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Abstract

To date, there is no licensed treatment or approved vaccine to combat the coronavirus disease of 2019 (COVID-19), and the
number of new cases and mortality multiplies every day. Therefore, it is essential to develop an effective treatment strategy to
control the virus spread and prevent the disease. Here, we summarized the therapeutic approaches that are used to treat this
infection. Although it seems that antiviral drugs are effective in improving clinical manifestation, there is no definite treatment
protocol. Lymphocytopenia, excessive inflammation, and cytokine storm followed by acute respiratory distress syndrome are
still unsolved issues causing the severity of this disease. Therefore, immune response modulation and inflammation management
can be considered as an essential step. There is no doubt that more studies are required to clarify immunopathogenesis and
immune response; however, new therapeutic approaches including mesenchymal stromal cell and immune cell therapy showed
inspiring results.

Keywords COVID-19 - Coronavirus - Therapeutic approaches - Severe acute respiratory syndrome - Acute respiratory distress

syndrome - Cell therapy

Introduction

Corona viruses are a large family of enveloped, positive-sense
RNA viruses that have the largest RNA genome (rage from 26
to 32 kb) [1, 2]. Several coronavirus epidemics such as Severe
Acute Respiratory Syndrome Coronavirus (SARS-CoV) and
Middle East Respiratory Syndrome Coronavirus (MERS-
CoV) have occurred during the past years [2, 3]. At the end
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of 2019, a novel coronavirus infection named coronavirus
disease of 2019 (COVID-19) was first identified in Wuhan,
China [4-7]. Due to the fast transmission, it is reported in
almost all countries and has become a global crisis.
Therefore, COVID-19 pandemic becomes an international
threat for human health and economy [1, 8].

COVID-19 spreads fast among people and the mortality
rate is controversial; however, it was less than 2% in some
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studies. The main manifestations of the disease include fever,
dry caught, headache, shortness of breath, pneumonia, acute
respiratory distress syndrome (ARDS), septic shock, and even
death [3, 11, 12].

The genome sequencing of this virus revealed more than
82% identity to SARS-CoV [9]. Analysis indicated that the
binding affinity of virus S protein to the angiotensin-
converting enzyme 2 (ACE2) receptor on human alveolar ep-
ithelial cells is higher compared with the SARS-CoV [10].

Since SARS-CoV-2 is a new pathogen, little is known
about it. Moreover, there is no licensed treatment or approved
vaccine and the number of new cases and mortality multiplies
daily [8]. Therefore, it is vital to develop an effective treatment
strategy to control the virus spread and prevent the disease [1,
11].

Immunopathogenesis of COVID-19

Although the pathogenesis of this disease has not been fully
understood, it seems that the host immune responses play an
important role. Aberrant host immune response causes lung
tissue damage, reduced lung capacity, and finally respiratory
failure [4]. Studies indicated that dendritic cells (DCs) and
macrophages are playing crucial role in innate immune re-
sponses [12, 13]. These cells produce inflammatory cytokines
and chemokines including TNF-«, IL-12, IL-6, IFNvy, and IL-
8, and monocyte chemoattractant protein (MCP-1), macro-
phage colony-stimulating factor (GM-CSF), and
granulocyte-colony-stimulating factor (G-CSF) [6, 14].
These inflammatory responses may lead to systemic inflam-
mation [6, 7, 13, 14].

Adoptive immunity plays a major role in viral infections
[15]. Cytotoxic T cells (CD8+ T cells) are the main T cell
subsets that destroy infected cells [16]. Therefore, the number
of these cells is one of the major factors for clearance of the
viral infection [17, 18]. Preliminarily, it was indicated that the
number of total T cells, CD4+ and CD8+ T cells, reduced
significantly in COVID-19 patients. This decrease was more
intensive in ICU admitted patients compared with that in non-
ICU admitted individuals [19]. It is also reported that T cell
clonal exhaustion occurred during the infection and the ex-
pression of certain T cell surface markers like PD1 (pro-
grammed cell death protein 1) and TIM-3 (T cell immuno-
globulin and mucin domain-containing molecule-3) markedly
increased [19, 20]. The cytokine storm occurred in response to
SARS-CoV-2 infection that led to increased expression of
NKG2A (natural-killer group 2, member A) on cytotoxic T
cells (CTLs) and NK cells. This upregulation suppressed CTL
and NK function and cytokine secretion [19, 21, 22]. It is
suggested that inflammatory cytokines, TNF-o and IL-6,
mainly originated from apoptotic monocytes (CD14+CD16+
) and macrophages and induced T CD4+ and T CD8+ cells
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[19, 23]. These excessive inflammatory responses might result
in respiratory system pathology and dysfunction [23].

Perhaps it takes many years to achieve a specific and ef-
fective therapeutic protocol, efficient vaccine, or suitable med-
icine for the treatment of COVID-19. There is a wide range of
existing and current treatment strategies categorized into anti-
viral drugs, immunotherapy protocols including convalescent
serum and monoclonal antibodies, cell-based therapies,
hydroxychloroquine, Chinese medicine, and steroids (just
for patients who suffer from ARDS) [24]. A schematic figure
(Fig. 1) summarized the novel therapeutic approaches in treat-
ment of COVID-19 patients. Moreover, there are a growing
number of clinical trials registered for the treatment of
COVID-19 (Table 1).

Passive immunotherapy
Convalescent serum

Antibody injection to the patients and susceptible people pro-
vides rapid immunity to treat or prevent the disease [25-27].
Past experiences from SARS and MERS viral infections indi-
cated that passive immunotherapy could be a potential treat-
ment strategy for the patients [27-29]. It is considered that
passive immunotherapy could also be beneficial in SARS-
CoV-2 infection [30]. Extracting neutralizing antibodies from
recovered individuals with high titer of antibodies in sera and
transfusion to infected patient could deactivate the virus.
However, neutralization activity of these antibodies is not ful-
ly understood. It has been showed that neutralizing antibodies
are not long lasting and only the recently recovered patients
are suitable candidates [31]. It has also been reported that the
neutralizing antibody titers vary among the patients and elder-
ly patients had higher antibody titer compared with young
recovered individuals [32]. It is supposed that convalescent
serum administration may induce phagocytosis and
antibody-mediated cellular cytotoxicity [25, 27]. One impor-
tant implications for using convalescent serum is the risk for
antibody-dependent enhancement (ADE) [33]. It is supposed
that these neutralizing antibodies may enhance other viral in-
fections [34]. Another major limitation of this strategy is do-
nor shortage. However, by increasing the number of recovered
individuals, this limitation would be solved [25].

Monoclonal antibodies

It has been shown that monoclonal antibodies (mAbs) could
be an effective tool for the treatment of viral infectious dis-
eases [35-37]. Different techniques have been used to develop
mAbs including phage display library, hybridoma, single B
cell isolation, and transgenic mice [37]. Various monoclonal
antibodies developed against MERS and SARS infections in-
clude m396, 80R, and S3.1 against SARS and LCA60 for the
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Fig. 1 Novel therapeutic strategies for treatment of clinical complications
of COVID-19. (a) Passive immunotherapy using serum of immunized
individuals. (b) Monoclonal antibodies can directly target virus particles.
Also, mAbs can be used to eliminate crucial cytokines in progression of
inflammation, e.g., IL-6. (¢) The effector cells in adoptive immunothera-
py can be used to specifically target infected cells and enhance anti-viral

treatment of MERS disease [29, 37—41]. These mAbs limited
virus replication and facilitated lung recovery in animal
models [42—44]. S protein is also the most immunogenic de-
terminant of coronaviruses [40]. Several mAbs target
receptor-binding domain (RBD) in the virus spike (S) glyco-
protein and inhibit the virus to invade the host cell [9]. It is
reported that mAbs against SARS-CoV-1 could cross react
with SARS-CoV-2 [45]. It is indicated in the preprint that
mAb 1A9 that targets the S protein of SARS-CoV-1 could
interact with SARS-CoV-2 [46].

Tocilizumab is a humanized monoclonal antibody against
IL-6 receptor cytokine. Tocilizumab targets both membrane
and soluble-bound IL-6 receptors. This mAb is used for the
treatment of COVID-19 patients [47]. It is shown that the IL-6
level is considerably high in severe COVID-19 cases.
Treatment of 21 severe COVID-19 cases with tocilizamab
indicated that using this monoclonal antibody is an effective
treatment and well tolerated in these patients. In the preprinted
study, tocilizumab caused body temperature and CRP
returned to the normal levels and improved lung function

immune responses. (d) Mesenchymal stromal cells are key players in
immunomodulation of severe immune response. The paracrine effect of
these cells can tune down immune reaction. (e) Using nanostructures for
drug delivery in different medical applications. (f) Recombinant ACE2
receptor protein in soluble form attaches to viral particles. (g) Antiviral
medicines can prohibit viral proliferation

[48]. There are also many registered clinical trials on efficien-
cy and safety of tocilizumab for the treatment of COVID-19
(Table 1).

VEGF is one of the main mediators of vascular permeabil-
ity and progression of ARDS. Bevacizumab is a humanized
monoclonal antibody that targets VEGF and employed in a
phase II/III clinical trial for the treatment of COVID-19 pa-
tients (NCT04275414).

As described earlier, during the SARS-CoV-2 infection,
exhaustion of T and NK cells happens. In order to restore
these cells, using monoclonal antibodies to block the PD-1/
PD-L1 and TIM3 pathways may have beneficial therapeutic
effects as well [49].

Kinase inhibitors
It is suggested that an inhibitor of Janus kinase (JAK) called
baricitinib could prevent the entry of SARS-CoV-2 into the

host cells and also inhibit the inflammation [50, 51]. Cyclin G-
associated kinase (GAK) and AP2-associated protein kinase 1
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(AAK1) are endocytosis regulators. Baricitinib might inhibit
SARS COV-2 entry by disruption of these regulators. Other
JAK inhibitors such as fedratinib and ruxolitinib are also can-
didates for decreasing inflammatory cytokines in COVID-19
individuals [51]. Although JAK inhibitors have wide effects
and can inhibit cytokine secretion such as IFN-«, more studies
need to confirm their safety and efficiency [14].

Adoptive immunotherapy

Adoptive transfer of antigen-specific T cells has been devel-
oped for the treatment of cancers, autoimmunity, and viral
infections including hepatitis B virus (HBV), hepatitis C virus
(HCV), and cytomegalovirus (CMV) [24-26]. In this ap-
proach, anti-viral-specific T cell clones are generated, expand-
ed, and purified in vitro [26]. It is shown that engineered
SARS-specific CD8+ T cells had normal activity and function
and may be a potential therapeutic tool for SARS infection
[27]. Recently, it has been indicated that the number of CD8+
T cells decreased dramatically and the ratio of CD4+/CD8+ T
cells increased during the SARS-CoV-2 infection. This de-
crease in the number of CD8+ lymphocytes has been correlat-
ed with the disease severity and clinical outcome [52]. It has
also indicated that CD8+ T cells and the CD4+/CD8+ ratio
decreased and increased respectively after the treatment. It
seems that CD8+ T cells play an important role in COVID-
19 and could be a potential biomarker of the disease [52, 53].
Due to these findings, adoptive transfer of COVID-19-specific
CD8+ T cells may be an effective treatment strategy [28]. NK
cells are innate immune cells that play a crucial role in host
immune response after viral infections [54]. Preprinted studies
indicated that NK cell population decreased remarkably dur-
ing the disease [55, 56]. It has been indicated that during
SARS-CoV-2 infection, increased amount of IL-6 inflamma-
tory cytokine had negative correlation with the number of NK
cells [52]. Thus, it is assumed that adoptive transfer of NK
cells may have an effective therapeutic approach. Therefore,
recently, an ongoing phase I clinical trial has been registered
in which NK cell therapy in combination with conventional
therapies for COVID-19 patients was proposed
(NCT04280224). Altogether, it seems that cell-mediated im-
munity plays an important role in host immune response
against SARS-CoV-2 [57].

Mesenchymal stromal cells

Persistence of inflammatory cytokines in COVID-19 patients
leads to lung dysfunction and even death. Using corticoste-
roids for dampening cytokine storm suppresses immune Sys-
tem and makes delay in virus elimination [58].
Mesenchymal stromal cells (MSCs) are characterized with
their immunomodulatory and anti-inflammatory properties
[59, 60]. Because of these characteristics, they have been used
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for the treatment of various inflammatory and autoimmune
disorders including diabetes, graft-versus-host disease
(GvHD), and multiple sclerosis [59]. It is proven that MSCs
and MSC extracellular vesicle (EV) infusion have beneficial
effects in the treatment of virus-induced pneumonia by reduc-
ing the lung inflammation [61, 62]. EVs are stable, could
distribute to the lungs, and have the same immunomodulatory
and anti-inflammatory properties of parental MSCs [63].
MSCs decreased inflammatory cytokines and chemokines in
animal model of avian influenza. They could also prevent
immune cell infiltration into the lungs and improved alveolar
injury [61]. Recently, there are studies evaluating allogenic
MSCs and MSC-derived exosomes as potential therapeutic
tools for reducing inflammation and improving COVID-19-
related ARDS [47, 64]. It is indicated that adoptive transfer of
allogenic umbilical cord mesenchymal stem cells (UC-MSCs)
could inhibit inflammation and attenuate symptoms in patients
with advanced COVID-19. Four days after cell therapy, pa-
tients are disconnected from the ventilator. UC-MSC therapy
also elevated T cell numbers and boosted the immune system
[58]. Administration of ACE negative MSCs to seven
COVID-19 patients improved clinical symptoms with no side
effects just 2 days after injection. The number of inflammatory
cytokine secreting cells reduced significantly. Regulatory DC
subpopulation (CD14+CD11¢c+CD11b™%) elevated. The
levels of IL-10 anti-inflammatory cytokine increased while
TNF-o decreased [65]. Infusion of MSCs also induced lung
tissue regeneration by modulating inflammatory microenvi-
ronment in COVID-19 patients [66]. There are several ongo-
ing clinical trials using different sources of MSCs for the
treatment of COVID-19 (Table 1). Taken together, MSC ther-
apy could inhibit excessive immune system reaction, modu-
late inflammatory milieu, and prevent virus-mediated cyto-
kine storm [65]. It seems that MSC therapy could be a novel
therapeutic approach for the treatment of COVID-19 [64].

Nanomedicine

LIF (leukemia inhibitory factor) is one of the important cyto-
kines to protect the respiratory system and promote lung ho-
meostasis during viral infections [67, 68]. This cytokine mod-
ulates severe adverse events during ARDS [67]. Up to now,
there is no study investigating the role of LIF in SARS-CoV-2
infection. However, in respiratory syncytial virus (RSV) mod-
el, it has been shown that overexpression of LIF enhanced the
recovery of lungs during pneumonia. Neutralization of the LIF
induced alveolar damage and chemokine secretion [69].
According to these data, LIF might also have protective ef-
fects in SARS-CoV-2 infection.

LIF nanoparticles (LIF-NPs) indicated clinical benefits in
experimental autoimmune encephalomyelitis (EAE) animal
models. LIF-NPs possessed immunomodulatory effects and
increased self-tolerance in animal models for ARDS [70].
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These inhalable NPs could be a novel strategy for lung tissue
repair and cytokine storm inhibition [64]. Activation and po-
larization of macrophages play a major role in the initiation
and intensity of inflammation, respectively, in ALI/ARDS.
Peptide-coated gold nanoparticles could alleviate lung inflam-
mation through inducing M1-to-M2 macrophage phenotype
transition and increasing the anti-inflammatory cytokine (IL-
10) in the lung of acute lung injury (ALI) mice [71].

Decoy biomolecules

As mentioned above, SARS-COV-2 attaches to ACE2 recep-
tor to invade the host cells, particularly alveolar epithelial
cells. SARS-CoV-2 spike protein has strong affinity to
ACE2 receptor [72—74]. This attachment may enhance viral
entry and replication [74, 75]. It is assumed that targeting this
interaction and using soluble form of ACE2 could be a poten-
tial therapeutic approach [76]. Studies on COVID-19 indicat-
ed that ACE2 injection could competitively neutralize the vi-
rus and improve lung injury [77]. Recently, a novel therapeu-
tic approach was developed based on soluble ACE2 interac-
tion with the virus. It has been shown that human recombinant
soluble ACE2 (hrsACE2) could inhibit SARS-CoV-2 from
entering the host cells, decreasing the viral load in a dose-
dependent manner. This molecule inhibits viral infection of
human blood vessels and kidney organoids. These data indi-
cated that hrsACE2 was effective in early-stage patients [78].
Since the inhibitory effects of hrsACE2 were not complete, it
is preliminarily considered that the virus may use a second
receptor or co-factor such as transmembrane protease serine
2 (TMPRSS2) [79]. In this regard, TMPRSS?2 inhibitor was
approved for clinical application in COVID-19 to inhibit the
entry of virus [74].

Antiviral drugs

Remdesivir is claimed to be an option to treat COVID-19 [80].
It is a nucleoside analog and has broad-spectrum activities
against RNA viruses such as MERS; remdesivir can effective-
ly diminish the viral load in lung tissue infected with MERS-
CoV and improve lung function in animal model [81]. The
in vitro study revealed that, compared with ribavirin or
favipiravir, remdesivir in combination with emetine showed
the inhibition in viral yield that might achieve 64.9% [82].
Regarding its clinical application, Grein et al. reported the
good improvement among severe COVID-19 cases (68%, n
= 53) after treatment with remdesivir [83]. It also showed
promising results in the treatment of a patient with COVID-
19 in the USA [84]. However, its efficacy is doubted because,
e.g., in a randomized, double-blind, placebo-controlled, mul-
ticenter trial, Wang et al. reported no statistically significant
clinical benefits [85].

Chloroquine is a drug used to treat malaria [86]. It is taught
that chloroquine has a great potential to treat COVID-19 [87];
chloroquine can prevent pH-dependent steps of the replication
of several viruses such as SARS-CoV [88]. Additionally,
chloroquine has immunomodulatory effects by suppressing
the production/release of TNF-o and IL-6. It also might inter-
fere with viral infection and replication, as an autophagy in-
hibitor [89]. In preprinted paper, Chen et al. showed that
hydroxychloroquine use can shorten the time to clinical recov-
ery in COVID-19 patients [90]. Gautret et al. claimed that the
treatment of COVID-19 patients with hydroxychloroquine
(chloroquine analog) caused the significant viral load
reduction/disappearance [91]. However, other researchers
did not reveal the same effect. Moreover, high-dose chloro-
quine diphosphate in combination with azithromycin or
oseltamivir resulted in high rates of death and adverse cardiac
events [92]. Clinicians also cautioned that the increased con-
sumption of chloroquine and hydroxychloroquine can lead to
their shortage that might create a problem for people suffering
systemic lupus erythematosus, other rheumatological disor-
ders, primary Sjogren syndrome, dermatological diseases,
and antiphospholipid syndrome [93].

It has been previously reported that the protease inhib-
itors such as lopinavir and ritonavir, used to treat infection
with human immunodeficiency virus (HIV) [94], could
improve the outcome of MERS-CoV- [95] and SARS-
CoV [96]-infected patients. Initially, lopinavir and ritona-
vir were hypothesized to inhibit the 3-chymotrypsin-like
protease of SARS and MERS, and seemed to be associ-
ated with improved outcomes of patients with SARS in a
non-randomized open-label trial. In a case report from
Korea, it has been shown that the viral loads of a
SARS-CoV-2 significantly decreased after lopinavir/
ritonavir treatment [97]. However, it is controversial
whether HIV protease inhibitors could effectively inhibit
the 3-chymotrypsin-like and papain-like proteases of
SARS-CoV-2. HIV protease belongs to the aspartic pro-
tease family, whereas the two coronavirus proteases are
from the cysteine protease family. Moreover, HIV prote-
ase inhibitors were specifically optimized to fit the C2
symmetry in the catalytic site of the HIV protease dimer;
however, this C2-symmetric pocket is absent in coronavi-
rus proteases. If HIV protease inhibitors alter host path-
ways to indirectly interfere with coronavirus infections,
their potency remains a concern [98].

Favipiravir is a new type of RNA-dependent RNA poly-
merase inhibitor. Additionally, it is capable of blocking the
replication of other RNA viruses [99]. Favipiravir is converted
into an active phosphoribosylated form (favipiravir-RTP) in
cells and is recognized as a substrate by viral RNA polymer-
ase, therefore inhibiting RNA polymerase activity [100].
Favipiravir may have potential antiviral action on SARS-
CoV-2, which is a RNA virus. In a clinical trial on favipiravir

@ Springer



800

J Mol Med (2020) 98:789-803

for the treatment of COVID-19, the preliminary results indi-
cated that favipiravir had more potent antiviral action than
lopinavir/ritonavir [101].

BCG vaccine

Bacillus Calmette-Guérin (BCG; weakened strain of
Mpycobacterium bovis) vaccination could have protective ef-
fects against COVID-19 infection. There are several mecha-
nisms that ensure BCG-induced non-specific protection and
are actively studied. BCG and viral antigens have similar mo-
lecular structure; so after vaccination, B and T cells can rec-
ognize both pathogen types. Moreover, BCG vaccination re-
sults in the so-called trained immunity—epigenetic
reprogramming of innate immune cell types [102].
Monocytes of vaccinated individuals had higher expression
of different surface markers of activation and synthesis of
cytokines (IL-1{3, IL-6, IFNy, and TNF) in response to infec-
tion than those of non-vaccinated ones; so non-
mycobacterium pathogens, e.g., staphylococci, yellow fever
virus, and influenza, can be removed faster [103]. In several
preprints, it is claimed that BCG vaccination program could
reduce the number of SARS-CoV-2-infected individuals and
their mortality [104, 105]. However, the WHO does not rec-
ommend BCG vaccination to prevent COVID-19 because
there is still no direct evidence that it can protect against
SARS-CoV-2 infection, and all related clinical trials are on-
going [106].

Corticosteroids

Corticosteroids are well-known with their immunosuppres-
sive activity, which are essential to stop or delay the progres-
sion of the pneumonia and have been proved to be beneficial
for the treatment of ARDS [107]. Additionally, corticosteroids
have an anti-inflammatory effect to diminish systemic inflam-
mation, reduce exudative fluid in the lung tissue, and inhibit
further diffused alveolar damage, which can relieve hypox-
emia which can protect the lungs effectively and prevent fur-
ther progression of respiratory insufficiency [108]. The use of
corticosteroids for the treatment of COVID-19 is controversial
due to their negative impact on anti-viral immune responses
[109]. However, it has been shown that corticosteroids could
improve mortality in severe COVID-19 patients with systemic
hyperinflammation [110]. It is supposed that patient selection,
half-life, formulation, and dosage of the corticosteroids are
important factors determining the clinical outcome. In this
regard, a preprinted study indicated that in severe COVID-
19 patients with ARDS early short-term and low dose of cor-
ticosteroid (methylprednisolone) improved clinical manifesta-
tion and long lesions [111].
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Conclusion

Although it seems that antiviral drugs are effective in improv-
ing clinical manifestation and controlling the SARS-CoV-2
infection, until now, there is no definite treatment protocol
for this novel virus infection. Lymphocytopenia alongside
with excessive inflammation and cytokine storm followed
by ARDS in these patients are still unsolved problems that
cause severity of the disease [14]. Therefore, it is considered
that immune response modulation and inflammation manage-
ment are essential steps. Based on the abovementioned, more
studies needed to be conducted on immunopathogenesis and
immune response during the SARS-CoV-2 infection. In this
regard, new therapeutic approaches including mesenchymal
stromal cell therapy and immune cell therapy showed prom-
ising results.
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