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ABSTRACT We consider the problem of interpreting negative maximum likelihood estimates of heritability that sometimes arise from
popular statistical models of additive genetic variation. These may result from random noise acting on estimates of genuinely positive
heritability, but we argue that they may also arise from misspecification of the standard additive mechanism that is supposed to justify
the statistical procedure. Researchers should be open to the possibility that negative heritability estimates could reflect a real physical
feature of the biological process from which the data were sampled.
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THE past decade has seen a proliferation of statistical meth-
ods for estimating heritability from large genome-wide

genetic data sets. In particular, genomic-relatedness-based re-
stricted maximum-likelihood (GREML; Visscher et al. 2006;
Yang et al. 2010) has emerged as a standard tool in statistical
genetics, along with related procedures such as Haseman–
Elston (HE) and LD score regression (Bulik-Sullivan et al. 2015
preprint;Wu and Sankararaman2018) that are constructed on
the same statistical foundation. In many settings, these ap-
proaches can be invaluable for demonstrating the existence
and approximate level of heritability by aggregating small ge-
netic effects distributed across the genome. This is practically
useful for complex traits given that mapping most causal ge-
netic variants remains difficult (Manolio et al. 2009).

Despite its widespread and often indiscriminate applica-
tion, GREML depends on very strong assumptions that are
impossible to verify in detail, are not believed to be literally
true, and are rarely subjected to any formal diagnostic or even
qualitative critical consideration. In particular, the underlying
statistical model assumes strictly additive causal genetic

effects. Even if the additive model is accepted as a sensible
foundation, nongenetic effectsmay reshape the appearanceof
genetic influences. In this paper we take an instrumental
approach toGREML and related procedures: heritabilitymea-
sures arise from these calculations regardless of any connec-
tion to the additivemodel, and theseneed tobe interpreted. In
particular, we focus on a phenomenon that is typically dis-
missed as impossible or meaningless: negative heritability.

While the heritability parameter in the GREML model is
mathematically compelled to be nonnegative, we explain
how a broader view—not a new view, but one close to the
root conception of heritability—implies that values of heri-
tability meaningfully extend into the negative range, and
hence that negative estimates of heritability can be taken
seriously. It is only the extraneous (and not strictly credible)
assumptions of GREML’s motivating model that would ex-
clude negative estimates. We buttress this intuition with a
biologically plausible story linked to a mathematically co-
herent model, where negative heritability estimates arising
from the standard GREML procedure are meaningful indi-
cators of causal biological processes.

Operational Definitions of Heritability

As Albert Jacquard pointed out decades ago (Jacquard 1983),
the narrow-sense heritability of a phenotype, commonly
denoted h2, has two distinct conventional meanings:
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1. The proportion of total variance attributable to additive
genetic effects.

2. The slope of the linear regression of children’s phenotypes
on the mean parental phenotypes.

Both meanings appear in the earliest works to give a
quantitative operational definition toheritability, in particular
Lush (1940). For more on the history of the notion of herita-
bility, see Bell (1977).

The nexus between these two meanings is an additive
model, where genetic and nongenetic effects are independent
and sum together to produce the phenotype. When we have
general genetic relatedness (rather than parental relations
withfixed 50%expected relatedness), heritability is analogous
to a regression coefficient that relates phenotypic similarity to
genotypic similarity.

We are particularly concerned herewith the interpretation
of negative estimates of heritability. The appearance of neg-
ative estimates for a parameter of crucial scientific interest
that is prima facie positive is unusual, as has often been noted.
Negative estimates of the heritability parameter are often
dismissed as a mathematical abstraction, values in a range
that arises purely formally and that may only be reported for
formal purposes. For example, Johnston et al. (2010) obtain a
point estimate of20.109 for the heritability of horn length in
Soay sheep, which is immediately dismissed with the state-
ment that “it is impossible to have negative heritability.” The
inference is drawn that the true heritability must actually be a
small positive number toward the upper end of the confi-
dence interval.

One case where negative heritability estimates have been
used inpractice is for estimating theaverageheritability across
a group of exchangeable phenotypicmeasurements, like gene
expression. In this case, negative estimates are reportedunder
the presumption that this yields a complete ensemble of
estimates that are collectively unbiased. We illustrate one
such analysis using RNA-sequencing data from the Genetic
European Variation in Health and Disease (GEUVADIS) con-
sortium (Lappalainen et al. 2013). One significant contribu-
tion of our work is our calculation of the bias imparted to the
heritability estimate when negative estimates are suppressed,
helping to elucidate the conditions under which this bias may
be presumed negligible.

Our fundamental argument is that negative heritability
estimates need to be taken more seriously. The confusion, we
contend, comes from the overlap between statistical models
that operationalize the two different interpretations of heri-
tability described above. The argument for rejecting negative
estimates appears compelling just so long as the focus is only
on the additive random-effectsmodel in Equation 1 that often
motivates definition 1 of heritability. Variance is nonnegative,
hence the ratio of two variances cannot be negative.

While “variance attributable to additive genetic effects” is
a basic element of the genetic model in (1), it has no place in
the statistical algorithms commonly used to fit the model to
real data, including GREML. As our later discussion of (1) will

make clear, the GREML estimate of heritability is defined to
serve as an estimator of a ratio of two variances, where the
numerator is a component of the denominator. The ratio is
constrained to lie between 0 and 1, so the estimate seems
intended to lie between 0 and 1. However, as we shall ex-
plain, the GREML estimate is realized under a more general
multivariate normal model, where the natural constraint on
h2 is weaker: h2 $21=ðmaxfs2i g2 1Þ, where ðsiÞni¼1 are the
singular values of the genotype matrix. If the phenotypes
were derived from summing independent additive genetic
effects, then the true h2 would have to be nonnegative, but
that must be recognized as an additional assumption that
would need to be scientifically warranted, as it is not com-
pelled on strictly logical or mathematical grounds.

This discordance between common practice and formal
probability theory manifests itself in two distinct roles in
modern genetic analyses. First, alleles can exercise actual
causal influences on traits, or can tag causal genetic influences
through linkage, and such contributions cannot generate
negative heritability. However, second, alleles also serve as
markers of family and ancestry, markers of relatedness among
individuals that may structure historical, behavioral, social,
and environmental influences on traits.We argue that there is
no reason to assume nonnegative heritability in this latter,
more general class of models. As attention expands beyond
basic additive genetic models to more complex characteriza-
tions of genome-wide genetic architecture, it is important to
understand the behavior of h2 beyond its intuitive definition
grounded in classical quantitative genetics.

The meaning of negative heritability

Heritability is not a natural,measurable quantity. Heritability is
defined only by its role in a model, and the model is inevitably
misspecified. The normally distributed random genetic effects
havenophysical reality,and function insteadprimarily to justify
amodelof convenience. Ingeneral, theheritabilityof a traitwill
vary across populations, measurement devices, choice of scale,
and countless environmental factors.

The term “negative heritability” appeared for the first
time, so far as we are aware, in a paper by J. B. S. Haldane,
written around 1960, but first published posthumously in
1996 (Haldane 1996). Haldane described how the maternal-
effect trait of neonatal jaundice could be said to display nega-
tive heritability: Because the disease results from maternal
antibodies against a fetal antigen, it will not arise in a fetus
whose mother herself experienced neonatal jaundice (we
thank Jonathan Marchini for pointing out this reference to
us). Haldane then calculates a negative heritability from a
model that is specialized to the peculiar inheritance structure
of this condition.

Once we have accepted the GREML multivariate normal
framework, whichwewill define precisely, wemust admit the
possibility that the joint distribution of phenotypes and ge-
notypes in a given data set may be best described by an h2

value that is negative. The question this raises is, can such a
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negative heritability estimate be biologically sensible? Theher-
itability parameter may be identified, in a precise way, with a
correlation between genotypic similarity and phenotypic sim-
ilarity. Themodel invites us to select an estimate of h2 that best
matches the genetic covariance between individuals to the
similarity in their traits. Even if we want heritability to be
interpreted as a partition of variance, in the sense of definition
1, this will not always be correct. Allwehave access to from the
data are an estimate of something like heritability in the sense
of definition 2. High heritability means that individuals with
similar genotypes tend to have similar trait values. Zero heri-
tability means that genotypes tell us nothing about similarities
in trait values. Negative heritability, then, could be a perfectly
sensible description of data where individuals with similar
genotypes tend to have more discordant traits than random
pairs. In the special case of twin studies, for example, negative
heritability simply means that monozygotic twins are less phe-
notypically similar than dizygotic twins.

Saying that a given set of data might be best described by a
negative heritability estimate goes only part of the way toward
answeringthebiologicalplausibilityofnegative trueheritability.
We cannot assume that a small sample of data pairs that are
known (for scientific reasons) to be positively correlated will
indeed yield a positive empirical correlation. Negative herita-
bility could arise in the sameway, as a spurious effect of random
fluctuations in data from a system with zero or small positive
heritability. The essential question is, could there be a plausible
stochastic mechanism that would produce genuine negative
heritability, sothatas theamountofdatageneratedbythemodel
goes to infinity, the estimate converges to a negative quantity?

GREMLisanoptimizationprocedurederivedunderaGaussian
model, with a heritability parameter that makes good math-
ematical sense in the negative range. It would be perfectly
straightforward to generate data from thismodel, but it might
be difficult to interpret such a procedure in biologicallymean-
ingful terms.Weseek, then, anegativeheritabilitymechanism
that has a similar form to the random-genetic-effects model,
but is misspecified in away that suggests a plausible story.We
propose one such mechanism, based on the phenomenon of
“phenotypic repulsion.” Aswith Haldane’s model (whichmay
be understood as a special case), this mechanism has impli-
cations that may be implausible or even obviously false in a
given real data set. It involves interactions between individ-
uals that are not primarily genetic. However, the point we
want to suggest is that as an abstract physical mechanism that
could be producing our data it is as mathematically plausible
as the linear random-effects model that undergirds GREML.
This is only one example of such a mechanism, and the
conclusion we advocate is that negative heritability must be
acknowledged as a genuine phenomenon for genotype–
phenotype data, even if it may be reasonably excluded by
the context of some studies. Speculation about the biological
settings that could yield negative heritability can also prove
an effective guide to understanding when negative heritabil-
ity estimates may be reliably truncated or ignored.

Our position parallels the advice on “interpretation of neg-
ative components of variance” propounded in a very different
context by J. A. Nelder in 1954 (Nelder 1954). Nelder con-
sidered the problem of ANOVA testing on split-plot experi-
ments, where the error for main plots was found to be smaller
than the error for subplots, producing a negative estimate for
the residual subplot error. As we have done here, Nelder
showed how the apparently negative “variance component”
could arise either from sampling error on a positive variance
component or from a misspecification of the model, where
correlations between measurements have been neglected.
“In any particular situation,” Nelder concludes, “it is the stat-
istician’s responsibility to decide which model is more
appropriate.”

The GREML model as linear regression

For the remainder of this paper we follow Steinsaltz et al.
(2018) in using the letter c to represent heritability, to avoid
the confusing implication built into the nomenclature h2 that
this parameter formally cannot be negative. Our derivations
draw on the analysis in that paper, which also discusses crit-
icisms of GREML, such as those in Krishna Kumar et al.
(2016).

Underlying GREML, as well as alternative approaches to
heritability estimation such as LD score andHE regression, is a
random-effectsmodel. Our basic object is a data set consisting
of an n 3 p matrix Z, taken to represent the genotypes of n
individuals, measured at p different loci. There is a vector y,
representing a scalar trait observation for each of the n indi-
viduals. The raw genotypes are counts of alleles taking the
values 0, 1, or 2, but the genotype matrix is centered to have
mean zero in each column and normalized to have mean
square over the whole matrix equal to 1. (Often columns
are further standardized to variance 1, but we do not make
this assumption.) The model posits the existence of a random
vector u 2 ℝp of genetic influences from the individual SNPs
such that

y ¼ Zuþ e: (1)

The vectorsu and e are assumed to have independent Gaussian
entries with zero means and equal variances. The variances
are determined by two parameters, which are to be esti-
mated: u represents the precision (reciprocal variance) of
the nongenetic noise and c represents the heritability, enter-
ing the model as the ratio of genetic variance to total vari-
ance. We also use the notation f ¼ c=ð12cÞ in some places,
for concision.

The GREML model has been formulated as a random-
effects model, but it is equivalent to a multivariate normal
model corresponding to the covariance matrix

C2 :¼ u21
0 ðf0   Aþ InÞ; (2)

where A ¼ ZZ*=p is the genetic relatedness matrix (GRM),
and u0 and C0 are the true values of the parameters. In this
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section we describe how the model may also be understood
as a linear regression model.

The initial GCTA paper (Yang et al. 2010) spelled out an
analogy between GCTA and a different form of linear regres-
sion, regressing squared trait differences between pairs of
individuals on corresponding off-diagonal elements of the
GRM, with nðn2 1Þ=2 points and correlated errors. This is
essentially HE regression, which has recently become a pop-
ular heritability estimation method due to its speed and ro-
bustness to some degree of model misspecification (Chen
2014; Golan et al. 2014). Instead, we draw an approximate
comparison between GREML and regression with n points
and independent errors.

Let Z=
ffiffiffi
p

p ¼ U   diagðsiÞV* be the singular-value decompo-
sition of Z=

ffiffiffi
p

p
, where X* indicates the transpose of a matrix

X. We rotate the observations to diagonalize the covariance
matrix, obtaining

z :¼ U*y:

Because the columns of Z have zero means, one of the singu-
lar values is zero and the corresponding column of U is pro-
portional to a vector with all elements equal to 1. Thus every
other column of U sums to zero (because its columns are
orthogonal), and hence each column defines a contrast be-
tween weighted groupings of individuals.

The elements of z are independent centered normal random
variables, and zi has variance ð1þ ðc0=ð12c0ÞÞs2i Þ=u0. It fol-
lows that z2i u0ð12c0Þ=ð1þ c0ðs2i 2 1ÞÞ are independent chi-
square random variables each on one degree of freedom and

log  z2i ¼ 2 logðu0Þ2 logð12c0Þ þ log
�
1þ c0

�
s2i 2 1

��
þ ei*;

where the ei* are distributed as the logarithms of the indepen-
dent chi-square variables, long-tailed to the left, with
mean � 21.302, SD � 2.266, and skewness � 21.643.

The mean of s2i is 1, and when c0ðs2i 2 1Þ are uniformly
small we may approximate our equation by

log  z2i � 2 logðu0Þ2 ½c0 þ logð12c0Þ� þ c0s
2
i þ ei*: (3)

Here,C0 takes on the role of the true slope for a regression of
log  z2i on s2i . It can be estimated by least squares, bearing
in mind that the skew of the ei* affects SE of estimation.

Practitioners instead usually estimate c via (restricted)
maximum likelihood. Obviously, the maximum likelihood es-
timate (MLE) is optimal when the underlying model assump-
tions hold. However, formally characterizing the behavior of
the MLE is nontrivial, especially under nonindependent geno-
types (cf. Jiang et al. 2016) or sparse, nonpolygenic architec-
tures. For this reason, most theoretical mixed model analyses
focus on regression-based approaches with simple analytic so-
lutions, like HE regression or the eigenvalue regression in (3).
In contrast, we derived an analytic approximation to the
GREML estimate in Steinsaltz et al. (2018), which we used

to demonstrate several important theoretical properties. First,
the MLE has a small negative bias on the order of 1/n, which is
negligible in many settings. Second, if only k SNPs are causal,
the MLE additionally suffers a nonrandom, nonasymptotically
vanishing bias of order 1/k. Finally, population structure tends
to make GREML more efficient, at the cost of exposure to
potential confounding. In this paper, we apply the same ana-
lytical framework to a different question: Are there plausible
forms of model misspecification that yield truly negative MLE
heritability?

Formally, Steinsaltz et al. (2018) shows how the
MLEs can be expressed in terms of quantities
wiðcÞ :¼ ð12cÞ=ð1þ cðs2i 2 1ÞÞ and viðcÞ :¼ wiðcÞz2i : They
satisfy

0 ¼ Cov
�
w
�
ĉ
�
; v
�
ĉ
��

û ¼ n
.Xn

i¼1

vi
�
ĉ
�

(4)

Here, Cov is the empirical covariance of vector ele-
ments, an operation on vectors defined by
Covðx; yÞ :¼ n21Pðxi 2 �xÞðyi 2 �yÞ, and Var is similarly de-
fined. We also set t2ðcÞ ¼ c22   VarðwðcÞÞ, and omit the de-
pendence on c when helpful. When C0 is not too close to
1 and the variance of the squared singular values is small, the
least-squares and MLEs are close to each other.

Suppose, however, that the true variances of the zi include
a phenotypic contribution that varies inversely with the sin-
gular values of Z. In the phenotypic repulsion model to be
specified shortly, to first order in s2i 2 1 the true slope is
ðc0 2a2c2

0Þ=ð12c0Þ2 as a function of a repulsion parame-
ter a. When a exceeds C0, the true slope turns negative and
estimated slopes correctly include negative values. From this
regression-based perspective, there is no reason prima facie
to assume heritability must be nonnegative.

Bias from rejecting negative heritability estimates

The common practice of truncating the maximum likelihood
calculation to nonnegative values introduces bias that is well-
known andmay be serious for samples of moderate size, both
when estimates are truncated at zero and when negative
estimates are simply suppressed.

The problem of estimating the probability of negative
heritability estimates was studied 50 years ago by Gill and
Jensen (1968). We add here a few comments about how the
framework described in Steinsaltz et al. (2018) may contrib-
ute to understanding the magnitude of the negative herita-
bility estimate problem that arises from sampling noise in
settings where the true heritability is understood to be non-
negative, hence where truncation at zero (or rejection of
negative estimates) is warranted and guarantees improved
estimates in, say, mean squared error. We gain a rough idea of
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the effect of rejecting negative estimates from a normal approx-
imation ĉ2c0 � s0 X; where s0 ¼ ffiffiffi

2
p ð12c0Þ=

ffiffiffiffiffiffiffiffiffi
n  t2

p
and X

has standard normal distribution [see Steinsaltz et al. (2018) for
derivation]. Here,�means that the difference between the left-
hand and right-hand sides is bounded (in probability) by a
constant times ðnt2Þ21, where the constant may depend onC0.

Truncating estimates where ĉ,0 by setting them equal to
0 imposes the truncation bias

E
�
ĉ
�
2c0 � 2c0 þ E ðc0 þ s0XÞ1 X. 2

c0

s0

� �" #

¼ 2c0F 2
c0

s0

	 

þ s0

Z N

2c0=s0

x
e2x2=2ffiffiffiffiffiffi

2p
p dx

¼ 2c0F 2
c0

s0

	 

þ s0ffiffiffiffiffiffi

2p
p e2c2

0=2s2
0 ;

(5)

whereF is the standard normal cumulative distribution func-
tion (c.d.f.) Note that by standard inequalities for F (Feller
1968) this is positive and bounded by s3

0ffiffiffiffiffi
2p

p
c2
0
e2c2

0=2s
2
0 when

C0 . 0. This will be very small when nt2 is even moderately
large compared with 1=c2

0, which is to be expected except
when C0 is zero, or nearly zero. When C0 = 0 we have a
nonnegligible positive bias of approximately the same size as
the SE s0, and will thus be highly relevant for any statistical
tests of the null hypothesis C0 = 0.

Truncation at zero will at least be recognizable, whereas
tacit rejection of negative estimates may leave no trace due to
publication bias. If we have an ensemble of ĉ estimates that
have been selected to be nonnegative, the average has a
conditioning bias that is identical to the expression in (5)
divided by Fðc0=s0Þ :¼ PfX. 2c0=s0g. In the special case
C0 = 0, this doubles the bias relative to truncation.

The phenotypic repulsion model

The notion that new species force their way into phenotypic
gaps in the existing ecological community was termed by
Darwin as the “principle of divergence” and has been further
developed by ecologists under the name “phenotypic repul-
sion” or “phylogenetic repulsion” (Webb et al. 2002). Species
living in close proximity, which are often closely related phy-
logenetically, coexist by separating from each other pheno-
typically. A similar kind of competitive exclusion has been
proposed (Sulloway 2011) on the individual level to explain
observed patterns of developmental variation within human
families. Social niche formation within families has also been
proposed by Conley et al. (2013), without an explicit math-
ematical model, as the basis for an evaluation of gene–
environment interaction based on misclassified twin types.

Phenotypic repulsion has been more commonly described
on the level of species differences thanwithin species. Cardillo
(2012) has described negative correlation between phyloge-
netic distance and flowering period difference among fire-
killed but not fire-resistant Banksia species in southwestern
Australia. A study of Florida oak species found that many

traits differed more, between closely related species, than
would be expected by chance (Cavender-Bares et al. 2004).
We have not found quantitative studies of phenotypic repul-
sion between individuals within a species, but it seems plau-
sible that local competition for sunlight combined with
range-limited seed dispersion would yield an effective phe-
notypic repulsion between related plants in a forest setting.
In human populations anecdotal evidence suggests that
monozygotic twins seek to differentiate themselves from
their sibling, which may be a stronger force than genetic
similarity for traits with a negligible causal genetic basis.

While our focus is on biologically meaningful phenotypic
repulsion, as in the examples above, the repulsion may also
result frompure experimental artifacts. For example, inmega-
analyses across institutes or laboratories, similarity between
analytical or experimental procedures may correlate nega-
tively with similarity in genetic ancestry. This induces repul-
sion in the sense that genetic similarity predicts experimental
dissimilarity. Nonetheless, in this situation the resulting re-
pulsion is not connected to a biologically meaningful pro-
cess and, rather, would disappear under proper experimental
protocols and/or correcting for potential technical con-
founders like laboratory and batch.

Themodelweproposehere is novel, somaybe criticized for
failing to provide an example of negative heritability in an
established ecological model already in use. We would argue
that this model does describe a phenomenon of interest in
ecology that has not yet been formalized, and so either the
behavior it describes should be taken seriously, or it should
provoke a better model of the phenomenon.

We propose a model of phenotypic repulsion where indi-
viduals that aremost closely related genetically strive to avoid
each other phenotypically. This starts with a model like the
GREML model described above, where individuals have phe-
notypesdeterminedbynormally distributedeffect sizes acting
on their individual genotypes.We introduce a penalty term to
the probability, of the form

exp

(
2au0

 X
1# i, j#n

Aijyi yj þ 1
2

X
1# i#n

ðAii 2 1Þy2i
!)

;

where Aij ¼ 1
p

Pp
k¼1ZikZjk is the (i, j) entry of the GRM, and

a# 1 is a parametermeasuring the extent towhich genetically
similar individuals are pushed to have differing phenotypes. Of
course, this setup could be generalized to higher-dimensional
phenotypes, with yiyj replaced by an arbitrary inner product.
The penalty term is inspired by the statistical mechanics mod-
els that have been applied to geographically structured popu-
lation dynamics, such as the Contact Process (Liggett 1999),
used to model the spread of epidemics.

Combining this specification with (2), we see that the
phenotypes will now be multivariate normal with mean zero
and covariance matrix

u21
0

h
ðf0Aþ InÞ21 þ aðA2InÞ

i21
: (6)

On Negative Heritability 347



It follows that the transformed phenotypes z = U* y are in-
dependent normal with mean zero and variance

VarðziÞ ¼ u21
0

1þ f0s2i
12aþ as2i ð12f0Þ þ af0s

4
i
:

Suppose the data have come from this phenotypic–repulsion
model, and we analyze them using the misspecified random-
effects model. While it is always possible to get ĉ, 0 because
of random fluctuations, we would like to show that the her-
itability implied by this model is “really” negative, in the
sense that the distribution of ĉ converges to a strictly nega-
tive value as the number of subjects goes to infinity. This will
follow from Proposition 1 (below), whenwe take the function
f in that result to be

fðtÞ ¼ 1þ f0t
12aþ að12f0Þt þ af0t2

; (7)

as long as f0 ,a, since

f 9ðtÞ ¼ f02að1þ f0tÞ2
ð12aþ að12f0Þt þ af0t2Þ2

;

which is less than 0 for all t $ 0.
In other words, to the extent that we say that heritability is

defined by the linear model, heritability can be negative if
genotypes and phenotypes interact through the environment
in a manner like the phenotypic repulsion model. We prove
that this is the case—that the heritability to which the esti-
mates converge with increasing population size is negative—
in the following Proposition, which is proved in Appendix A.

Proposition 1: Suppose we have a family of n3 n GRMs An for
n/N, with eigenvalues s2n;i, with

s2max :¼ lim  sup
n/N

max
1# i#n

s2n;i ,N; (8)

sup
n

n21
X

s212
n;i ,N;   and (9)

1,C2 þ 1 :¼ lim inf
n/N

n21
Xn
i¼1

s4n;i: (10)

We also write C3 :¼ lim  supn/N   n21Pn
i¼1s

4
n;i.

Let U(n) be the corresponding eigenvector matrix. For each n
we have a multivariate normal random vector y(n) with covari-
ance matrix UðnÞdiagð f ðs2n;iÞÞUðnÞ*, where f : Rþ/R

þ is a pos-
itive, strictly decreasing, continuously differentiable function.
We assume that

C1 :¼ inf
0# t# s2max

ð2f 9ðtÞÞ.0: (11)

(We maintain the normalization assumption that
P

is
2
n;i ¼ n.)

Let ĉn be the MLE for an observation y(n), calculated from
the random-effects model with GRM An. Then defining

d :¼ 1
6

C3f ð0Þ
C1C2

þ s2max21
	 
21

; (12)

ĉ is bounded above in probability by the strictly negative
quantity 2d as n/N. That is, the probability of ĉn . 2 d

goes to 0 as n/N.
Although we focus on GREML in this paper, two other

prominent approaches to estimate heritability in unrelated
samples are HE regression and LD score regression. In Ap-
pendix B, we show that HE regression also converges to a
negative heritability estimate under the phenotypic repulsion
model.While it is simpler to analyzeHE, the proof is similar to
the proof of Proposition 1: in both cases the key fact is that
larger eigenvalues of the kinship matrix are actually associ-
ated with lower phenotypic variance under phenotypic re-
pulsion (Equation A3), which is the essence of negative
heritability. Moreover, based on established approximate
equivalences between HE regression and LD score regression
(Bulik-Sullivan 2015; Zhou 2017), LD score regression likely
also converges to negative heritability estimates under phe-
notypic repulsion.

Broadly, these and other estimates of heritability may be
understood as approximations for the same parameter as in
the GREML model, and hence may be expected to target a
negative value for large n, as the various estimates converge.
The key point is that none of these procedures is directly
estimating a variance component. Each of them is estimating
a covariance, and it is easy to see how these covariances can
be negative.

Finally,wenote that theordinary asymptotic SE forGREML
are no longer accurate under the phenotypic repulsionmodel.
In Appendix C, we derive the asymptotic behavior of the SE
under repulsionusing the sandwich estimator.However, there
seems to be no simple interpretation of the relationship be-
tween the genotype distribution and the SE as there is for the
well-specified model.

Transcriptome-wide gene expression heritability

Weconcludewith a brief example that illustrates the practical
significance of negative heritability estimates. Although neg-
ative estimates of heritability for a single fixed trait are rarely
published, it is common to include negative estimates when
profiling heritability across a large number of roughly ex-
changeable traits (Yang et al. 2013;Wright et al. 2014; Bhatia
et al. 2015 preprint; Finucane et al. 2015; Zhu et al. 2015;
Gusev et al. 2016; Gymrek et al. 2016; Hernandez et al.
2019). Characterizing such -omic-wide heritability is com-
mon in functional genomics, where high-throughput mea-
surements of some genomic feature are made at thousands
of genomic positions. The most common measurement is
(RNA) gene expression, but other prominent examples in-
clude methylation levels, chromatin accessibility, expression
response to stimuli, or protein expression.

We analyzed an RNA-sequencing data set from the
GEUVADIS consortium (Lappalainen et al. 2013).We aligned
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the raw transcript reads from the European individuals to the
reference hg19 transcriptome with the RSEM software pack-
age (Li and Dewey 2011). We removed perfectly correlated
genes and genes with low expression mean or variance.

For each i in 375 people and j in 4154 genes, we define the
phenotype yðjÞi as logð1þ nijÞ where nij is the number of ob-
served RNA reads for gene j measured in person i. We cen-
tered and scaled each gene to mean zero and variance one.

Separately for each gene y(j), we estimate its cis-heritabil-
ity, that is, the heritability in expression levels explained by
SNPs near to the gene.We do so by fitting our standardmodel
(1) with a genotype matrix Z(j) whose columns correspond to
SNPs located up to 1 megabase upstream or downstream of
gene j’s transcription start site. Restricting to SNPs near a
gene is a common way to enrich for causal SNPs. We discard
rare SNPs, which we define as SNPs with minor allele fre-
quencies below 2.5%. Finally, we remove genes with fewer
than 1000 corresponding SNPs, which excludes 35 genes.

The column dimensions (p) of the cis genotype matrices
range from 1000 to 20,523 across genes, with a mean of
3027 and median of 2754. We fit each ĉ with the maximum
likelihood routine from Hernandez et al. (2019), yielding
4119 values reflecting systematic variation across genes in
their cis-heritability, within the limits imposed by sampling
error.

The distribution of the resulting transcriptome-wide cis-
heritability estimates is shown in Figure 1 in the form of a
smoothed histogram. Clearly, many of the estimates are neg-
ative. The mode is close to zero. Removing negative herita-
bility estimates increases the transcriptome-wide average
heritability from 6.2 to 9.0%, and truncating at zero increases
it from 6.2 to 6.6%.

We repeated the analysis after adjusting for unobserved
confounding estimated by 10 probabilistic estimation of ex-
pression residuals factors (Stegle et al. 2010). This practice,
or variants based on gene expression principal components
(Alter et al. 2000) or surrogate variables (Leek and Storey
2007), is standard practice in functional genomics (Stegle
et al. 2012). The common aim of these approaches is to ap-
proximate latent confounding variation, like experimental
batch effects, which can often be partially captured by dimen-
sionality reduction. The confounder estimates are treated as
known covariates and residualized from the phenotype and
genotype data.

Correcting for 10 probabilistic estimation of expression
residuals factors increases many of the ĉ values and reduces
the incidence of negative ĉ as shown in the green curve in
Figure 1. However, it is clear that many negative estimates
remain. Negative estimates are bound to be part of the pic-
ture wheneverC0 is small and estimated with low precision,
both conditions that will likely hold in most functional geno-
mic analyses for at least the near future.

On the question of whether some negative estimates may
bemeaningful reflections of nongenetic phenotypic structure,
it is best to keep an open mind.

Data availability

GEUVADIS data were obtained from the GEUVADIS consor-
tium. We fit GREML heritability estimates using the LMM
implementation in the singher R package (Hernandez et al.
2019), available at https://github.com/andywdahl/SingHer.

Discussion

Negative heritability estimates are common results of stan-
dard statistical procedures. Linear random-effects models of
genetic causality make negative heritability impossible, in-
viting us to treat the negative parameter estimates as spurious
results produced by statistical noise that should be truncated
back to zero, the closest meaningful value. However, these
generative linear models are not physically validated: it is not
in any sense literally true that phenotypes are produced by
additive contributions of alleles and independent noise. We
have shown here that other biologically plausible stochastic
models would indeed generate data in the negative range of
heritability parameters. These aremisspecified from the point
of view of the linear random-effects models, but they are
correctly specified from the point of view of the Gaussian
likelihood that is used to estimate the heritability parameter.
Our phenotypic repulsion example demonstrates that truly
negative heritability can convey a biological fact when indi-
viduals tend to differentiate themselves from their relatives.
Meaningfully negative heritability should not always be ruled
out.

There has long been some dispute about whether these
“spurious” negative estimates ought to be included for the
sake of unbiasedness, so that the whole ensemble of esti-
mates from multiple studies might be properly centered.

Figure 1 Transcriptome-wide density of gene expression cis-heritability
estimates in the GEUVADIS data. For each gene, we estimate using
GREML and a kinship based only on nearby SNPs.
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Weuse an approximation for the GREML heritability estimate
that we previously derived (Steinsaltz et al. 2018) to formally
support this argument as well as to quantify the bias from
truncation.

More importantly, we also suggest that the problem should
be considered with more nuance: The very possibility of
negative heritability depends strongly on the nature of the
trait, of the population, and of the sampling procedure. True,
asymptotically persistent negative heritability requires strong
nonlinear contributions, increasingly strong as the negative
parameter approaches the true negative lower bound. This
suggests that itmaybe reasonable to replace truncationat zero
by an appropriate shrinkage of negative estimates toward
zero, perhaps based on context. This would affect not only
negative point estimates, but also confidence intervals cen-
tered at small positive values. In a Bayesian framework this
would correspond, of course, to assigning heritability a prior
distribution with small, nonzero weight on negative values.
Statistical models of convenience, such as the variance-
component model that underlies GREML and many other
heritability estimation approaches, should never drive
substantive scientific conclusions, such as declaring that
negative heritability is impossible.
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Appendix A: Proof of Proposition 1

We wish to show that lim  supn/N   ĉn # 2 d. This will follow if every increasing sequence ni has a subsequence nij such that
lim  supj/N   ĉnij

# 2 d. Define the empirical measure sn :¼Pn
i¼1dsn;i, where dx represents unit point mass at x. Since the space

of probability measures on ½0; sup  sn;i� is compact, given an increasing sequence ni we may find a subsequence nij such that ŝnij
converges weakly to a measure s on ½0; smax�. Thus, it will suffice to prove the proposition under the assumption that
sn�����!n/N

ws.
We follow the general principle, enunciated by White (1982), that the MLE for the misspecified model will converge to the

closest fit in the Kullback–Leibler sense. In other words, the parameter estimate converges in probability to the location of the
maximum expected value of the log-likelihood function. The arguments of White (1982) do not apply directly here, because
we are not sampling identically and independently (i.i.d.) random variables; however, by Equation (22) of Steinsaltz et al.
(2018), the score function may be written

1
2�vðcÞ � Gnðc; xÞ :¼ 1

2n�vðcÞ
Xn
i¼1

an;iðcÞXi; (A1)

for 21=ðs2max 2 1Þ,c# 1, where (Xi) are i.i.d. x2
1 random variables and

an;iðcÞ :¼ a
�
s2n;i;c



:¼
f
�
s2n;i


ð12cÞ
�
12cþ cs2n;i


 

s2n;i
12cþ cs2n;i

2
1
n

Xn
j¼1

s2n;j
12cþ cs2n;j

!

¼
f
�
s2n;i


12cþ cs2n;i

 
s2n;i 21

12cþ cs2n;i
2 n21

Xn
j¼1

s2n;j2 1

12cþ cs2n;j

!
:

Since ðmaxfsn9;i2 : 1# i# n9;   n9$ ng21Þ21
. d for n sufficiently large, we may assume without loss of generality that this

holds for all n, perhaps after truncating an initial portion of the sequence. It follows that an;iðcÞ is defined for any c 2 ½2d; 1�,
and by (9) that

n21
Xn
i¼1

��an;iðcÞ�� and n21
Xn
i¼1

���a9n;iðcÞ���

are both uniformly bounded over all n, and c 2 ½2d; 1�. By a variant of the central result of Yuan (1997), Gnðc; xÞ converges
uniformly in c to the function that is the limit of the expected values

GðcÞ ¼ lim
n/N

Gnðc; 1Þ ¼ Covs
f
�
S2
�

12cþ cS2
;

S2 2 1
12cþ cS2

 !
:

The covariance is understood here to be with respect to S having distribution s. [This result does not satisfy exactly the
conditions of Yuan (1997), so we provide a proof of the result, stated as Lemma 1.]

We need to show that

GðcÞ, 0 for c$2 d: (A2)

From this it will follow that infc2½2d;1�   GðcÞ, 0, hence

lim sup
n/N

Pfĉn $ 2 dg#

lim sup
n/N

P

(
sup

c2½2d;1�
jGnðcÞ2GðcÞj$ inf

c2½2d;1�
jGðcÞj

)
¼ 0:
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It remains to verify (A2). We note that the definition of d makes
C1C2
d

$ 3fð0ÞC3
�
1þ c

�
S221

��23

for any c 2 ½2d; 0� and S 2 ½0; smax�. Since f ðtÞ þ C1t is a decreasing function of t, for t 2 ½0; s2max�, we have by Harris’s inequality
(Boucheron et al. 2013, Theorem 2.15)

Gð0Þ ¼ Covs
�
f
�
S2
�þ C1S2; S2

�
2C1Vars

�
S2
�

# 2C1C2

, 0: (A3)

We also have
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For c 2 ½2d; 0� and 0# S# smax we have �
12cþ cS2

�23
#
�
12d

�
s2max21

��23
:

Since f is decreasing, we have for 2d#c#0 the bound
jG9ðcÞj# 3f ð0ÞC3

�
12d

�
s2max21

��23

#
C1C2
d

:

This proves that GðcÞ, 0 for 2d#c# 0.
For c 2 ½0; 1� fðtÞ=ð12cþ ctÞ is a decreasing function of t, and t=ð12cþ ctÞ is increasing, so (again by Harris’s In-

equality) GðcÞ, 0, which completes the proof.
We now prove the key uniform convergence result for Gn. The range of s and of c in this result may be rescaled arbitrarily, so

for convenience of notation we will denote these by [0,1].

Lemma 1.
Let a : ½0; 1�2/ℝ be a continuous function such that for all s 2 ð0; 1�

Ks :¼ sup
c2½0;1�

���aðs;cÞ���  and  Ls :¼ sup
c 6¼c92½0;1�

���aðs;c9Þ2 aðs;cÞ
������c2c9

���
are both finite. Let sn ¼ n21Pn

i¼1dsn;i be atomic probability measures on ð0; 1� concentrated at n points 0, sn;1 #⋯# sn;n #1.We
suppose that the measures sn converge weakly to a probability measure s ¼ sN on ð0; s*Þ, and that there is a d 2 ð0; 1� such that

K2
*
:¼ sup

n

Z �
1 ∨KS

2
dsnðSÞ,N  and (A4)

L2
*
:¼ sup

n

Z �
1 ∨ LS

2
dsnðSÞ,N: (A5)
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Let fXn;i : 1# i# n;   n 2 ℕg be independent random variables with E½Xn;i� ¼ 1 and V :¼ sup  VarðXn;iÞ,N. Define for c 2 ð0; 1�

GnðcÞ :¼ n21
Xn
i¼1

Xn;ia
�
sn;i;c

�
:

Then Gn converges uniformly in probability to the function G : /ℝ defined by

GðcÞ :¼
Z

aðs;cÞdsðsÞ:

That is,

supfjGðcÞ2GnðcÞj : c 2 ½0; 1�g�����!n/N
P0:

The condition (A4)may beweakened by replacing ð1þ KSÞ2 by ð1þ KSÞ1þd, for d positive, and equivalently for LS, as long as we
have correspondingly stronger moment bounds on Xn,i. We have stated it in this form for simplicity.

Proof. The sublinearity of the Lipschitz constant implies that the Lipschitz constant of Gn is a random variable bounded by

LðnÞ :¼ n21
Xn
i¼1

Xn;iLsn;i:

We have

E

h
LðnÞ
i
¼
Z

LSdsnðSÞ# L*

by the Cauchy–Schwarz Inequality. Also by the Cauchy–Schwarz Inequality, we have

Var
�
LðnÞ

¼ n22

Xn
i¼1

L2sn;iVar
�
Xn;i
�

#
VL2

*
n

:

Thus ℙfLipðGnÞ# 2L*g /
n/N

1.
We have

sup
c2½0;1�

���GðcÞ2GnðcÞ
���# sup

c2½0;1�

�����n21
Xn
i¼1

�
Xn;i 2 1

�
a
�
sn;i;c

������
þ sup

c2½0;1�

����
Z

aðs;cÞdsnðsÞ2
Z

aðs;cÞdsðsÞ
����: (A6)

Fix any positive integer k. Because of the bounds on the Lipschitz constants of G and Gn, the second term is bounded by
3L*
k

þ max
1# j# k

����
Z

aðs; j=kÞdsnðsÞ2
Z

aðs; j=kÞdsnðsÞ
����: (A7)

Because of the assumed weak convergence sn/s, this converges to 3L*=k as n/N for each fixed k. Since k is arbitrary, the
second term in fact converges to 0 as n/N.
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To deal with the first termwe use the standardmethod of chaining (cf. Pollard 1990, chapter 3): we define finite skeletons of
[0,1], subsets D0 ⊂ D1 ⊂⋯ with jDjj ¼ 2j, defined by

Dj :¼ 2ℓþ 1
2jþ1 : ℓ ¼ 0;⋯; 2j2 1

� �
:

We then proceed by approximating any point c 2 ½0; 1� by a sequence of nearest neighbors cj 2 Dj, so that jcj 2cj21j ¼ 22j21.
Since for any continuous function f

fðcÞ ¼ f ð0Þ þ
XN
j¼1

fðcjÞ2 fðcj21Þ
� 

;

we have the basic chaining inequality

sup
c2½0;1�

�����n21
Xn
i¼1

�
Xn;i 2 1

�
a
�
sn;i;c

������# n21=2

 
R0 þ

XN
j¼1

Rj

!
; (A8)

where
R0 :¼ n21=2

�����X
n

i¼1

�
Xn;i 2 1

�
a
�
sn;i; 1=2

������;

Rj :¼ max
cj2Dj

n21=2

�����X
n

i¼1

�
Xn;i 2 1

�
a
�
sn;i;cj

�
2

Xn
i¼1

�
Xn;i 2 1

�
a
�
sn;i;cj21

������:
We have

E
�
R20
�
# n21V

Xn
i¼1

a
�
s2n;i; 0

2
#K2

*
V:

Now note that

E

"�����n21=2
Xn
i¼1

�
Xn;i21

��
a
�
sn;i;cj

�
2a
�
sn;i;cj21

�������
2#

# 222j22
E

"
n21

�����X
n

i¼1

�
Xn;i21

�
Lsn;i

�����
2#

# 222j22VL2
*
:

For any collection of random variables j1; . . . ; jm we know that

E max  j2k
h i

#m max  E j2k

h i
:

so for j$ 1

E
�
R2j
�
# 2j � 222j22VL2

*
¼ 22j22VL2

*

By Minkowski’s Inequality, we have

E

h
ðR0 þ⋯þ RkÞ2

i
#

 Xk
j¼0

E
�
R2j
�1=2!2

#
�
K* þ 2L*

�2V:
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So finally, by (A8), we have

E

"
sup

c2½0;1�

�����n21
Xn
i¼1

�
Xn;i21

�
a
�
sn;i;c

������
2#

#

�
K* þ 2L*

�2V
n

: (A9)

Applying Markov’s inequality, and combining this with (A7), completes the proof.

Appendix B: HE Regression Under Phenotypic Repulsion

According to Equation (8) of Wu and Sankararaman (2018) the HE regression estimate of genetic variance may be defined by

ŝ2
g ¼ y*ðA2 InÞy

�
n

trðA2Þ=n2 1
:

where tr (�) is the trace of a matrix. As the heritability is the ratio of ŝ2
g to a positive estimate of phenotypic variance, the

estimated heritability will be negative whenever ŝ2
g is negative.

Under our model, y = UTx is the vector of phenotypes, with U an orthogonal matrix, x a vector of i.i.d. standard normal
random variables, and T the diagonal matrix with

ffiffiffi
ti

p
on the diagonal, with

ti ¼
1þ f0s2i

12aþ as2i ð12f0Þ þ af0s
4
i
:

These ti are the same as f ðs2i Þ, where f is given in Equation 7.
The denominator in the HE estimator of ŝ2

g is n
21Pn

i¼1ðs4i 2 1Þ, which converges to the constant we have called C321. The
numerator is

n21x*T
�
S2 2 In

�
Tx ¼ n21

Xn
i¼1

ti
�
s2i 2 1

�
x2i ;

where S is the diagonal matrix with si on the diagonal. By the same argument as in the proof of Proposition 1, where we apply
Harris’s inequality to show that Covðti; s2i Þ, 0 (Equation A3), we see that lim supn/Nn21Pn

i¼1tiðs2i 2 1Þ, 2C1C2. TheWeak
Law of Large Numbers implies that the numerator remains bounded above (in probability) as n/N by2C1C2. Hence the HE
regression estimate targets a negative number smaller than 2C1C2=C3 for large n.

Appendix C: SE Under Repulsion

Asymptotically correct SE for the standard genotypic random-effects model may be calculated from the Fisher information. We
carry out the calculations here for the parametrization in terms of u andf ¼ c=ð12cÞ, to simplify the notation. In the region of
c negative or close to 0 the variance and covariance of c hardly differs from that of u, and in any case the transformation is
straightforward.

Starting from the transformed phenotypes z ¼ U*y, and using the definitions of vi and wi provided above Equation 4, we
have the log likelihood

ℓðu;fÞ ¼ n
2
log  u2

1
2

X
log
�
1þ fs2i

�
2

u

2

X
viðfÞ:

The first two derivatives may be written as

Dℓðu;fÞ ¼ n
2

1
u
2 hvi

2
�
s2w
�þ u

�
s2vw

�
0
B@

1
CA

and

D2ℓðu;fÞ ¼ 2
n
2

1
u2

�
s2vw

�
�
s2vw

�
2
�
s2w2�þ 2u

�
s4vw2�

0
B@

1
CA;

where hai is used to denote the mean of a sequence (ai). Thus hs4vw2i ¼ n21Pn
i¼1s

4
i viw

2
i .
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We immediately have û ¼ 1=hvi. When samples are drawn from the true model with parameters ðu0;f0Þ we have that
u0viðf0Þ are independent chi-squared random variables with 1 degree of freedom. Thus, the expected Fisher information is

Iðu0;f0Þ ¼
n
2

1
�
u20 ð12 hwiÞ=ðf0u0Þ

ð12 hwiÞ=ðf0u0Þ
D
ð12wÞ2

E.
f2
0

0
@

1
A:

The covariance matrix for ðû; f̂Þ is the inverse

Iðu0;f0Þ21 ¼ 2
nVarðwÞ

u20

D
ðw21Þ2

E
f0u0ðhwi21Þ

f0u0ðhwi2 1Þ f2
0

0
@

1
A:

In particular, the asymptotic variance of f̂ is 2f2
0=ðn  VarðwÞÞ. It follows immediately that the asymptotic variance of ĉ is

2c2
0ð12c0Þ2=ðn  VarðwÞÞ ¼ 2ð12c0Þ2=ðnt2Þ.
For the (misspecified) phenotypic repulsion model three changes are needed: First, the expected value of viðfÞ is no longer

ð1þ f0s2i Þ=ðð1þ fs2i Þu0Þ, but

biðfÞ :¼ u21
0

1þ f0s2i
1þ fs2i

1
12aþ as2i ð12f0Þ þ af0s

4
i
:

Second, the Fisher information is evaluated not at the parameters ðu0;f0Þ;which no longer define the distribution from which
the data are sampled, but rather at the best-fit parameters ðu*;f*

Þ. We still have u* ¼ 1=hvðf
*
Þi, but there is no simple

representation for f
*
, which will solve the equation Covðwðf

*
Þ;bðf

*
ÞÞ ¼ 0. The expected Fisher information is

Iðu*;f*Þ ¼
n
2

hbi2 hbi2 hbwi
f*

hbi2 hbwi
f*

2
D
bð12wÞ2

E
hbif2

*

2

D
ð12wÞ2

E
f2
*

0
BBBBBB@

1
CCCCCCA:

Here and below b and w are evaluated at f
*
.) The inverse is

I
�
u*;f*

21 ¼ 2
n

�
2hbi �

D
bð12wÞ2

E
2hbi2

D
ð12wÞ2

E
2ðhbi2hbwiÞ2

21

3

2
D
bð12wÞ2

E
hbi 2

D
ð12wÞ2

E
f*ðhbwi2 hbiÞ

f*ðhbwi2 hbiÞ f2
*
hbi2

0
BBBB@

1
CCCCA:

The third change is that the asymptotic variance for a misspecified model is not given by I21, but by the sandwich estimator
White (1982) I21VI21, where V is the covariance matrix of Dℓ, which is

V ¼

2
�
b2� �

b2ð12wÞ�
f*hbi

�
b2ð12wÞ�
f*hbi

D
b2ð12wÞ2

E
f2
*
hbi2

0
BBBBBBB@

1
CCCCCCCA
:
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