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Original Article

Abstract: An internal validation substudy compares an imperfect 
measurement of a variable with a gold-standard measurement in a 
subset of the study population. Validation data permit calculation 
of a bias-adjusted estimate, which has the same expected value as 
the association that would have been observed had the gold-stan-
dard measurement been available for the entire study population. 
Existing guidance on optimal sampling for validation substudies 
assumes complete enrollment and follow-up of the target cohort. 
No guidance exists for validation substudy design while cohort data 
are actively being collected. In this article, we use the framework 
of Bayesian monitoring methods to develop an adaptive approach 

to validation study design. This method monitors whether sufficient 
validation data have been collected to meet predefined criteria for 
estimation of the positive and negative predictive values. We dem-
onstrate the utility of this method using the Study of Transition, 
Outcomes and Gender—a cohort study of transgender and gender 
nonconforming people. We demonstrate the method’s ability to de-
termine efficacy (when sufficient validation data have accumulated 
to obtain estimates of the predictive values that fall above a threshold 
value) and futility (when sufficient validation data have accumulated 
to conclude the mismeasured variable is an untenable substitute for 
the gold-standard measurement). This proposed method can be 
applied within the context of any parent epidemiologic study de-
sign and modified to meet alternative criteria given specific study or 
validation study objectives. Our method provides a novel approach 
to effective and efficient estimation of classification parameters as 
validation data accrue.
Keywords: Bayesian methods; Validation study design

(Epidemiology 2020;31: 509–516)

Validation studies compare an imperfect measurement 
of a variable with a gold-standard measurement for 

the same variable, usually in a subset of the parent study 
population. The gold-standard measurement is often too 
expensive or too difficult to obtain for all participants. 
Validation data allow researchers to quantify the degree to 
which the imperfect measurement approximates the gold 
standard, which can be used to inform a bias-adjusted esti-
mate of association in etiologic research or occurrence in 
surveillance research. The importance of validation stud-
ies is widely recognized in epidemiologic research and is 
encouraged by funding agencies, which expect supported 
research to be rigorous and reproducible.1 Historically, 
there has been a lack of validation data available, and some 
journals have encouraged publication of validation study 
results as independent articles.2,3 Little attention, however, 
has been given to effective and efficient designs for vali-
dation substudies.

Existing guidance on optimal sampling of participants 
for a validation substudy, such as the balanced design or a 
simple random sample, pertains only to scenarios in which 
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the complete parent study population has been enrolled and 
follow-up has been completed.3,4 Previous work on designing 
validation substudies has focused on setting a sample size re-
quired to estimate the bias parameters with a prespecified 
degree of precision, given fixed resources available to sup-
port the validation study.5–8 These methods assume that the 
complete parent study population is available for inclusion 
in the validation study. Conversely, given the cost of imple-
menting a validation study, researchers may want to know at 
what point sufficient validation data have been collected to 
meet the objectives of validation. Prospective monitoring of 
validation data as they accrue allows researchers to deter-
mine when sufficient validation data have been collected to 
obtain classification parameters that meet stopping criteria. 
For example, validation data may be collected to decide on 
which side of a threshold value the classification parameters 
fall. The threshold can be used to decide whether the classi-
fication is so poor that the gold-standard measure is needed 
for everyone, or that classification is so good that further 
validation is unnecessary. Further, an adaptive validation 
study could be used to assure sufficient precision of a bias-
adjusted estimate of effect or occurrence, or to detect a time 
trend in the classification parameters. We are unaware of any 
published guidelines for the design and implementation of 
validation substudies in which validation data are longitu-
dinally collected, let alone with prespecified stopping rules 
as opposed to a fixed sample size. This scenario can occur 
within the context of an internal validation substudy with 
any parent epidemiologic study design, whether the parent 
study is ongoing or completed.

Bayesian monitoring techniques have been used in 
clinical trials to estimate and monitor treatment response 
over time and to adapt the study design as data accrue, ei-
ther by stopping the trial early or by modifying treatment 
allocation probabilities.9 Herein, we extend this conceptual 
framework for the development of an adaptive approach 
to validation study design that informs collection of suf-
ficient validation data to estimate the positive predictive 
value (PPV) and negative predictive value (NPV) for clas-
sification of a binary measure, given a predefined stopping 
threshold value. This strategy can be viewed as a sequential 
Bayesian analysis, in which the distributions of the PPV and 
NPV are estimated at specified intervals while the valida-
tion data accrue. For instance, one might choose to estimate 
the PPV and NPV each week, after every 10 participants are 
validated, or after each new validated measurement during 
the validation study. At each time point, one uses the newly 
collected validation data to update the estimates of PPV 
and NPV, to compare the results against the stopping cri-
teria, and to decide whether to collect additional validation 
data. We demonstrate the utility of an adaptive validation 
design under 2 scenarios: (1) to determine efficacy, which 
occurs when sufficient validation data accumulate to yield 
estimates of PPV and NPV that fall above a threshold value 

and (2) to determine when collecting further validation data 
is futile, which occurs when sufficient validation data ac-
cumulate to show that the mismeasured variable lacks face 
validity and the gold standard may need to be measured for 
the complete parent study population.

METHODS

Parent Study Population
As an exemplar, we use the Study of Transition, Out-

comes and Gender (STRONG) cohort.10 The STRONG trans-
gender and gender nonconforming cohort was established to 
understand long-term effects of hormone therapy and surgery 
on gender dysphoria and mental health, as well as cardiovas-
cular disease, metabolic or endocrine disorders, and cancer 
incidence following hormone therapy or gender-affirming 
surgery. Cohort members were identified using International 
Classification of Diseases, 9th Revision (ICD-9) codes and 
keywords related to gender dysphoria from Kaiser Permanente 
health plans in Georgia, Northern California, and Southern 
California. This study was approved through Emory Univer-
sity Institutional Review Board (IRB) (#0006742). Participant 
consent was not required as the study used de-identified data 
obtained from the Kaiser Permanente sites. Each Kaiser Per-
manente site received its own IRB approval.

The index date corresponds to entry into the cohort 
and is the first date with a recorded ICD-9 code or keyword 
reflecting transgender and gender nonconforming status be-
tween 2006 and 2014. Demographic data collected from the 
electronic medical record included the patient’s gender, but 
it was unclear whether a given person’s gender in the medical 
record corresponded to their gender identity or to their sex 
assigned at birth. This misclassification precluded accurate 
assignment of cohort members to transfeminine or transmas-
culine status based on their electronic medical record gender 
code. Therefore, cohort members’ archived medical records—
the gold standard in this study—were reviewed to determine 
sex assigned at birth. All persons included in this aspect of 
the study are transgender, so sex assigned at birth determines 
transfeminine or transmasculine status. Medical records were 
reviewed by keyword search in selected text strings to identify 
additional anatomy- or therapy-related terms that would indi-
cate sex assigned at birth. The STRONG cohort was divided 
into 2 subcohorts, the first including youths (1,331 persons 
<18 years of age) and the second including adults (4,725 per-
sons ≥18 years of age). Persons under 18 years of age with 
a recorded ICD-9 code or keyword reflecting transgender or 
gender nonconforming status are less likely to have initiated 
hormone therapy or gender-affirmation surgery than adults, 
so the electronic medical record’s gender code is more likely 
to reflect their sex assigned at birth than their gender identity.

Exposure Validation
The exposure of interest was sex assigned at birth, which 

must be known to ascertain transfeminine/transmasculine 
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status. Sex assigned at birth was determined from the concur-
rent electronic medical record demographic data and known 
to be misclassified because it could either represent sex 
assigned at birth or concurrent gender. The demographic 
gender variable was validated for members of the youth 
subcohort who were ≥18 years of age as of 1 January 2015  
(n = 535; 40% of the youth subcohort). For demonstration of 
the method, we only included these 535 youth subcohort mem-
bers. Validation of the electronic medical record gender code 
was completed for all STRONG adult subcohort members. 
The validation that was completed in each subcohort allowed 
for comparison of classification parameter estimates between 
our adaptive validation approach and the complete validation 
approach originally used by the STRONG study. Although the 
method we propose is general enough to incorporate a variety 
of possible bias parameters, we focus on the PPV—defined 
as the probability that sex assigned at birth was male among 
those whose electronic medical record gender code was 
male—and NPV—defined as the probability that sex assigned 
at birth was female among those whose electronic medical re-
cord gender code was female. Our assignments of the labels 
“male” and “female” to “positive” and “negative” predictive 
values, respectively, were made at random.

Analytic Strategy
We used gender as recorded on the STRONG cohort’s 

electronic medical record and the validation data on sex 
assigned at birth to calculate the classification parameters 
(PPV and NPV). Although the STRONG cohort had already 
completed enrollment, validation, and follow-up, we con-
ducted the validation substudy as though it was contempora-
neous with parent study data collection for the original cohort, 
and compared the estimates from our method with those 
obtained from analyzing the complete validation data. We or-
dered youth and adult subcohort members chronologically by 
their index date, which allowed selection of participants as 
data would have accrued over time. We applied our Bayesian 
adaptive validation methods to identify the sample size neces-
sary for estimates of PPV and NPV to meet stopping criteria, 
which we define below, as this time passed.

Once cohort members were ordered by index date, we 
used an iterative beta-binomial Bayesian model to update the 
PPV and NPV at regular follow-up intervals.11 We assume, 
before seeing any validation data, that all values of PPV and 
NPV are equally likely, due to the lack of prior information 
on recording gender identity in electronic medical records. In 
settings where a literature exists, it may be used to inform this 
prior distribution by incorporating information from previous 
validation studies. Because the same updating process will be 
completed independently for PPV and NPV within the youth 
or adult subcohorts, we refer to both parameters as θ :

prior :  ~ ,θ beta 1 1( )

This beta distribution is identical to a uniform distri-
bution, with all predictive values having equal probability. 
The data in this validation study correspond to whether the ith 
individual’s gold-standard sex assigned at birth, yi, matched 
the observed electronic medical record gender code. That is, 
if a person’s observed gender code was male, did the medical 
record indicate the person’s sex assigned at birth was male (for 
PPV), or if the person’s observed gender code was female, did 
the medical record indicate the person’s sex assigned at birth 
was female (for NPV). The likelihood contributed by the ith 
individual in the validation substudy is:

data � y Bernoullii: | ~θ θ( )

After the first individual’s validation data have been col-
lected, the likelihood and prior can be combined via Bayes’ 
theorem, and the posterior distribution of the bias parameter 
was calculated as follows:

Posterior y Beta a b: | ~ ( , )� � � �θ 1 1 1

Where a y1 11= +  and b y1 12= − . The mean of this dis-
tribution can be used as an estimate of the bias parameter: 

E
a

a b
θ( )=

+
1

1 1( )
. One could choose to use the median or mode 

of the distribution instead, and credible intervals can be defined 
using percentiles of the distribution. After the first observa-
tion has been accumulated, the posterior distribution becomes 
the prior distribution that is updated by the second observa-
tion, and this process repeats for each observation, or block of 
observations, collected:

Time p y p y p�1 1 1: | |θ θ θ( ) ∝ ( ) × ( )
Time p y y p y p y� �2 2 1 2 1: | , | ( | )θ θ θ( ) ∝ ( ) ×

Time j p y y y p y p y y yj� � �j j: | , | ( | , ),... ,...θ θ θ2 1 1 2 1( ) ∝ ( ) × −

After the (jth) individual is validated, the posterior is:

Posterior y y J y
i

J

i
i

J

i: | ~ ( , )� � � �θ β 1 1
1 1

+ + −
= =
∑ ∑

As above, the mean, median, mode, and credible inter-
vals can be calculated from this distribution to give estimates 
of PPV or NPV at any point during the accumulation of vali-
dation data. This updating procedure is conducted separately 
for PPV and NPV estimates.

Although it is possible to update PPV and NPV after 
each individual is validated, it may be more practical or real-
istic to update in blocks. For example, blocks of participants 
may be validated by medical record review each day, week, or 
over other timeframes. To establish intervals in which valida-
tion data would be updated, we evaluated the design under sev-
eral scenarios. First, when each category of the misclassified 
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exposure table accrued a minimum cell count of 5 (mimicking 
a balanced validation design),2 we randomly sampled 5 indi-
viduals without replacement from each exposure category 
(5-per-cell validation) to validate gender assigned at birth and 
then update the PPV and NPV estimates using the formula 
above. This validation and updating process was done repeat-
edly while the simulated parent study was being conducted. 
Second, when each category of the exposure table accrued 
a minimum cell count of 10 (also mimicking a balanced de-
sign), we randomly sampled 10 individuals without replace-
ment from each exposure category (10-per-cell validation) to 
validate and estimate the PPVs and NPVs. Third, we validated 
each cohort member as they entered the study to mimic a de-
sign in which everyone gets validated. Each of these 3 valida-
tion schemes was continued until a stopping criterion had been 
reached, at which point the validation study was terminated.

We considered a stopping criterion based on the magni-
tude of the bias parameters. The validation efficacy criterion 
was met if the lower 95% credible bound (2.5th percentile) 
for the PPV and the lower 95% credible bound for NPV were 
>0.60, at which point validation would cease. We likewise 
considered validation to be futile if the upper 95% credible 
bound (97.5th percentile) fell below 0.60 for either one of the 
predictive values. Selection of 0.60 as the threshold was in-
formed by topic content; if the classification method of gender 
in the electronic medical record (EMR) demographic data was 
not much better than a coin flip, which we operationalized as 
60%, then the classification method has poor validity and the 
gold-standard measurement for the entire cohort would be 
necessary. The choice of efficacy or futility criteria for thresh-
olds can be established by similar content-specific knowledge.

We evaluated whether the adaptive validation design 
outperformed other prospective validation designs by com-
paring our approach with a simple prospective validation de-
sign in which exposure was validated in the first 200 cohort 
enrollees.4,12

RESULTS
The STRONG youth subcohort included 535 persons 

with validation data, of whom 252 (47%) were classified as 
male in the EMR and 283 (53%) were classified as female. 
Enrollment into the study occurred between 2006 and 2014, 
with an overall study period of enrollment and follow-up of 

10.5 years. The youth subcohort PPV calculated from com-
plete validation at the end of the study enrolment period was 
0.81 (95% confidence interval [CI] = 0.76, 0.86) and the NPV 
was 0.92 (95% CI = 0.88, 0.95) (Table 1). The STRONG adult 
subcohort consisted of 4,725 persons with validation data, of 
whom 2,409 (51%) were classified as male in the EMR and 
2,316 (49%) were classified as female. The period of enroll-
ment and follow-up lasted 10.7 years. In the adult subcohort, 
the overall PPV based on complete validation at the end of the 
study enrollment period was 0.62 (95% CI = 0.60, 0.64) and 
NPV was 0.49 (95% CI = 0.47, 0.51) (Table 2).

Validation Efforts Effective
In the STRONG youth subcohort, where classification 

was known to be accurate based on the complete data, the 
adaptive validation design identified when to cease valida-
tion efforts (Figure 1). In the 5-per-cell validation approach, 
in which 10 individuals were included in the validation set at 
each discrete time interval, the adaptive validation approach 
reached the threshold of the lower 2.5th percentile credible 
interval above 0.60 after collecting validation data for 120 
individuals, 711 days into the study follow-up, and once 133 
individuals had been enrolled. The final estimated PPV and 
NPV classification parameters were 0.71 (95% CI = 0.60, 
0.81) and 0.87 (95% CI = 0.78, 0.94), respectively. When 
the 10-per-cell validation approach was applied, in which 20 
individuals were included in the validation at each time in-
terval, the adaptive validation approach similarly reached the 
threshold of the lower 2.5th percentile credible interval above 
0.60 after collecting validation data for 120 individuals, 711 
days into the study, once 133 individuals had been enrolled. 
The final PPV classification estimate was 0.71 (95% CI = 0.60,  
0.81) and NPV was 0.87 (95% CI = 0.78, 0.94). In the single-
person validation approach, the stopping rule reached 627 
days into the study period with 101 individuals enrolled, after 
101 individuals had their exposure status validated with PPV 
estimate of 0.72 (95% CI = 0.60, 0.83) and NPV of 0.85 (95% 
CI = 0.74, 0.94) (Figure 2).

Validation Efforts Futile
In the STRONG adult subcohort, both the PPV and 

the NPV quickly fell below the threshold (Figure 1), indicat-
ing futility. In the 5-per-cell validation approach, the NPV 
fell below the futility threshold in the second time interval, 

TABLE 1.  Estimates of the Classification Parameters From the 3 Approaches of the Adaptive Validation Design Among the 
STRONG Youth Cohort, With Comparison to the Overall Estimates From the Full Validation Cohort and Conventional Methods

Method PPV NPV Number Validated Days Into Study Period

Overall 0.81 (0.76, 0.86) 0.92 (0.88, 0.95) 535 2,897

Adaptive validation (5-per-cell) 0.71 (0.60, 0.81) 0.87 (0.78, 0.94) 120 711

Adaptive validation (10-per-cell) 0.71 (0.60, 0.81) 0.87 (0.78, 0.94) 120 711

Adaptive validation (single) 0.72 (0.60, 0.83) 0.85 (0.74, 0.94) 105 627

First 200 0.80 (0.71, 0.87) 0.92 (0.84, 0.96) 200 1,757
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3 days into study enrollment and after 27 individuals were 
enrolled, with estimates for the PPV of 0.42 (95% CI = 0.17, 
0.69) and NPV of 0.25 (95% CI = 0.06, 0.52). Similar results 
were obtained when we applied the 10-per-cell validation 
approach at each time interval. These results provided an early 
indication, although imprecise, that gold-standard measure-
ment would need to be comprehensive to accurately classify 
the exposure of interest in this subcohort. In other words, the 
gold-standard measure was required for each cohort member 
because the mismeasured gender in the electronic medical re-
cord lacked validity.

Comparison to Validating the Full Cohort
We observed some differences in estimates of the PPV 

and NPV calculated from the adaptive validation approaches, 
compared with the overall estimates from the complete youth 
and adult subcohorts (Tables  1 and 2). In the youth cohort, 
PPV from the adaptive validation tended to underestimate the 
PPV obtained from the whole sample, whereas NPVs were 
roughly similar. In the adult cohort, PPVs in the adaptive 
designs were more similar to the PPV from the whole sample, 
whereas NPVs were more extreme. Because the validation 
study was stopped early in the adult cohort, these estimates 

TABLE 2.  Estimates of the Classification Parameters From the 2 Approaches of the Adaptive Validation Design Among the 
STRONG Adult Cohort, With Comparison to the Overall Estimates From the Full Validation Cohort and Conventional Methods

Method PPV NPV Number Validated Days Into Study Period

Overall 0.62 (0.60, 0.64) 0.49 (0.47, 0.51) 4,725 3,921

Adaptive validation (5-per-cell) 0.42 (0.17, 0.69) 0.25 (0.06, 0.52) 20 3

Adaptive validation (10-per-cell) 0.42 (0.17, 0.69) 0.25 (0.06, 0.52) 20 3

Adaptive validation (single) 0.57 (0.24, 0.90) 0.29 (0.02, 0.59) 10 2

First 200 0.50 (0.40, 0.61) 0.19 (0.11, 0.28) 200 66

A B

C D

FIGURE 1.  Adaptive validation 
using 5-per-cell validation scheme 
among STRONG (A) youth and (B) 
adult subcohorts, with compar-
ison to the 10-per-cell validation 
scheme among the (C) youth and 
(D) adult subcohorts.
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were generally very imprecise. For both the youth and the 
adult subcohort, the differences in the results obtained from 
the adaptive validation approaches compared with the full co-
hort were indicative of a strong time-trend in the classification 
parameters within the STRONG parent cohort (Figures 2 and 3;  
eFigure 1; http://links.lww.com/EDE/B672).

Comparison With Other Approaches
We compared our method with another possible 

approach to validation with ongoing data collection. In the 

comparison scenario, we validated the first 200 enrolled mem-
bers of the youth and adult subcohorts. In the youth subcohort, 
this method provided reasonable estimates, with an estimated 
PPV of 0.80 (95% CI = 0.71, 0.87) and NPV of 0.92 (95% 
CI = 0.84, 0.96) (Table  1). In contrast, in the adult subco-
hort, this method provided poor estimates (PPV = 0.50; 95%  
CI = 0.40, 0.61 and NPV = 0.19; 95% CI = 0.11, 0.28), which 
appeared to be due, in part, to the strong time-trend in classi-
fication parameters as noted earlier (Table 2). Both estimates 
were similar to those obtained from the adaptive validation 
approach, although they would have required additional ex-
penditure of time and study resources.

DISCUSSION
We have developed an approach to validation study de-

sign suited to scenarios in which validation data are collected 
in real time and applicable to any parent epidemiologic study 
design. This method provides a valuable tool for prospective 
validation, allowing researchers to optimize the utility of fixed 
study resources when implementing validation studies. We dem-
onstrated the ability of the method to determine when a valida-
tion study has reached the point that further validation efforts 
may be futile, based on a predefined threshold value. Using this 
design, the PPV and NPV calculated with the proposed study 
designs were generally comparable to those calculated from full 

A B

FIGURE 2.  Single-person validation among 
STRONG youth cohort until the (A) PPV and 
(B) NPV were considered to have reached the 
predefined threshold for optimization.

A B

FIGURE 3.  Single-person validation among complete STRONG 
adult cohort for the (A) PPV and (B) NPV.

http://links.lww.com/EDE/B672
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validation efforts, albeit with less precision. However, fewer 
persons and less time were required for the adaptive validation 
studies.

Using this adaptive validation design can therefore save 
substantial costs and time, which can then be allocated to 
other research objectives. Iterative updating of classification 
parameters informs values of the parameters of interest and 
can be used as a marker for when sufficient information has 
been collected, indicating when validation efforts can stop. 
This process allows researchers to preferentially decide, in 
real time, how to appropriate resources to validation studies, 
with the ability to adapt based on the specific needs of their 
study. There is often a trade-off with internal validation stud-
ies—the possible sacrifice of sample size or other data collec-
tion of the parent study to obtain assurance that the variables 
of interest have adequate validity. Our method may enhance 
the ability of researchers to save on the resources allocated to 
validation, by thoughtfully validating over the study time pe-
riod with periodic assessments of the performance of the vari-
ables mismeasured in the study. In this approach, the sample 
size necessary to achieve the specified threshold is potentially 
smaller than that required by other approaches, and validation 
can be completed before the end of follow-up of longitudinal 
studies with ongoing data accrual.

This proposed validation study design is amenable to al-
ternative stopping rules based on prior knowledge, other crite-
ria, or other validation study goals. For example, investigators 
may wish to rely exclusively on a threshold stopping rule, per-
haps to identify futility. Alternatively, researchers may prefer a 
precision-based stopping rule, such as a prespecified width of 
the interval around the predictive value estimates that must be 
achieved before stopping, which can be easily incorporated into 
this method. A study may have inferential interest in the bias-
adjusted estimate of association or occurrence. In this case, the 
uncertainty in the bias parameters would be incorporated in the 
bias-adjusted estimate and its uncertainty interval.13,14 A stop-
ping rule could be developed that ends the collection of both 
study data and validation data when the interval estimate around 
the main effect falls below a prespecified width. For all stopping 
rules, special consideration should be given to random error, 
which could inadvertently cause the validation study to stop too 
soon. Investigators may be interested in having stopping rules 
be evaluated only after the 50th individual has been enrolled, 
for instance. However, in our approach, we initiated validation 
efforts from the beginning of the study, which was particularly 
useful in the STRONG adult subcohort, where the method 
quickly identified that validation would be necessary for the en-
tire study population. In this setting, the validation effort is re-
ally replacing the mismeasured variable (gender) with the gold 
standard (sex assigned at birth) to allow accurate classification 
of participants as transfeminine or transmasculine. Validation 
is, therefore, a misnomer; the validation substudy indicated that 
complete data would be required for the gold standard, and this 
is a new data collection effort.

The sampling approach for validation in this method 
can be readily applied to other studies and can be modified to 
suit the demands of individual applications. In this example, 
we relied on medical record abstraction for validation. Based 
on the number of persons who have their exposure status vali-
dated at each discrete time period, we included blocks of 5 and 
10 as the approximate number of medical records that could 
be reviewed in 1 day by study staff. This example is applicable 
to other scenarios but can easily be extended to validation 
efforts that require other resources, such as additional proce-
dures or tests. Consideration of the block size may also influ-
ence when stopping criteria will be met. For example, smaller 
block sizes allow for closer monitoring of the classification 
parameters, with the potential benefit of stopping earlier. As a 
result, careful consideration should be given to ensure that the 
validation study is not stopped too early and that the specified 
block size matches the practicalities of collecting the valida-
tion data (e.g., set the block size equal to the number of med-
ical records that an abstractor could review in a typical day).

The current approach can be used to calculate estimates 
for the positive and negative predictive values, which are spe-
cific to the study from which they arise, but are not readily 
applied outside of the study population in which they are 
measured. Sensitivity and specificity are more easily transport-
able to other populations and also, therefore, more amenable 
to starting the adaptive validation analyses with an informa-
tive prior. The current approach does not allow for estimation 
of sensitivity and specificity as it conditions on the observed 
exposure status, but could be adapted to calculate these clas-
sification parameters. PPV and NPV are dependent on the 
prevalence of the measure of interest, so researchers should 
consider calculating PPV and NPV (of exposure) within strata 
of the outcome. However, this is difficult to accomplish in a 
study that prospectively validates data, as the outcome status 
may not be known at the time of validation. In validation stud-
ies that are conducted after the parent study is completed, this 
could be easily accomplished, and researchers may also want 
to sample from similar enrolment time periods, such as weekly 
or monthly intervals. For studies that evaluate the association 
between an exposure and multiple outcomes, additional con-
siderations will apply, such as validation of exposure within 
strata of each outcome. Finally, the choice of stopping criteria 
can impact the estimates of the classification parameters and 
should be established carefully. The choice of a meaningful 
threshold is a subjective decision that should be informed be-
fore initiation of the validation study by substantive consid-
erations. In the current study, we chose a threshold of 0.60 
because PPVs or NPVs lower than this were deemed unaccept-
ably low. A low threshold may, in some instances, result in im-
precise classification parameters and researchers may want to 
specify a higher threshold or incorporate a precision criterion. 
Because of this, threshold criteria may be most useful when 
there is concern that a validation strategy may be unsuccessful. 
For demonstration of the method, we kept a general approach 
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to highlight the situations in which validation could be halted 
to improve overall study accuracy and efficiency. Further work, 
involving simulation studies, should explore the magnitude of 
the bias from stopping validation too early.

Even though validation met the stopping threshold in 
the youth cohort, the estimates of the classification parameters 
differed slightly from the full cohort. This difference appeared 
to be related to a time-trend in the classification parameters, 
which was evident among both the youth and adult subco-
horts (eFigure 1; http://links.lww.com/EDE/B672, Figure 3). 
The change in classification parameters over time may be due, 
in part, to the sociopolitical context surrounding transgender 
health, but it is conceivable that it could apply to other sce-
narios and measures that require validation. Note, however, 
that the time trend provides potentially useful information that 
might easily be missed if all validation data were collected and 
analyzed after the primary data collection was complete. De-
tection of a time trend may serve as its own stopping criterion, 
as the researchers would want to make sampling adjustments 
to conduct the adaptive validation approach within time peri-
ods that would more accurately capture the time trend in clas-
sification parameters. Furthermore, the corresponding bias 
adjustment would need to take the time trend into account, 
strengthening the validity of the bias-adjusted results. Other 
approaches do not allow for detection of a time trend, as il-
lustrated by the fact that the trend was not, in fact, previously 
noted in the STRONG cohort analyses.

CONCLUSIONS
Our proposed adaptive validation design may be useful 

to calculate classification parameters as validation data accrue 
in epidemiologic studies, which can lead to effective and ef-
ficient conduct of validation substudies. Extending this pro-
posed method to studies with multiple outcomes, measures 

of sensitivity and specificity, and using the bias-adjusted esti-
mate of association to inform stopping rules will be important 
considerations for future development.
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