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Introduction

Soil is an important part of the 
urban ecosystem that directly and 
indirectly affects general quality of 
life.1 The study of spatial distribution 
and identification of contaminated 
urban soils and geographical areas 
with clear identification of source 
contamination is important for 
planning and decision making.2,3 
Several studies have identified high 
variability in soils in urban areas.4,5 
The use of spatial interpolations in 
geostatistics is increasingly required 
to understand and solve soil pollution 
problems in urban areas. Geostatistics 
describes patterns of spatial data. It 
provides an estimate and quantitative 
mapping of the pollution distribution 
with minimum variance.6 A number 
of factors can affect map quality. These 
include soil variability, as well as the 

sampling and interpolation method 
employed.7 Spatial interpolation 
techniques such as ordinary kriging 
(OK) and inverse distance weighted 
(IDW) are widely applied in soil 
geochemistry for the production 
of spatial distribution maps of 
soil parameters.8,3 Geostatistical 
methods can provide reliable 
estimates in locations that have not 
been sampled.9,10 Spatial prediction 

techniques, also known as spatial 
interpolation techniques, differ from 
classical modeling approaches as 
they incorporate information on the 
geographic position of the sample 
data points.11 The most common 
interpolation techniques evaluate the 
estimate for a property at any given 
location by a weighted average of 
nearby data.12 

Background. Several studies have demonstrated that chromium (Cr) and cadmium (Cd) 
have adverse impacts on the environment and human health. These elements are present in 
electronic waste (e-waste) recycling sites. Several interpolation methods have been used to 
evaluate geographical impacts on humans and the environment. 
Objectives. The aim of the present paper is to compare the accuracy of inverse distance 
weighting (IDW) and ordinary kriging (OK) in topsoil analysis of e-waste recycling sites in 
Douala, Cameroon.  
Methods. Selecting the proper spatial interpolation method is crucial for carrying out surface 
analysis. Ordinary kriging and IDW are interpolation methods used for spatial analysis 
and surface mapping. Two sets of samples were used and compared. The performances of 
interpolation methods were evaluated and compared using cross-validation. 
Results. The results showed that the OK method performed better than IDW prediction 
for the spatial distribution of Cr, but the two interpolation methods had the same result for 
Cd (in the first set of samples). Results from Kolmogorov-Smirnov and Shapiro-Wilk tests 
showed that the data were normally distributed in the study area. The p value (0.302 and 
0.773) was greater than 0.05 for Cr and for Cd (0.267 and 0.712). In the second set of samples, 
the OK method results (for Cd and Cr) were greatly diminished and the concentrations 
dropped, looking more like an average on the maps. However, the IDW interpolation gave 
a better representation of the concentration of Cd and Cr on the maps of the study area. For 
the second set of samples, OK and IDW for Cd and Cr had more similar results, especially in 
terms of root mean square error (RMSE). 
Conclusions. Many parameters were better identified from the RMSE statistic obtained from 
cross-validation after exhaustive testing. Inverse distance weighting appeared more adequate 
in limited urban areas. 
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Questions on the appropriateness of 
various interpolation methods have 
evolved, as there is a wide range of 
these methods. Several comparative 
studies of relative accuracy have 
been performed for soil quality 
parameters. The methods used include 
geostatistical kriging-based techniques 
and the IDW method for deterministic 
interpolation.13 Both methods rely 
on the similarity of nearby sample 
points to estimate values and create 
a surface. Deterministic techniques 
use mathematical functions for 
interpolation. Geostatistics relies on 
both statistical and mathematical 
methods, which can be used to create 
surfaces and assess the credibility of 
the predictions. From a theoretical 
standpoint, OK is the optimal 
interpolation method.14 However, the 
correct application of OK requires 
an accurate determination of the 
spatial structure via semivariogram 
construction and model-fitting.12 
Many studies have compared IDW 
and kriging to evaluate the best 
prediction method. In some cases, 
the performance of OK was reported 
to be better than IDW.14,15,16,17,18 
Research was conducted by Laslett 
et al. to evaluate some interpolation 
methods for estimation of surface soil 
pH.19 They applied IDW and kriging 
methods over data obtained from 
digital elevation models and climate 
for estimations. They found the kriging 
method for interpolation to be the 
most suitable method.20 Dayani et al. 
and Hooker and Nathanail used the 
simple kriging estimator for mapping 
the pollution of heavy metals in order 
to estimate the concentration of lead 
in unsampled areas using the OK error 
maps to evaluate and control the error 
of the predicted map at unsampled 
locations.21,22 

In other studies, IDW generally 
out-performed OK.13 The best results 
for mapping soil organic matter 
contents and soil nitrate levels were 

obtained with the IDW interpolation 
technique.23 The results have often 
been mixed.24,25,26 

Given the variability of results 
obtained by previous studies, the 
present study aims to identify the best 
method for environmental and human 
health risk evaluation in specific 
locations in urban areas. This will 
be done by determining the spatial 
variability of selected heavy metals in 
the soil; assessing the accuracy of the 
IDW and OK interpolation techniques 
for mapping chromium (Cr) and 
cadmium (Cd) in the soil of electronic 
waste (e-waste) recycling sites in 
Douala, Cameroon; and identifying 
the spatial prediction method that 
best illustrates the spatial variability 
of the environmental and human risk 
exposure of certain heavy metals. This 
will enable the identification of the 
best method for areas where people are 
at greatest risk with the most urgent 
need for remediation measures.

Methods

The study area is located in Douala, 
Cameroon. Douala city is situated 
at latitude 4°1´north and longitude 
9°45´ east, on the Wouri estuary, 
approximately 50 km from the 
opening of the estuary into the 
Atlantic Ocean. Douala is divided into 
6 districts governed by councils, where 
a mayor is elected by those councils to 
preside over the city. The city currently 
houses about 3.5 million people in a 
nucleated settlement pattern.27 The 
central area of the city, Akwa, has 

banks, commercial enterprises and 
other small-scale businesses. The 
topography surrounding Douala is 
characterized by a gentle slope from 
an altitude of approximately 57 m 
in the east to approximately 3 m 
along the Wouri River in the west.27 
The sloping topography and high 
run‐off rate in the Wouri estuarine 
system cause groundwater levels in 
the city to be shallow and above the 
soil surface in some areas. The city is 
consequently subjected to frequent 
severe floods almost year-round. This 
applies in particular to Mabanda and 
Bonendale in Bonaberi to the north 
and the Youpwe area in the south, 
as illustrated by Guevart et al. in a 
computer-generated view of the flood 
prone areas.27

Ngodi, Makea and New Bell 
are hotspots with the highest 
concentration of e-waste recycling 
activities in Douala. They are located 
in the town and are surrounded by 
other economic activities.

Sampling

A total of 30 soil samples, 10 per area, 
were collected from Makea, Ngodi and 
New Bell. Collection took place in the 
first half of 2017. The samples were 
collected with the aid of a soil auger 
at a depth of 5 to 15 cm, representing 
the topsoil. Each point of sample 
collection was recorded with a global 
positioning system with a precision 
error of ±3 m. This was used to obtain 
the altitude, longitude, and latitude 
figures of the locations, which were 
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later imported into a geographic 
information system (ArcGIS 10.1). 
The samples were stored in aluminum 
foil before they were transferred 
into plastic bags and bottles. As the 
collection was done randomly, the 
recycling sites were not uniformly 
distributed.

The samples were analyzed with an 
atomic absorption spectrometer. 
A representative sample was first 
pulverized using a mortar and 
pestle. About 1 g of each sample 
was weighed into the dry digesting 
tube. A total of 5 ml of concentrated 
perchloric acid was added in the 
ratio and stirred. The digesting tube 

was placed in a water bath set at 
100oC and boiled for 2 hours. To 
avoid caking, the sample was shaken 
vigorously at 20-minute intervals 
and the resulting solution, referred 
to as stock solution, was filtered and 
made up to 50 ml with distilled water, 
and stored in polyethylene bottles 
prior to instrumental analysis. The 
stock solution was used to directly 
determine the elements (Cr and 
Cd) with an atomic absorption 
spectrometer. The distribution of the 
points is shown in Figure 2. The slope 
degree and aspect were measured 
with the processing of an Advanced 
Spaceborne Thermal Emission and 
Reflection Radiometer image. 

Spatial and statistical methods  

The hierarchical Bayesian Poisson 
mixture model includes a prior 
distribution for the unknown 
parameters in the environment as well 
as the data distribution. The Poisson 
distribution is a model commonly used 
to count data. The Poisson distribution 
assumes that the variance and mean of 
the data are equal. This is not the case 
for the data that were used in this study. 
However, it is a good instrument that 
allows inference and estimation using 
software and a mixed model.

Hotspot analysis

Hotspot analysis is both a statistical 
and spatial method used in estimating 
hotspot concentration of particular 
elements or features. In the field of 
spatial interpolation, the Hot Spot 
Analysis tool (from ArcGIS) calculates 
the Getis-Ord Gi* statistic for each 
feature in a dataset. The resultant 
z-scores and p-values identify where 
features with either high or low values 
cluster in space. This tool works by 
looking at each feature within the 
context of neighboring features. A 
feature with a high value is interesting, 
but may not be a statistically 
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Figure 1 — Location map of the hotspot in Douala
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significant hotspot. To be a statistically 
significant hotspot, a feature will have 
a high value and be surrounded by 
other features with high values as 
well. One of its assumptions is that 
the collected points should be equally 
distributed, with the same distance 
between each point collected;9 which 
was not the case in the field.28 

Geoadditive models, spatially 
adaptive models and mixed models

Introduced by Kammann and Wand, 
geoadditive models analyze the spatial 
distribution of the variables while 
accounting for possible non-linear 
covariate effects.29 Moreover, the 
geoadditive model can be extended to 
include generalized responses, small 
area estimation, longitudinal data, 
missing data, and so on.30 It gained 
popularity in applied research as a 
flexible and interpretable regression 
technique because it maintains 
the assumption of additivity of 
the covariates effects, allowing the 
presence of nonlinear relationships 
with the response variable.31  

The linear mixed model representation 
is a useful instrument because it 
allows estimation using mixed model 
methodology and software. They 
represent such effects by merging an 
additive model that accounts for the 
non-linear relationship between the 
variables, and that accounts for the 
spatial correlation by expressing both 
as a linear mixed model.32

Geostatistical analysis

There are two main categories 
of interpolation methods. The 
deterministic interpolation techniques 
(IDW, radial basis functions, global 
polynomial interpolation) that use 
mathematical functions such as 
Euclidean distance and the family 
of geostatistics which relies on both 
mathematical and statistical models 

that take positive autocorrelation into 
account.33 The present study compared 
the OK and IDW methods for Cr and 
Cd soil interpolation.

Ordinary kriging and inverse 
distance weighting methods

Ordinary kriging and IDW are the 
most popular spatial interpolation 
methods used in the field of 
environmental studies. Both methods 
have been developed based on the 
assumption that nearby points have 
more correlations and similarities 
than distant observations. The IDW 
interpolation is largely a reflection of 
Waldo Tobler’s first law in geography 
which states that “everything is 
related to everything else, but near 
things are more related than distant 
things”.34 The IDW method assumes 
that the distance between neighbors 
is proportional to the similarities and 
the rate of correlations between them; 
this is defined as a distance reverse 
function of every point from nearby 
points.35 The IDW method works 
best with evenly distributed points in 
an area. It is possible to control the 
significance of known points upon 
the interpolated values, based on their 
distance from the output point with 
IDW. The weights for samples in IDW 
decrease with an increase in distance 
between the known samples and the 
estimated points. These weights are 
controlled by weighting powers, so 
that greater powers reduce the effect of 
farther estimated points and smaller 
powers distribute the weights more 
uniformly among the neighbors' 
points. Inverse distance weighting does 
not make assumptions about spatial 
relationships except for the basic 
assumption that nearby points will 
be more closely related than distant 
points to the value at the interpolated 
location.

The main factors affecting the accuracy 
of IDW interpolation are the ‘‘rate’’ 

of decreasing weight (defined as the 
power parameter of distance ‘p’), 
the size of the neighborhood and 
the number of neighbors which are 
relevant for the accuracy of results.

Inverse distance weighting was 
calculated using the Equation 1.36

Equation 1

	
where, u is the estimation location,  , 
, , 1 ,  ui, i = 1,…., n, are the locations 
of the sample points within the 
neighborhood, Z*(u) is the inverse 
distance estimate at the estimation 
location, n is the number of sample 
points,  λi, i = 1,…, n, are the weights 
assigned to each sample point, and 
Z(ui), i = 1,…, n, are the conditioning 
data at sample points. The weights are 
determined using Equation 2:

Equation 2

 
where, di are the Euclidian distances 
between estimation location and 
sample points and exponent p is the 
power or distance exponent value. 
Note that the sum of the inverse 
distance weights λi, i = 1,…, n, is equal 
to 1, that is (Equation 3): 

Equation 3

 
 
 

The value applied for the power p 
varies generally from 1 to 4 and are 
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commonly recommended. One of the 
main factors affecting the accuracy 
of the IDW is the value of the power 
parameter.

Ordinary kriging provides an estimate 
of an unsampled point based on 
the weighted average of observed 
neighboring points within a specific 
area. At the difference of IDW, the 
OK method is not deterministic but 
extends the proximity weighting 
approach of IDW to incorporate 
random components where the exact 
point is unknown. The weights in 
OK are decided based on the spatial 
structure parameters of a variogram 
which measures the relationships 
between squared differences between 
paired samples and their distances.8 
The OK method samples input 
data and models the relationship 
between the variance in value and 
distance between points. The spatial 
autocorrelation between measured 
sample points was examined using 
semivariogram/covariance. Anisotropy 
semivariogram was used to model 
the spatial relationship in the dataset 
and to find the best fit model that 
passes through the points in the 
semivariogram.9 In order to estimate 
the spatial and statistical relationship 
as well as perform the interpolation 
and calculate the surface, the OK 
method used the semivariogram.

The OK equation is outlined in 
Equation 4:  

Equation 4  

where, Ẑ (s0) is the predicted location, 
λi is the unknown weight of the 
measured value of pairs of points at ith 
location, Z (si) is the measured value 
of pairs of points at ith location, and 

N is the number of measured values 
of pairs of points multiplied by the 
distance h.

The normality of data was tested 
using the Kolmogorov-Smirnov and 
Shapiro-Wilk normality test. These 
tests are used to detect sample of data 
normality from a population with a 
specific distribution.

When performing IDW and OK, cross 
validation is part of the output of the 
Geostatistical Analyst Toolbar results 
in ArcGIS 10.1. Cross validation 
provides summary measures of error 
and allows comparison between 
interpolation methods. The parameters 
used for the comparison are the mean 
error and root mean square error 
(RMSE). The mean error is the average 
difference between observed and 
predicted values. The RMSE shows 
how well the model predicts observed 
values. Low values for both error 
statistics indicate a better model.37

The mean error is used to determine 
the degree of bias in the estimates and 
is calculated using Equation 5.

Equation 5 

where, ME is the mean error.  
The RMSE provides a measure of the 
error size that is it sensitive to outliers. 
The RMSE value can be calculated 
with Equation 6.

Equation 6

 
 
The mean absolute error provides an 
absolute measure of the size of the 
error. Mean absolute error is calculated 

with Equation 7.

Equation 7

where, MAE is the mean absolute 
error.

The mean error gives an indication 
of how well the data value fits into 
the neighborhood of the surrounding 
values. It is the result of the difference 
between the measured value and 
the estimated cross validation. 
The closer the average of the cross 
validation error is to zero, the error 
decreases; there is no apparent bias. 
Overestimation and underestimation 
of the model is indicated by a positive 
and negative bias, respectively. Thus, 
the mean standardized error is the 
mean error divided by the standard 
deviation where the mean error value 
depends on the data scale. The value 
of the mean standardized error should 
be as close to zero as possible. For an 
optimum result, the predictions should 
be as close to the measured values 
as possible. To assess the accuracy of 
the method, the RMSE is very useful; 
it indicates how closely the model 
predicts the measured values. The 
estimates are more accurate as long as 
the RMSE is close to zero. The average 
standard error is calculated to evaluate 
the deviation from the observation. 
If this value is close to zero, then the 
deviation from the observation is 
minimal.38 

The variability in prediction is 
correctly assessed if the average 
standard error is close to the root-
mean-squared prediction error. If the 
average standard error is greater than 
the root-mean-squared prediction 
error, the variability of the predictions 
is overestimated and vice versa. 
Therefore, the result of each prediction 
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error divided by its estimated 
prediction standard error should 
be similar. Thus, if the prediction 
standard error is valid, the root-mean-
square standardized error should be 
close to one. Greater than one root-
mean-square standardized error values 
indicate an underestimation and less 
than one indicates that the prediction 
errors are overestimated.39,40

Geographic information system 
mapping procedure

The IDW and OK of the spatial 
analyst extension in ArcGIS 10.1 was 
used in the mapping of variables. All 
the measured points (Cr and Cd) 
were used in the calculation of each 
interpolated cell based on the results 
of the laboratory analysis of each 
sample. Thus, 15 points were removed 
randomly from the current data 
points from their original analysis. 
Then a test was conducted to see 

which method better predicts the 
concentrations in the samples that 
were left out. A feature dataset (Douala 
shapefile) was used for the mask. The 
legend classification was based on the 
concentration levels of pollutants in 
the hotspot.

Results

Table 1 shows the Cd and Cr 
concentrations that were measured 
in the laboratory. Each is attached 
to a particular location with global 
positioning system points. The values 
presented in Table 1 were used for the 
interpolations.

Test site 21 and 25 are samples of the 
topsoil from a natural environment 
(control). As can be seen, there was a 
significant difference in concentrations 
between control samples and e-waste 
recycling sites samples.

One assumption of the geostatistical 
analysis is that the data have to be 
normally distributed. In order to 
assess the normality of data, the 
Kolmogorov-Smirnov and Shapiro-
Wilk tests were applied. The results 
(Tables 2 and 3) showed that the 
data distributions were a good fit. 
The calculated p-values were greater 
than 0.05 and the data points were 
distributed around the line.

Table 2 gives the result of the 
Kolmogorov-Smirnov and Shapiro-
Wilk normality tests for Cr. For the 
two tests applied, the data are normally 
distributed in the study area. The p value 
(0.302 and 0.773) is greater than 0.05.

Observed values

Figure 2 shows the distribution of 
data points around the line, indicating 
that the data points are normally 
distributed along the line.

Ouabo, Sangodoyin, Ogundiran
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Table 2 — Tests of Normality for Chromium

Table 3 —Tests of Normality for Cadmium
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Figure 2 — Tests of normality for chromium
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Figure 3 — Tests of normality for cadmium

Table 3 gives the result of the 
normality test of Kolmogorov-Smirnov 
and Shapiro-Wilk for Cd. For the two 
tests applied, the data are normally 
distributed in the study area with p 
value of 0.267 and 0.712, which is 
greater than 0.05.

Observed value

Figure 3 shows the distribution of Cd 
data points around the line, indicating 
that the data points are normally 
distributed along the line and therefore 
over the study area.

Results of the interpolated maps 
comparing the two techniques 

Figure 4 presents the Cr interpolation 
over the study area. The western and 
southwestern parts of the hotspot 
had the highest concentrations of 
Cr. However, the eastern and the 
northeastern areas were less polluted 

by Cr. The OK interpolation method 
was used to derive this map. 

Figure 5 presents the Cd interpolation 
over the study area. The western 
part of the hotspot had the highest 
concentrations of Cd. The other parts 
of the study area were less polluted 
and are represented with the color 
yellow. Furthermore, the yellow color 
indicates an average concentration 
over the main part of the study area, 
while the northern part had the lowest 
concentration.

Figure 6 presents the IDW Cd 
interpolation over the study area. The 
western part of the hotspot had the 
highest concentrations of Cd. Other 
parts of the map which were less 
polluted are represented by the color 
yellow and are predominantly in the 
north and northeast. 

Figure 7 shows the map of Cr 

interpolation over the study area. The 
west, southwest and portions of the 
north and northwest of the hotspot 
were the areas with the highest 
concentration of Cr. The eastern 
and the northeastern parts were less 
polluted with Cr.

Results of the interpolated maps 
by the two techniques (based on 
samples left out)

In order to further assess the 
performance of the two methods, 15 
samples were randomly removed from 
the initial set of data. Then, the same 
analyses were performed with samples 
left out. The results of the interpolated 
maps are shown in Figures 8-11.

Figure 8 presents cadmium 
interpolation over the study area. 
The map has almost a uniform 
concentration around samples points 
all over the study area. It appears 
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Figure 4 — Interpolated map of chromium with the ordinary kriging method

Figure 5 — Interpolated map of cadmium with the ordinary kriging method
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Figure 6 — Interpolated map of cadmium with the inverse distance weighting method

Figure 7 — Interpolated map of chromium with the inverse distance weighting method
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Figure 8 — Interpolated map of cadmium with the ordinary kriging method

Figure 9 — Interpolated map of chromium with the ordinary kriging method
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Figure 10 — Interpolated map of cadmium with the inverse distance weighting method

Figure 11 — Interpolated map of chromium with the inverse distance weighting method
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that the interpolation made a map 
averaging the concentration of the 
pollutant.

Figure 9 presents Cr interpolation over 
the study area. The concentration of Cr 
noticeably increases from the western 
to the eastern part of the hotspot. 

Figure 10 presents Cd interpolation 
over the study area. The western 
and southeastern part of the hotspot 
had the highest concentration of 
Cd. However, the northern and the 
northeastern areas were less polluted 
by Cd. 

Figure 11 shows the map of Cr 
interpolation over the study area. The 
west, southwest and portions of the 
north and northwest had the highest 
concentrations of Cr. The northeastern 
parts were less polluted by Cr.

Discussion

The OK map results provided a 
comprehensive distribution of 
pollutants in the study area, with the 
potential concentration values. The OK 
results (Cd and Cr) did not fully take 
into consideration the reality of the 
urban area in the hotspot. From 1-100 
m distance, concentrations varied 
greatly. However, the IDW maps gave 
a more reliable representation of the 
situation. The e-waste recycling sites 
were relatively small, and therefore the 
concentrations were not spread over 
a wide spectrum in the study area. 
The IDW interpolation gave a better 
representation of the concentration 
of Cd and Cr in the maps of the study 
area.

Comparison of interpolation 
performance

For Cr, the comparison of cross 
validation results with OK and IDW 
showed varying errors from one point 
to the other. For the OK method (Table 
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Table 4 — Cross Validation Summary of Chromium with Ordinary Kriging

Table 5 — Cross Validation Summary of Chromium with Inverse Distance Weighting

Table 6 — Cross Validation Summary of Cadmium with Ordinary Kriging

Table 7 — Cross Validation Summary of Cadmium with Inverse Distance Weighting
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4), the error ranged from ±1 to ±53, 
showing that between locations, the 
error was minimized or maximized, 
depending on the measured values. In 
the case of IDW, the error ranged from 
±1 to ±73 with a mean error of 2.40, 
compared to -0.75 obtained in OK.

The mean of the predicted values was 
167.94 for the OK method and 171 
for the IDW method (Table 5). Of 
the two methods, the result from OK 
was closer to the actual mean of the 
measured values (168.7).

In the case of Cd, the comparison of 
cross validation results between OK 
and IDW shows that the error varies 
from one point to the other. For the 
OK method (Table 6), the error range 
of ±1 to ±8.3 shows that the error is 
minimized or maximized, depending 
on the measured values. However, 
the error range was not wide. In the 
case of IDW, the error ranged from 
±1 to ±9.0 with a mean error of -0.40, 
compared to -0.26 for OK. 

For Cd interpolation with OK and 

IDW, the accuracy in the results 
were similar, with IDW having a 
slight advantage. In this case, the 
results were very close to each other, 
with IDW showing slightly better 
results compared to OK. The mean 
of predicted values was 33.86 for the 
OK method and 33.72 for the IDW 
method (Table 7). Of the two methods, 
the result obtained from the OK 
method was closer to the mean of the 
measured values, but the IDW method 
reported a better difference.

Validation results: comparison of 
interpolation performance

The cross-validation comparison of 
the OK and IDW methods for Cd is 
shown in Figure 12. The mean value 
was -0.2 for OK and -0.2 for IDW. The 
root mean square was 4.21 for OK and 
4.28 for IDW. From these two values, 
it can be concluded that OK and IDW 
methods can be used interchangeably 
as both are good for Cd modelling.

For the OK, the standardized mean 
error recorded was -0.04. This value 

was very close to zero, showing that 
the model was good Cd interpolation. 
The RMSE was 1.07 while the average 
standard error was 3.83. The OK 
method produced a good interpolation 
model for Cd prediction in the study 
area. It is important to note that the 
IDW method does not have this 
information listed in order to be 
compared with the OK technique. 
However, the root mean squares are 
close, showing that the two models are 
a good fit for Cd.

The cross-validation comparison of 
the OK and IDW methods for Cr is 
shown in Figure 13. The mean values 
were -0.75 and 2.36 for the OK and 
IDW methods, respectively. The root 
mean square was 25.94 for OK and 
32.40 for IDW. Using these values, the 
OK method produced a better result 
compared to IDW for Cr.

For the OK method, the standardized 
mean error was -0.02, showing that the 
model was good for Cr interpolation. 
The root-mean-square error was 1.03 
and the average standard error was 
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Figure 12 — Cross validation comparison of cadmium
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24.91. Thus, the OK result produced 
a better interpolation model for Cr 
prediction in the study area compared 
to IDW.

Comparison of maps results after 
leaving out samples

After leaving out 15 samples points in 
order to run the analysis again, The 
OK and IDW map results provided 
a comprehensive distribution of 
pollutants in the study area, with 
potential concentration values. The 
OK results (Cd and Cr) were greatly 
diminished and the concentrations 
dropped, looking more like an average. 
This is due to the fact that the included 
number of samples was smaller 
compared to the initial set of samples. 
The IDW interpolation gave a better 
representation of the concentration of 
Cd and Cr on the maps of the study 
area. In the case of Cr, the levels of 
concentration are more visible with a 
wider spatial occupation compared to 
the map with initial samples.
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Figure 13 — Cross validation comparison of chromium

Table 8 — Cross Validation Summary of Chromium with Ordinary Kriging

Table 9 — Cross Validation Summary of Chromium with Inverse Distance Weighting
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Comparison of interpolation 
performance after leaving out 
samples

For Cr, the comparison of cross 
validation results with OK and IDW 
showed varying errors from one point 
to the other. 

For the OK method (Table 8), the 
error ranged from ±9 to ±13, showing 
that between locations, the error was 
minimized or maximized, depending 
on the measured values. 

In the case of IDW, the error was 1 
with a mean error of 1, compared 
to 11.26 obtained in OK (Table 9). 
The error was brought to 1 for IDW, 
a reduction compared to the initial 
sample points interpolated.

For Cd interpolation with OK and 
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Figure 14 — Cross validation comparison of cadmium

Table 10 — Cross Validation Summary of Cadmium with Ordinary Kriging

Table 11 — Cross Validation Summary of Cadmium with Inverse 
Distance Weighting
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IDW, the accuracy was similar to the 
initial set of samples (Tables 10 and 
11). The results were very close to each 
other.

The mean of the predicted values was 
34.21 for the OK method and 33.20 
for the IDW method (Tables 10 and 
11). From the two methods, the results 
obtained from both were closer to the 
mean of the measured values, but the 
IDW reported a smaller difference in 
terms of error.

The cross-validation comparison of the 
OK and IDW methods after dropping 
some of the samples for Cd is shown 
in Figure 14. The mean value was -0.12 
for OK and -0.34 for IDW. The root 
mean square was 3.95 for OK and 5.19 
for IDW. From these two values, it can 
be concluded that the OK and IDW 
methods can be used interchangeably 
as both are good for Cd modelling.

For the OK method, the standardized 
mean error was -0.02. This value 
was very close to zero, showing that 

the model was a good fit for Cd 
interpolation. The RMSE was 1.001, 
while the average standard error was 
3.95. The OK and IDW methods 
produced good interpolation models 
with almost identical results for Cd 
prediction in the study area.

The cross-validation comparison of the 
OK and IDW methods for the samples 
of Cr left out is shown in Figure 15. 
The mean value was -0.59 for OK 
and 2.70 for IDW. The root mean 
square was 26.24 for OK and 26.99 for 
IDW. These results indicate that the 
OK and IDW methods can be used 
interchangeably, as both are good fits 
for Cr modelling.

For OK, the standardized mean error 
recorded was -0.06. This value was 
very close to zero, showing that the 
model was good for Cr interpolation. 
The RMSE was 1.130 and the average 
standard error was 23.59. Based on 
the mean, the OK method produced 
a good interpolation model for Cr 
prediction in the study area with 

samples left out. However, the root-
mean-squared provided very similar 
results for OK and IDW.

Conclusions

The present study applied techniques 
based on fundamental theorems of 
surfaces to interpolate the spatial 
patterns of Cd and Cr in soils from 
e-waste recycling sites. It provided 
quantitative information on the best 
interpolation method for heavy metals 
in e-waste sites located in urban areas. 
Many studies have looked at the 
interpolation methods of heavy metals 
in soils,45 but few have conducted a 
comparison of interpolation methods 
for heavy metals coming from e-waste 
recycling sites in urban areas of 
developing countries. The findings 
demonstrated that OK had more 
accurate results compared to IDW 
for Cr. The OK interpolation method 
was more accurate than IDW and 
this aligns with conclusions of several 
other studies.41,22,42,43 Therefore, OK 
is more suitable for Cr, however not 
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for Cd in urban areas, which was 
a slight advantage in favor of IDW. 
Ordinary kriging was considered to 
have generally superior performance 
compared to IDW as the prediction 
error was lower for the OK method. 
Ordinary kriging was more accurate 
for Cr, but it was on the same level as 
IDW for Cd. In order to validate this 
conclusion, 15 samples were left out 
and the same analyses were carried 
out to evaluate the best interpolation 
method. The OK method showed 
better results using this technique. 
However, in urban areas where people 
are concentrated in a limited space, 
the results showed IDW to be more 
accurate in evaluating exposure risk 
in specific locations. These spatial 
interpolation methods had various 
decision parameters. However, by 
adjusting the power parameter of 
IDW, a better and smoother result 
can be obtained. This partly explains 
its popularity as an interpolation 
method, especially in evaluating water 
pollution.44 The mean error and RMSE 
showed that OK was more suitable for 
Cr, but not for Cd compared to IDW 
results. Therefore, for interpolation 
of heavy metals in urban areas, OK is 
not considered to be the best method 
for interpolation. It is, however, 
recommended that the accuracy of the 
interpolation models be checked by 
evaluating the error of each model and 
using the one with the lowest error. 
These results can assist geographic 
information system specialists in 
selecting the best method for assessing 
pollution levels of heavy metals in 
e-waste sites.
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