and comprehensive documentation), and interoperable with other analy-
sis software. Furthermore, the modular design makes it straight-forward to support
additional file formats, enhance individual analysis steps, or implement novel analysis
pipelines.

Availability and requirements

Project name: DryMass

Project home page: https://drymass.readthedocs.io
Operating system: any (no restriction)
Programming language: Python

Other requirements: Python>3.6, pip>19.0
License: MIT

Any restrictions to use by non-academics: none

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/512859-020-03553-y.

Additional file 1: Title of data: DryMass analysis recipe for HLE0 cell nuclei. Description of data: This is a DryMass
configuration file, containing all information necessary to exactly reproduce the data analysis demonstrated in the
present work.

Additional file 2: Title of data: Regions of interest removed from the final analysis. Description of data: This file
contains the identifiers of the regions of interest (ROI) that were not used in the data analysis for figure 3 in the
manuscript. Copy and replace the respective line in the [roi] section of the corresponding DryMass configuration file
(drymass.cfg).
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2D: two-dimensional; 3D: three-dimensional; HDF5: hierarchical data format (library version 5); QPI: quantitative phase
imaging; RI: refractive index; ROI: region of interest; TIF: tagged image file
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