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Abstract

Event-related potential (ERP) studies produce large spatiotemporal datasets. These rich datasets 

are key to enabling us to understand cognitive and neural processes. However, they also present a 

massive multiple comparisons problem, potentially leading to a large number of studies with false 

positive effects (a high Type I error rate). Standard approaches to ERP statistical analysis, which 

average over time windows and regions of interest, do not always control for Type I error, and 

their inflexibility can lead to low power to detect true effects. Mass univariate approaches offer an 

alternative analytic method. However, they have thus far been viewed as appropriate primarily for 

exploratory statistical analysis and only applicable to simple designs. Here we present new 

simulation studies showing that permutation-based mass univariate tests can be employed with 

complex factorial designs. Most importantly, we show that mass univariate approaches provide 

slightly greater power than traditional spatiotemporal averaging approaches when strong a priori 

time windows and spatial regions are used. Moreover, their power decreases only modestly when 

more exploratory spatiotemporal parameters are used. We argue that mass univariate approaches 

are preferable to traditional spatiotemporal averaging analysis approaches for many ERP studies.
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1. Introduction

In recent years it has become increasingly clear that many reported results in psychology and 

neuroscience are unreliable or do not replicate (e.g., Camerer et al., 2018; Open Science 

Collaboration, 2015; Pashler & Wagenmakers, 2012). This has generated a lot of discussion 

and reflection about methods, statistics, publication practices, and career incentives. As we 
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will argue below, some of the key factors that lead to low replicability are magnified in EEG 

and ERP research. In particular, the large datasets generated in EEG research present 

opportunities for flexibility in analysis that is not sufficiently addressed by current practices 

in the field.

In this paper, we discuss issues in the analysis of ERP data that undermine our ability to 

draw strong conclusions and that contribute to spurious effects in the literature. We then 

propose that mass univariate analysis—an approach that has often been viewed as 

appropriate only for exploratory analysis in ERP research—offers an improvement over 

traditional spatiotemporal averaging approaches with regard to many of these issues. We 

present new software to implement mass univariate analyses for factorial designs, as well as 

simulation studies showing that these tests can provide greater power and greater flexibility 

than traditional analysis approaches while appropriately maintaining the Type I error rate.

1.1 Replicability as a function of both Type I error rate and power

There are many potential reasons for a failure to replicate findings. Assuming exact 

methodological replication (including sampling from the same population), the inability to 

replicate results is a problem of inferential error. It means that one of the studies (either the 

original or the replication) has reached the wrong conclusion. When such replication failures 

are common, it means that our procedures for making statistical inference are flawed, 

regularly producing either Type I errors (false positives: incorrectly concluding an effect 

exists) or Type II errors (false negatives: incorrectly concluding an effect does not exist). In 

fact, there are reasons to believe both kinds of errors are common.

A lot of discussion about replication failure has focused on “researcher degrees of freedom” 

(Simmons, Nelson, & Simonsohn, 2011) and their impact on the Type I error rate. Research 

in psychology and neuroscience often involves collecting multiple or multidimensional 

independent variables and dependent variables. Even for relatively simple designs, there are 

often many potential ways to process and analyze the data. When several effects are 

calculated in a study (due to multiple independent variables and/or dependent variables), or 

when data are analyzed in multiple different ways, this provides multiple chances to find an 

effect. Since each of these analyses has an independent (or partially independent) error rate, 

the probability that at least one test, or analysis path, will give a significant effect and appear 

to provide support for a hypothesis—even if there is no true effect—may be significantly 

higher than the nominal Type I error rate. In many cases, the multiple comparisons problem 

raised by complex designs and analysis flexibility is hidden or implicit, and it is therefore 

not always obvious that the probability of a false positive is greatly inflated (Cramer et al., 

2016; Gelman & Loken, 2013; Kriegeskorte, Simmons, Bellgowan, & Baker, 2009; Luck & 

Gaspelin, 2017; Vul, Harris, Winkielman, & Pashler, 2009). As many authors have argued, 

this is a significant factor contributing to false positive effects in the literature (John, 

Loewenstein, & Prelec, 2012; Masicampo & Lalande, 2012; Simmons et al., 2011). As we 

will discuss below, this problem may be particularly prominent in ERP research.

A second factor contributing to low replicability is low power (or high Type II error rate). Of 

course, every researcher wants to have high power because we do not want to spend the time 

and resources it takes to conduct a study only to miss real effects. However, what is less 
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often appreciated is that high power is also crucial for producing replicable effects—that is, 

power plays a role in our statistical inference, not just when we fail to find effects, but also 

when we observe significant results. This is for two reasons.

First, if we conduct a study with 50% power, we may well find a significant effect. However, 

if we attempt to replicate this result, it is equally likely that we will not be able to show the 

effect. What are we then to conclude? Which result should we trust? In the statistician R. A. 

Fisher’s (1966) words, “we may say that a phenomenon is experimentally demonstrable 

when we know how to conduct an experiment which will rarely fail to give us a statistically 

significant result” (p. 14). In the long run we draw important conclusions not from a single 

study, but from a number of studies. Unless we conduct research with consistently high 

power, the literature will always provide weak and/or contradictory evidence.

The second reason why power is important for producing replicable effects is that it 

influences the false discovery rate: the proportion of significant results that are false 

positives. A common misconception is that if we set α = .05, then only 5% of significant 

results will be false positives; that is, it is often mistakenly inferred that if a result is 

significant, there is a 5% chance that it is an error (Greenland et al., 2016; Haller & Krauss, 

2002). However, α is the rate at which the null is rejected across all studies in which the null 

is true, and it therefore serves as an upper bound on the false positive rate across all studies 

conducted in the long-run. The proportion of false positives among the subset of studies that 

produce significant results is generally much higher. This proportion is called the false 

discovery rate, and it is a function of not only of the Type I error rate, but also of power.

To see the difference, imagine that we conduct 200 hypothesis tests. One hundred of these 

are cases in which the null is true and the Type I error rate is properly controlled at 5%; the 

other 100 are cases in which the alternative hypothesis is true (i.e., there is a true effect), but 

we only have 20% power to detect the effect. We would expect to find 25 significant effects: 

5 in the cases where the null is true and 20 in the cases where the alternative is true. Thus, 

20% of the significant effects are false positives, even though the Type I error rate is 

appropriately controlled at 5% (and only 2.5% of all studies conducted result in false 

positives). From this example, it should be obvious that if power is higher, the false 

discovery rate will be lower.

Especially when combined with publication bias (the tendency to only publish statistically 

significant results), a high false discovery rate can lead to a literature that is highly 

misleading and full of false positives. Thus, low power undermines our confidence that 

significant effects are real (for further discussion, see Button et al., 2013; Colquhoun, 2014). 

Unfortunately due to noisy measures and relatively expensive (in terms of both time and 

money) data collection, low powered studies are probably the norm in cognitive 

neuroscience (Button et al., 2013).

To summarize, a null hypothesis test only effectively discriminates between real effects and 

those due to sampling error when both Type I and Type II error rates are low. On the other 

hand, when both are high, it is actually possible that the majority of significant results 

obtained are false positives. This is the basis for John Ioannidis’s famous claim that “most 
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published research findings are false” (Ioannidis, 2005).1 It is therefore crucial that we 

address analysis flexibility and properly control the Type I error rate, but also that we do not 

do so at the expense of significantly reducing power.

1.2 Challenges of analyzing ERP data

EEG researchers (along with fMRI and MEG researchers) face additional statistical 

challenges beyond those faced by most behavioral researchers, because we collect thousands 

of measurements for each experimental condition. This is a necessary consequence of 

studying something as complex as neural activity. Moreover, as technology improves and 

new analysis approaches are developed, researchers are collecting even larger and more 

multidimensional datasets. However, flexibility in how we choose to analyze this large 

amount of data can significantly increase the Type I error rate.

Consider a simple ERP experiment in which measurements are recorded from 32 electrodes 

at a sampling rate of 500 Hz. Epochs extending to 1000 ms after stimulus onset are extracted 

from this data. Even after individual trials are averaged, there are 16,000 data points for each 

subject in each experimental condition. This presents a massive multiple comparisons 

problem. That is, in such an experiment, it is almost guaranteed that in some time window at 

some point on the scalp there will be an effect that reaches significance in a conventional 

analysis, even if the null hypothesis is true at all time points and electrodes. It follows that 

the presence of an effect that reaches statistical significance is only evidence that a true 

effect exists if the multiple comparisons issue is appropriately addressed. Unfortunately, the 

most common ways of analyzing ERP data do not sufficiently address this problem. This 

issue has been reviewed in detail by Luck and Gaspelin (2017), so we will only briefly 

describe it here (see also, Kilner, 2013; Kriegeskorte et al., 2009; Luck, 2014, Chapter 10).

1.2.1 Traditional approaches to ERP analysis: Spatiotemporal averaging—
The most common way to handle the large amount of data collected in an ERP study is to 

reduce it via spatiotemporal averaging prior to statistical analysis. In the time domain, an 

effect can be measured by calculating the maximum or minimum value (peak amplitude) or 

the average value (mean amplitude) across a particular time window (Luck, 2014, Chapters 

9–10). In the spatial domain, data can be reduced by choosing a representative electrode or 

by averaging across a subset of electrodes that are selected to reflect the typical spatial 

distribution of the effect of interest. For example, an ERP researcher may operationalize the 

N400 component as the mean amplitude from 300 to 500 ms, averaged across a spatial 

region of centroparietal electrodes (e.g., Cz, CP1, CPz, CP2, Pz). With this approach, the 

Type 1 error rate can be controlled by eliminating researcher degrees of freedom altogether: 

1Whether or not most published research is false, the false discovery rate is almost certainly much higher than we would like. This, 
and a number of other concerns, has led some to suggest that that we should abandon null hypothesis testing altogether (for discussion, 
see Harlow, Mulaik, & Steiger, 1997; Nickerson, 2000). We do not believe that significance tests are appropriate to all situations and 
we are sympathetic to the argument that they are over-used to the exclusion of other approaches to inferential statistics. However, there 
are solutions to the problems presented by a high false discovery rate. First, we can and must address practices that inflate the Type I 
error rate. One such issue in ERP research is a central concern of this paper. Second, we have to address the publication biases that 
lead to only significant effects being publicly reported. If all effects are reported, significant or not, and the Type I error rate is 
properly controlled, then low power (or the null being true) will simply mean that most studies find a nonsignificant effect. It would 
then be obvious that the evidence for a given phenomenon is weak and that the few significant studies are likely to be false positives. 
In other words, a high false discovery rate becomes particularly misleading when combined with publication bias against null results. 
From this perspective, the problem is not with significance testing per se, the problem is with our research and publication practices.
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that is, by fully specifying a priori the spatial region and the time widow of interest. 

Particularly if these procedures are preregistered (Chambers, Feredoes, 

Muthukumaraswamy, & Etchells, 2014; Lindsay, Simons, & Lilienfeld, 2016; Nosek, 

Ebersole, DeHaven, & Mellor, 2018), we can then be confident that reported p-values are 

accurate and that error rates of the tests are appropriately controlled (given, of course, that 

other assumptions of the test hold).

The problem with this approach is that it is overly rigid and can potentially dramatically 

reduce power to detect effects: if a time window and spatial region are chosen a priori, and 

they do not coincide with the effect of interest, an experimenter will be unable to detect a 

true effect. Importantly, this situation is the norm: many ERP effects are variable in timing 

and/or scalp distribution, and so it is not always obvious how to choose the time window(s) 

and spatial region before data is collected. For example, despite its name, the classic P300 

component is defined more by its morphology, posterior scalp distribution, and sensitivity to 

particular experimental manipulations, than by its precise timing. Indeed, P300 effects can 

vary by several hundred ms due to factors that may be of little theoretical interest for a given 

study (Kutas, McCarthy, & Donchin, 1977). Other components, such as the N400, may have 

stable timing (Federmeier & Laszlo, 2009), but they can vary in scalp distribution depending 

on the precise nature of the stimuli (Holcomb, Kounios, Anderson, & West, 1999; Kutas & 

Federmeier, 2011). Moreover, even if identical stimuli are used, there may be differences 

between studies in the precise scalp distribution of an effect because of differences between 

individuals and populations, both in the precise neuroanatomical sources activated, and in 

structural and functional neuroanatomy, leading to different projections of these sources on 

to the scalp surface. Thus, even if a researcher has a well-motivated, clear, a priori 

hypothesis about a well-studied component and how its amplitude will be modulated, she 

may not know in advance the exact time window or spatial ROI that will best characterize 

this component. For studies in which the researcher has little or no a priori prediction about 

where and/or when an effect will manifest, the mean amplitude approach may be so 

restrictive as to make useful analysis impossible.

Many researchers recognize this issue and have adopted two main methods of increasing 

flexibility while still using spatiotemporally averaged ERP data as the dependent variable. 

Unfortunately, however, as we discuss next, both of these practices reintroduce the problems 

of Type 1 error.

The first way that some researchers increase flexibility in analysis is to select analysis 

parameters based on visualization of the data. This remains fairly common practice, but, as 

discussed extensively by Luck and Gaspelin (2017), it introduces significant bias. Choosing 

a time window and/or spatial ROI based on where differences are observed in the data is 

essentially equivalent to conducting an analysis in many different time windows and regions 

and reporting the one that produces the largest effect. Framed in this way, the multiple 

comparisons problem and inflation of the Type I error rate should be obvious. Because all 

these many possible analyses are not actually conducted, this is often called the problem of 

implicit multiple comparisons (Luck & Gaspelin, 2017; see also Gelman & Loken, 2013), 

and many researchers appear unaware of the extent to which this can inflate the Type 1 error 

rate and undermine confidence in significant results.
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The second way in which researchers have attempted to increase flexibility in analysis is 

more principled in nature: either spatial regions and/or temporal window are included as 

additional factors in the statistical model. For example, electrodes may be divided up into 

different spatial regions and entered into a repeated measures ANOVA with a hemisphere 

factor and an anterior-posterior factor. It is then possible to examine main effects of the 

experimental condition(s) of interest and the interaction of these effects with spatial factors. 

This approach has the advantage of eliminating the need to choose a spatial region a priori. 

As we discuss next, however, this approach introduces a new multiple comparisons problem.

To understand how to interpret an interaction with a spatial factor in this type of ANOVA, it 

is important to understand the biophysical basis of EEG/ERP (for a more detailed 

explanation see Buzsáki, Anastassiou, & Koch, 2012; Luck, 2014). The postsynaptic 

potentials that generate ERPs create electrical dipoles: that is, they generate a positive 

voltage on one side of a particular region of cortex and a corresponding negative voltage on 

the other side. The electrode montage on the scalp only covers approximately half of a full 

sphere. Thus, if a dipole is oriented vertically, only one side will be recorded and all or most 

of the electrodes on the scalp will record voltage in the same direction. If the dipole is 

oriented horizontally, both sides will be recorded, and a component will appear as a positive 

deflection at some sites and a negative deflection at others. In either case, each neural source 

will project with different weights to different electrodes. Thus, all effects (both those 

composed of a single dipole and those composed of multiple additive dipoles) should yield 

an interaction between experimental condition and electrode/region. Moreover, since the 

positive and negative ends of a dipole will never cancel each other perfectly across the 

recorded electrodes, all effects will also generate a main effect. Whether the main effect 

and/or the interaction effect is detected (reaches statistical significance) is simply a 

combination of dipole orientation and strength (for further discussion of the interpretation of 

such interactions, see Luck, 2014; McCarthy & Wood, 1985; Urbach & Kutas, 2002, 2006). 

Thus, the inclusion of a spatial factor in an ANOVA model gives every effect two 

independent chances of reaching significance.2 If multiple spatial factors are included, the 

problem increases exponentially (e.g., with two spatial factors, every effect has four chances 

to reach significance). This leads to a significant inflation of the Type I error rate.3

Although not quite as common, some researchers attempt to increase the flexibility of 

analyses in the temporal domain by measuring multiple time windows and including time 

window as a factor in a single repeated measures ANOVA. This raises similar multiple 

comparisons concerns. In addition, this approach is likely to have low power when effects 

exist in only one or a few of many time windows tested.

2A factorial ANOVA consists of multiple completely independent (i.e., orthogonal) tests which each have Type I error rate at the 
chosen alpha (Cramer et al., 2016). The probability that at least one of the main effects or interactions in the model will reach 
statistical significance, even if all null hypotheses are actually true, is therefore higher than the alpha set for each effect. Often, it is 
assumed that each effect tests a distinct hypothesis and so this is not considered a multiple comparisons issue, but for the reasons laid 
out above, this is not the case with interactions involving spatial factors (for further discussion, see Luck & Gaspelin, 2017).
3In some cases, a researcher may want to test a prediction about a particular scalp distribution: for example, that an effect is larger in 
the left hemisphere than the right. In this case, examining an interaction with a spatial factor is important for testing the hypothesis. 
However, in this case, only a significant interaction (and only a specific pattern of interaction) would support the prediction, so there is 
no multiple comparisons issue. Our critique here is not about the use of spatial factors to test spatial predictions, but about their use as 
a solution to uncertainty about where effects will appear.
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To sum up, we face a catch-22 in analyzing ERP data. To consistently have high power to 

detect effects across space and time, we require flexibility in our analysis approaches. Yet 

the most common approaches in ERP research do not allow for much flexibility without 

increasing the Type I error rate. As a result, there is very much a “damned if you do, damned 

if you don’t” aspect to choosing time windows and spatial regions in ERP analysis. While 

several methods have been proposed to deal with this dilemma within the traditional 

spatiotemporal averaging approach (Brooks, Zoumpoulaki, & Bowman, 2017; Luck & 

Gaspelin, 2017), none is wholly satisfactory for all situations.

1.3 Mass univariate statistics for ERP data

An alternative method of dealing with the implicit multiple comparisons problem in ERP 

data is to make it explicit. Rather than average across time and space, we can calculate a 

separate statistical test at multiple time points and electrodes individually. We then apply a 

multiple comparisons correction to control the family-wise Type I error rate across these 

many independent tests. Because this method deals with a large number of dependent 

variables by conducting many univariate analyses, it is referred to as a “mass univariate 

approach”.

The key to making the mass univariate approach practical is to employ a multiple 

comparisons correction that provides adequate power. Therefore, specialized corrections are 

generally used. In EEG research, two main classes of corrections are common. The first 

makes use of probability theory to control the false discovery rate (FDR) within a family of 

comparisons (i.e., across electrodes and time points). Various formulas for the false 

discovery rate correction have been proposed based on differing assumptions. We explore 

three in the present work: the Benjamini and Hochberg (1995) procedure, which assumes the 

results of the family of tests are independent or positively correlated; the Benjamini, Krieger, 

and Yekutieli (2006) procedure, which also assumes independent or positively correlated 

tests but is intended to offer better power when a low proportion of true effects exists across 

tests; and the Benjamini and Yekutieli (2001) procedure which controls the false discovery 

rate regardless of the correlation between tests.

The second class of mass univariate corrections use resampling procedures to estimate the 

null distribution of specialized statistics to control the familywise error rate. These methods 

are nonparametric in nature and therefore require fewer assumptions about the distribution 

of the data than parametric tests (FDR corrections can also be used with nonparametric tests, 

but they are generally used with parametric analyses). Two approaches have received the 

most attention in EEG research. The first uses a permutation approach to estimate the null 

distribution of the maximal effect (e.g., the largest t- or F-value) across time points and 

electrodes (tmax or Fmax; Blair & Karniski, 1993). The second uses a permutation approach 

to estimate the null distribution for a cluster statistic (i.e., a statistic representing the size of a 

cluster of adjacent time points and electrodes showing an effect larger than some 

prespecified threshold; Bullmore et al., 1999; Maris & Oostenveld, 2007). An alternative 

resampling approach to these permutation-based methods is to use bootstrapping to estimate 

the null distribution of the same or similar statistics (e.g., Pernet, Chauveau, Gaspar, & 

Rousselet, 2011; Pernet, Latinus, Nichols, & Rousselet, 2015; see further discussion in the 
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Supplementary Materials). In the present study, we focus on the two permutation-based 

approaches that have been most commonly used to date, but we review the various mass 

univariate corrections in more detail in the Supplementary Materials (see also Groppe, 

Urbach, & Kutas, 2011a; Luck, 2014, Ch. 13; Pernet et al., 2011; Pernet et al., 2015).

Mass univariate approaches are certainly not new or novel for cognitive neuroscientists. In 

fact, they are at the core of standard analysis approaches in functional MRI research 

(Woolrich, Beckmann, Nichols, & Smith, 2009). They are also commonly used for analysis 

of EEG in the frequency domain. However, for standard cognitive ERP research, mass 

univariate analysis is currently used much less commonly than the traditional spatiotemporal 

averaging approaches described above.

One likely reason for this is historical. The standards and common practices for ERP 

analyses were developed when arrays of only a few electrodes were common, when 

computing power made complex, multidimensional analysis approaches difficult or 

impossible, and before many of the specialized multiple comparison corrections in use today 

had been developed. As a result, ERP researchers became accustomed to measurement 

approaches that reduce the large amount of data prior to statistical analysis (which, as 

discussed above, also makes the multiple comparisons issue much less obvious). In contrast, 

early fMRI research was often searching for where effects would appear across many voxels, 

which made the multiple comparison problem explicit. In addition, standard fMRI analysis 

approaches were developed after important advances in computing power and multiple 

comparisons corrections for large datasets had been devised. The result was that very 

different practices became standard, despite the common statistical challenges faced in 

analyzing fMRI and ERP data.

However, there are additional reasons, beyond tradition and inertia, for why mass univariate 

approaches have not become common in ERP research. We can identify two key barriers to 

their widespread adoption.

This first is that current widely used software implementing mass univariate approaches for 

ERP data (Mass Univariate Toolbox: Groppe et al., 2011a; FieldTrip: Oostenveld, Fries, 

Maris, & Schoffelen, 2011) only support single factor designs, or designs that can be 

reduced to a single factor (however, for a bootstrap-based approach to mass univariate 

analysis with complex designs, see the LIMO MEEG toolbox: Pernet et al., 2011). The 

reason for this is that the permutation-based corrections that have been most popular in ERP 

research are not straightforward for factorial designs. As explained in detail in the 

Supplementary Materials (section 1.2), the problem for permutation-based factorial ANOVA 

designs is determining which observations are exchangeable (and thus permutable) under the 

null hypothesis for a particular effect, in cases when it cannot be assumed that the null is 

also true for other effects in the design. The upshot is that for some effects in factorial 

designs (particularly interaction effects), it is only possible to construct an approximate test 

that controls the Type I error rate asymptotically as the sample size increases (Anderson, 

2001; Anderson & Ter Braak, 2003). Since researchers are often interested in interaction 

effects in factorial designs, mass univariate statistics are only likely to see widespread use if 

they are able to handle these effects.
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The second, and perhaps more important, reason why mass univariate approaches have not 

yet been widely adopted in ERP research is that they are often perceived as being primarily 

suited for exploratory analysis. Many researchers we have talked to assume that mass 

univariate approaches sacrifice power for flexibility and that they should be reserved for 

situations where researchers have little idea about the spatial and temporal characteristics of 

the effects of interest. Indeed, existing work on mass univariate approaches has generally 

discussed them primarily in this context (e.g., Groppe et al., 2011a; Lage-Castellanos, 

Martinez-Montes, Hernandez-Cabrera, & Galan, 2010; Luck & Gaspelin, 2017). This is 

understandable: multiple comparison corrections generally reduce power and, in most cases, 

the larger the multiple comparisons problem, the larger the reduction in power. However, as 

we discuss next, the power of mass univariate approaches, in comparison with traditional 

mean amplitude approaches, has not yet been systematically explored.

1.4 The present work: Simulations of the type I error rate and the power of mass 
univariate approaches

The goal of the remainder of this paper is to directly address these two barriers to the use of 

mass univariate statistics in ERP research, and, more generally, to address the challenge of 

how best to balance the need for flexibility, power, and Type I error control in ERP analysis.

To address the first barrier, the first author has developed and released the Factorial Mass 

Univariate Toolbox (FMUT; Fields, 2017b), which builds upon and extends the existing 

Mass Univariate Toolbox developed by David Groppe (Groppe et al., 2011a).4 This free and 

open source MATLAB toolbox implements mass univariate approaches for factorial 

ANOVA, which extends that ability to conduct mass univariate statistics to a much broader 

range of experimental designs used in ERP research.5 Here we use FMUT to conduct a 

series of simulation studies to explicitly address issues of Type 1 error (for permutation-

based approaches) and power. We address two key questions.

First, we evaluate the Type 1 error rate for permutation-based mass univariate approaches 

with factorial designs. Specifically, we ask whether the approximate permutation-based 

methods that are necessary with some factorial ANOVA designs can appropriately control 

Type I error rate with realistic ERP data and the multiple comparisons corrections 

commonly used in mass univariate statistics. There are various methods for constructing an 

approximate test in these situations. Previous simulation work in other domains has 

suggested that calculating and permuting residuals (see the Supplementary Materials for a 

description of this approach) is generally the preferred method, as it controls the Type I error 

rate well even in small samples (Anderson & Ter Braak, 2003; Still & White, 1981; Winkler, 

4The Mass Univariate Toolbox and FMUT import data from EEGLAB (Delorme & Makeig, 2004) and ERPLAB (Lopez-Calderon & 
Luck, 2014) data structures (for data processed in other software, it is often possible to import to EEGLAB or ERPLAB first, then 
import to MUT and FMUT). FMUT implements false discovery rate, Fmax, and cluster-based corrections for multi-factor ANOVAs 
with both within- and between-subject factors. FMUT can be downloaded from https://github.com/ericcfields/FMUT/releases and the 
documentation can be found at https://github.com/ericcfields/FMUT/wiki.
5Since FMUT was released, the permuco package for the R programming language has been released with overlapping functionality. 
This package does not provide the non-cluster based corrections that are included in FMUT and does not import data as easily from 
EEGLAB and ERPLAB. However, it provides additional cluster-based corrections not provided in FMUT (e.g., threshold free cluster 
enhancement) and can handle a broader array of statistical models (e.g., ANCOVA and regression). See: https://cran.r-project.org/web/
packages/permuco/index.html
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Ridgway, Webster, Smith, & Nichols, 2014). However, it is important to determine whether 

these results extend to ERP data so that researchers can be confident when applying 

permutation-based mass univariate statistics to the wide range of experimental designs used 

in ERP research (i.e., designs with more than one factor).

Second, using realistic EEG noise and ERP effects, we ask how the power of mass univariate 

approaches compares to traditional mean amplitude analyses. Here, we consider both 

permutation-based approaches (Fmax and cluster-based corrections) as well as the three 

different FDR corrections described above. Importantly, instead of simply comparing the 

traditional approach to fully exploratory mass univariate approaches, we examine the 

relative power of each approach under varying degrees of specificity about the time windows 

and spatial regions that correspond to an effect of interest. This allows us to directly contrast 

the power of the mean amplitude approach and various mass univariate approaches when 

strong a priori assumptions about the timing and scalp location of a particular ERP effect are 

available, and to examine the relative power of these approaches as these assumptions are 

relaxed.

2. Method

Simulation studies were conducted via custom MATLAB code. All code is available on the 

Open Science Framework (OSF) page for this project: https://osf.io/mktqj/.

2.1 Extraction of EEG noise data

Following Groppe, Urbach, and Kutas (2011b), we carried out all our simulation studies 

using trial-level noise from real EEG data. To obtain EEG noise, we used preexisting EEG 

data collected in our lab from 49 subjects who completed the AX-CPT task (a measure of 

cognitive control processes: Servan-Schreiber, Cohen, & Steingard, 1996).6 In this task, 

participants see a series of letters and press a button whenever they see the letter X preceded 

by the letter A. We used this dataset simply because it contained a relatively large number of 

subjects and a large number of trials for each subject. This allowed us to simulate studies by 

randomly sampling from subjects and trials, as detailed below.

Briefly, EEG data was recorded from 32 Ag/AgCl electrodes using a BioSemi ActiveTwo 

system (biosemi.com), low-pass filtered online at 102.4 Hz, and continuously sampled at 

512 Hz. In EEGLAB (sccn.ucsd.edu/eeglab; Delorme & Makeig, 2004) and ERPLAB 

(erpinfo.org/erplab; Lopez-Calderon & Luck, 2014), the continuous EEG was referenced 

offline to the average of the mastoids and high-pass filtered at 0.05 Hz. Then epochs were 

extracted from 200 ms before until 1100 ms after each letter, and baseline corrected by 

subtracting the mean voltage from −200 to 0 ms of each epoch. Trials with artifact (blinks, 

eye movements, bad channels, etc.) were detected using algorithms implemented in 

ERPLAB and discarded. This left an average of 659 trials for each of the 49 subjects (range: 

6Unlike the code and the effects data (see below), we do not share the noise trials used in our simulations because we did not have 
permission to share raw data from the subjects involved in this study. However, noise trials via the method described here from other 
datasets would be expected to yield similar results.
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516 to 771). The remaining trials were low-pass filtered at 30 Hz and downsampled to 128 

Hz.

We used these trials to extract epochs of background EEG noise as follows. In each 

participant, for each epoch, at each of the 32 electrode sites, the averaged waveform (i.e., the 

ERP) of that trial’s experimental condition was subtracted from the raw EEG. For example, 

for the AX condition, the average waveform for all AX trials was subtracted. This removed 

(an estimate of) the event-related activity and left the individual trial-level EEG background 

noise. These noise trials sum and average to zero across all trials within and across 

conditions and participants (i.e., no overall effects of condition or subject remain), thus 

reflecting the null hypothesis.

The advantage of using actual EEG data in this way is that it represents realistic variability 

across electrodes, time points, trials, and subjects. The full complexity of this variability 

would be difficult to simulate due to the large variety of sources of variability in an EEG 

study. These include stable individual differences in cognition and anatomy, differences in 

cognitive state due to time of day or sleepiness, differences in equipment set-up across 

participants (e.g., cap positioning), fatigue effects across the study, differences in the 

structure of the variability of the waveform in early and late time windows, and many other 

factors. Having realistic variability is important, both because it affects the power of various 

mass univariate approaches, and because some approaches, like the Benjamini and Hochberg 

(1995) and Benjamini et al. (2006) FDR corrections, rely on assumptions about the 

correlation between different time points and electrodes. Thus, the effects of violations of 

these assumptions are reflected in our simulation results.

2.2 Simulations of the Type I error rate of approximate permutation tests required for 
factorial ANOVA designs

As noted in the Introduction and discussed in detail in Supplementary Materials, by 

calculating and permuting residuals, it is possible to construct approximate permutation tests 

for factorial designs that control Type I error rate asymptotically as the sample size increases 

(for details, see Supplementary Materials and Anderson & Ter Braak, 2003; Still & White, 

1981; Winkler et al., 2014). Our first aim was to use these methods to simulate the Type 1 

error rate for an interaction effect in a 3 × 3 repeated measures ANOVA. We examined a 3 × 

3 interaction because this is the simplest effect for which an approximate permutation test is 

required. We used two permutation-based mass univariate corrections to account for multiple 

comparisons: the Fmax and cluster mass procedures. Our question was whether these 

methods maintain the Type I error rate at an acceptable level with realistic EEG data.

For each test, we simulated 10,000 experiments. To simulate each experiment, we drew upon 

a random subset of participants and a random subset of their noise trials (calculated as 

described above). We varied the number of participants (40, 25, 16, 12, and 8) and the 

number of trials (40, 20, and 10 per condition) to examine the effects of these parameters on 

the Type I error rate. Within each subject, we randomly assigned the noise trials (i.e., the 

entire electrode x time point matrix from each trial) to each of nine arbitrary conditions. This 

created a situation in which the distribution and structure of variability in the EEG signal 

across subjects, time points, and electrodes was realistic, but there was no true difference in 
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the ERP across the nine conditions. That is, the null hypothesis was known to be true in the 

population that subjects and trials were sampled from, but nonzero differences would be 

expected to emerge by chance through random sampling in a way consistent with actual 

ERP experiments. The relevant question was how often this random sampling error would 

lead to significant effects.

For each simulated experiment, we carried out a 3 × 3 permutation ANOVA, testing the 

interaction effect via the permutation of residuals method at each of the 32 electrode sites at 

each sampling point. Because variability is likely to differ in early and later portions of the 

ERP (e.g., slow drift will affect later time points more than earlier time points), we 

separately examined an early time window of 0–300 ms and a later time window of 300–

1000 ms.

We first simulated the Type 1 error rate with the Fmax correction for multiple comparisons. 

For each simulated experiment, we conducted 5,000 random permutations7 of the data and 

identified the maximum F-value across all time points and electrodes for each permutation. 

These 5,000 “Fmax” values formed the null distribution, and any time point and electrode 

with an F-value in the unpermuted data that was greater than 95% of values in this null 

distribution was considered significant. We calculated the Type I error rate as the percentage 

of the 10,000 simulated studies where at least one time point/electrode reached significance.

We then simulated the Type 1 error rate using the cluster mass correction for multiple 

comparisons. Clusters were defined as adjacent time points and/or electrodes with F-values 

that would be statistically significant at one of two alpha levels (see below). For the purposes 

of clustering, electrodes within approximately 7.5 cm of one another (assuming a head 

diameter of 56cm) were considered adjacent; adjacent time points were any consecutive 

samples. The cluster statistic was defined as the sum of all F-values in a cluster and the null 

distribution for this statistic was estimated by identifying the largest cluster across each of 

5,000 random permutations of the data for each simulated experiment. Any cluster in the 

original, unpermuted data larger than 95% of clusters in the null distribution was considered 

significant. We calculated the Type I error rate as the percentage of all simulated studies that 

revealed at least one significant cluster.

2.3 Simulations of power for realistic ERP effects

Our second aim was to simulate studies in order to examine the power of different mass 

univariate approaches: two different permutation-based approaches—the Fmax test and the 

cluster mass test—and three different versions of the false discovery rate (FDR) correction. 

We compared each of these mass univariate methods to the traditional mean amplitude 

analysis approach, as well as to each other, with varying a priori assumptions about 

spatiotemporal location.

7The number of permutations used determines how accurately the p-value is estimated (compared to the p-value that would be 
obtained if every possible permutation were examined), but does not change the long-run rejection rate (and thus the Type I error rate 
and power). The estimation precision obtained with a given number of permutations can be seen by calculating a binomial confidence 
interval. Here we used 5,000 permutations so that conducting the test 10,000 times would be computationally feasible. This is in line 
with the suggested number of permutations in the literature (e.g., Manly, 2006). However, for tests that only need to be run once, it is 
often possible to use a larger number of permutations so that the p-value can be calculated accurately to multiple decimal places.
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2.3.1 Construction of simulated experiments—Experiments were simulated 

according to the procedures described above for tests of the Type I error rate with the 

following differences: (1) the number of simulated conditions differed depending on the 

effect being tested; (2) as our goal was to compare the relative power of different methods 

rather than power curves or absolute power, 24 subjects and 20 trials per condition were 

used for all simulations to simplify simulations and results; (3) realistic ERP effects were 

added to the data after the noise was randomly sampled and averaged.

In order to simulate individual differences in effects, in each simulated experiment, we 

multiplied the entire electrode x time point matrix of the effect of interest (see below) by a 

value randomly drawn from a normal distribution with a mean of 1 and a standard deviation 

of 0.1 for each condition for each subject. Then, for each effect in each simulated 

experiment, we added the averaged noise trials so that the simulated waveforms represented 

the sum of a true population level effect (with individual differences) and realistic EEG 

noise.

2.3.2 Simulated effects—We examined three ERP effects: the N400, the P300, and a 

simulated early, focal P1. The first two were chosen because they are widely studied, well-

known ERP components that many researchers will be familiar with. The P1 was included to 

examine power to detect a spatially and temporally focal effect. These three effects are 

shown in Figure 1. The data for these effects is available on the OSF page for this project: 

https://osf.io/mktqj/.

To simulate the well-established effect of semantic expectancy on the N400, we used the 7.5 

Hz low-pass filtered grand average waveform of two conditions from a subset of subjects (n 
= 24) who took part in an experiment carried out by Kuperberg, Brothers, and Wlotko 

(2019): highly expected critical words (high cloze probability) in a highly constraining 

sentence context and unexpected (low cloze, but plausible) critical words in a 

nonconstraining context. The effect was centroparietally distributed and peaked at around 

430 ms. For the purposes of the simulation, all time points before 200 ms and after 700 ms 

at all electrodes were set to the average of the two conditions (i.e., the null hypothesis was 

true). Because the N400 effect size in this study was quite large, power would approach or 

equal 1 for some of the analyses presented here. We therefore reduced the size of the effect, 

relative to the error trials, by a third (i.e., the effect represented what may be expected from a 

similar, but subtler, semantic manipulation).

To simulate the P300, we used the 7.5 Hz low pass filtered grand average waveform of the 

20%, 50%, and 80% conditions of a traditional two-stimulus oddball task with male and 

female names as the stimulus categories (Fields, 2017a, Chapter 2). As shown in Figure 1, 

this effect peaked at around 620 ms and was centroparietally distributed (replicating Fabiani, 

Karis, & Donchin, 1986). All time points before 430 ms and after 980 ms at all electrodes 

were set to the average of the two conditions (i.e., the null hypothesis was true). Because this 

effect was quite large, the size of the effect relative to the error trials was reduced by half to 

avoid ceiling effects.
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Previous simulation work by Groppe et al. (2011b) indicates that the relative power of the 

different mass univariate approaches depends on the nature of the effect being tested. The 

N400 and P300 are both widely distributed in space and time, and they are generally rather 

similar in their spatiotemporal characteristics. We did not have access to a more focal effect 

that matched our noise data (i.e. that was collected with the same electrode array and 

equipment), so we simulated a focal P1-like effect. This effect consisted of a quadratic 

parabola lasting 7 sampling points (approximately 50 ms given a 128Hz sampling rate) and 

representing a 4 μV difference at the peak. The effect was added starting at 98 ms at CPz and 

a half-amplitude version of the effect was added to the four electrodes surrounding CPz: Cz, 

CP1, CP2, and Pz (this made the spatial distribution similar to the other effects examined 

here). In other words, this effect was short-lived, peaked sharply, and was very focal on the 

scalp (see Figure 1).

2.3.3 Calculation of statistical tests—To examine the power of the traditional 

averaged amplitude approach, the mean amplitude across all time points and electrodes 

included in the analysis (see below) was submitted to a parametric repeated measures 

ANOVA for each simulated experiment. Power was defined as the proportion of the 10,000 

simulated experiments where the effect reached a significance threshold of p ≤ .05.

To examine the power of each mass univariate approach, a separate repeated measures 

ANOVA was conducted at each electrode and time point included in the analysis, and the 

relevant correction was applied. The permutation-based corrections were calculated as 

described above. We examined the cluster mass approach with two cluster inclusion 

thresholds, an uncorrected p-value of .05 and an uncorrected p-value of .01. While p ≤ .05 

has been used in most work, we suspected that the more stringent inclusion criteria would 

magnify the influence of large effect sizes at the peak, which may make the cluster approach 

more sensitive to focal effects like the simulated P1. Finally, we calculated three FDR 

corrections as described by Benjamini and Hochberg (1995), Benjamini and Yekutieli 

(2001), and Benjamini et al. (2006), respectively. For each of these approaches, we 

calculated power as the percentage of 10,000 simulated experiments where any time point/

electrode combination (or in the case of the cluster mass test, any cluster) was significant at 

a corrected level of p ≤ .05.

2.3.4 Assessing power of different approaches to detect effects under 
varying a priori assumptions about spatiotemporal location—Our key question 

was about familywise power: the proportion of all simulated studies in which at least one 

time point was (correctly) identified as significant. In other words, assuming an effect is 

present, how likely is each method to detect it?

We first examined familywise power in a priori time windows and spatial ROIs that matched 

well where we knew the effect was actually located. These simulations represented the 

approach generally taken when using mean amplitude analyses. We then progressively 

relaxed these temporal and spatial assumptions to examine the effect of increased analysis 

flexibility on the power of each approach. This allowed us to ask two key questions. First, 

how does the power of traditional approaches compare to mass univariate approaches when 

the temporal and spatial distribution of the effect is known a priori? Second, how much 
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power is lost when these assumptions are relaxed to reflect uncertainty about the timing or 

location of effects? This is in contrast to previous simulation work that has examined the 

power of the mass univariate approach for less realistic ERP effects and only as a purely 

exploratory approach (Groppe et al., 2011b; Lage-Castellanos et al., 2010).

2.3.5 Using mass univariate approaches to detect the time course of effects
—Standard spatiotemporal averaging analysis approaches in ERP research are intended to 

answer the question of whether a difference between conditions exists at all, and they are 

generally ill-suited to tell us precisely when and where an effect exists. That is, if we analyze 

the N400 as the mean amplitude from 300–500 ms, and we find a significant effect, this does 

not tell us that the effect exists at all time points between 300–500 ms, nor does it tell us 

whether or not the effect extends beyond this prespecified time window. Our main goal in 

the analysis of the power of mass univariate tests, as described above, was to determine their 

power to answer this same question: whether there is any significant difference in a given 

time window. Thus, power was defined as the percentage of studies in which any time point 

reached significance (familywise power).

Unlike the mean amplitude approach, mass univariate approaches also give us some explicit 

information about the temporal extent of an effect because we can see which individual time 

points reach significance in a mass univariate analysis. Even though most mass univariate 

methods are not guaranteed to be accurate for individual time points (see Discussion), we 

examined how well each of these approaches characterizes the timecourse of effects by 

calculating the following three measures from our simulations:

• Elementwise power: For each study that shows at least one significant time point, 

what proportion of time points with a true effect are significant? In other words, 

if one finds a significant effect using a given correction, to what extent is the time 

course revealed by that correction likely to capture the full extent of the true 

effect?

• Familywise false discovery rate (FDR): Out of all studies that show at least one 

significant time point, what proportion of these studies include at least one false 

positive? In other words, if one finds a significant effect using a given correction, 

what is the likelihood that some of the time points revealed are actually false 

positives?

• Elementwise false discovery rate (FDR): For each study that shows at least one 

significant time point, what proportion of time points that are significant are 

actually false positives? In other words, if one finds a significant effect using a 

given correction, do most of the time points revealed reflect true effects, or is 

there likely to be a large proportion of false positives?

Additional measures, including elementwise Type I error rate, onset times, and offset times, 

are available on the OSF page for this project: https://osf.io/mktqj/
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3. Results

Full results of all simulations are available on the OSF page for this project: https://osf.io/

mktqj/.

3.1 Simulations of the Type I error rate of approximate permutation tests

Our first aim was to simulate the Type 1 error rate for the two-way interaction effect in a 3 × 

3 repeated measures ANOVA using approximate permutation-based tests (see Introduction 

and Supplementary Materials) with the Fmax and cluster mass corrections. For each 

simulated experiment we calculated the Type I error rate as the percentage of simulated 

experiments in which any time point/electrode reached significance at p ≤ .05.

Results are shown in Figure 2. As can be seen, the permutation of residuals method of 

constructing the approximate permutation test led to only a minimally inflated Type I error 

rate. Cluster-based methods maintained the Type I error rate better than the Fmax method in 

all simulations. As expected, the Type I error rate was increased with smaller sample sizes. 

However, even for simulations with only 8 subjects and 10 trials per condition—both of 

which are rather extreme for most ERP studies—the Type I error rate was only .077 for the 

Fmax methods and .068 for the cluster mass test. For most simulations, rates were much 

closer to the nominal α.

3.2 Simulations of power to detect realistic ERP effects

Our second aim was to examine the relative power of the different mass univariate correction 

approaches: permutation approaches with the Fmax and the cluster mass corrections (with 

two different cluster inclusion thresholds), and three versions of the false discovery rate 

correction. We compared all these mass univariate methods with the traditional mean 

amplitude analysis approach with regard to ability to detect effects on three different ERP 

components: the semantic expectancy effect on the N400 component, the oddball effect on 

the P300, and a simulated temporally and spatially focal P1-like effect. Importantly, we 

examined the power of each of these methods to detect effects both under the assumption 

that the experimenter had strong a priori knowledge about spatial location and time window 

(strong spatiotemporal regions of interest), and with more exploratory analysis parameters.

3.2.1 N400

3.2.1.1 Power to detect N400 modulation under different a priori assumptions about 
its spatiotemporal location: We first examined the N400 effect within a constrained a priori 

spatiotemporal region of interest that is typically associated with the N400 component and 

that corresponded to where the effect was actually observed in the studies that we simulated: 

a time window of 300–500 ms and a spatial region of five centroparietal electrodes (Cz, 

CP1, CPz, CP2, Pz). As shown in Figure 3, the Fmax and cluster mass tests showed slightly 

better power than the mean amplitude approach. The false discovery rate based tests had the 

least power of all the approaches, particularly the more conservative Benjamini and 

Yekutieli (2001) method.
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We next carried out simulations with a less restrictive spatiotemporal region of interest: all 

electrode sites within a time window of 200–600ms. As would be expected, averaging across 

this broader spatial and temporal region greatly reduced the power of the mean amplitude 

approach. In contrast, the cluster mass approach displayed approximately the same power as 

in the more restrictive analysis. The other mass univariate approaches showed moderately 

reduced power, but all of them (with the exception of the Benjamini and Yekutieli (2001) 

FDR correction) showed much greater power than the mean amplitude approach. Finally, we 

carried out a completely bottom-up, exploratory approach examining the entire temporal 

epoch at all electrode sites. In this simulation, the mass univariate approaches—especially 

the cluster mass test—showed only moderately reduced power.

3.2.1.2 Using mass univariate approaches to detect the time course of the 
N400: Above we considered the power of mass univariate methods to detect whether any 

effect was present within a prespecified time window. As noted in the Methods, this is the 

question answered by the spatiotemporal averaging approache to analysis.

Unlike these traditional methods, mass univariate analyses also allow us to examine the 

rejection rates at each individual time point, allowing us to determine how well each 

correction method accurately characterizes the timecourse of our simulated effects. To 

address this question, we focus on the 0–1000 ms analysis at all electrode sites. This is 

because the analyses carried out between 300–500 ms and 200–600 ms analyses contained 

only time points with true effects, and so false positive time points were not possible in these 

analyses (full results for all analyses are available at https://osf.io/mktqj/).

3.2.1.2.1 Elementwise power: As shown in Figure 4, all mass univariate methods tended to 

underestimate the true duration of the effect, generally reporting less than half of time points 

that had a true effect across the full epoch. The .05 thresholded cluster mass test generally 

showed the best performance in this regard. The Fmax and Benjamini and Yekutieli (2001) 

FDR approaches showed the worst performance, particularly underestimating the duration of 

the true effects.

3.2.1.2.2 Familywise and elementwise FDR: As shown in Figure 5, given a significant 

overall effect, most methods, including the .01 thresholded cluster test, revealed false 

positive time points in less than 7% of simulated studies (familywise FDR). However, the 

Benjamini and Hochberg (1995) and Benjamini et al. (2006) FDR methods were more likely 

to include a false positive time point (over 35% of studies), and the .05 thresholded cluster 

test included a false positive 17% of the time.

As shown in Figure 6, given a significant overall effect, less than 10% significant time points 

were false positives (elementwise FDR) in over 95% of studies for most methods. However, 

once again, the Benjamini and Hochberg (1995) and Benjamini et al. (2006) FDR methods, 

as well as the .05 thresholded cluster test performed less well, with a relatively high 

percentage (>20%) of significant time points consisting of false positives.
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3.2.2 P300

3.2.2.1 Power to detect P300 modulation under different a priori assumptions about 
its spatiotemporal location: We first analyzed the P300 effect between 500 and 750 ms 

with a spatial ROI of 5 centroparietal electrodes (Cz, CP1, CPz, CP2, Pz). This represents an 

a priori prediction that matched the true spatiotemporal distribution of the effect. Like for the 

N400, the power of the cluster mass test was slightly greater than the Fmax test or the mean 

amplitude test, which were equivalent. The FDR corrections showed the least power.

When the time window was doubled in length (400–900 ms) and all electrodes were 

included, the power of the mean amplitude test decreased significantly more than the mass 

univariate tests, as expected. Finally, in a fully bottom-up test of the entire epoch and all 

electrodes, the mass univariate tests showed power reduced moderately from the more 

restrictive time windows.

3.2.2.2 Mass univariate time course of the P300: As for the N400, we report these 

measures only for the 0–1000 ms analysis (full results for all analyses are available at https://

osf.io/mktqj/).

3.2.2.2.1 Elementwise power: Like for the N400, all approaches tended to significantly 

underestimate the true extent of the effect. The .05 thresholded cluster mass tests showed the 

best performance, with a median of just over half of time points identified. All other method 

missed most time points with an effect, with Fmax and the Benjamini and Yekutieli (2001) 

FDR correction showing particularly poor elementwise power (Figure 4).

3.2.2.2.2 Familywise and elementwise FDR: The tendency to include at least one false 

positive time point was higher in these simulations than for the N400 simulations (Figure 5). 

This is because absolute power was lower: when power is low, only those studies in which 

noise contributes to overestimation of the effect size (which in the case of ERPs analyses can 

include duration) are able to reach significance (Bakker, van Dijk, & Wicherts, 2012). This 

tendency was particularly pronounced for the .05 thresholded cluster test and the Benjamini 

and Hochberg (1995) and Benjamini et al. (2006) FDR procedures (>30%). All other 

methods included a false positive in less than 20% of studies. The proportion of significant 

time points that were false positives was less than 10% for most simulated studies, but 

encompassed a majority of significant time points in over 5% of simulated studies for all 

methods (Figure 6).

3.2.3 Simulated P1

3.2.3.1 Power to detect P1 modulation under different a priori assumptions about its 
spatiotemporal location: For the simulated focal P1-like component, even with a strong a 

priori approach centered around the true location of the effect, all mass univariate 

approaches showed better power than the mean amplitude test (Figure 3). However, the 

cluster mass test showed very poor power when assumptions were relaxed. The FDR 

methods and Fmax maintained reasonable power when broader time windows and all 

electrodes were examined, with Fmax in particular showing a strong ability to detect this 

focal effect even with no temporal or spatial constraints.
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3.2.3.2 Mass univariate time course of the P1: As for the N400 and P300, we report 

these measures only for the 0–1000 ms analysis (full results for all analyses are available at 

https://osf.io/mktqj/).

3.2.3.2.1 Elementwise power: All methods revealed less than 20% of the time points with 

an effect in most simulated studies. Only the cluster mass tests revealed over half of effects 

with a time point in even 5% of simulated studies, but this came at the expense of very 

unstable time course estimates and a very high false discovery rate (next section).

3.2.3.2.2 Familywise and elementwise FDR: The cluster tests included false positive time 

points in a majority of simulated studies (Figure 5) and a majority of significant time points 

were false positives in most cases (Figure 6). This is not surprising: because power was 

essentially indistinguishable from the Type I error rate in these analyses, the small 

proportion of results that were significant represented primarily random noise rather than 

being driven by the true effects present. All other approaches, while generally 

underestimating the duration of the effect, had low error rates: they included a false positive 

less than 7% of the time (Figure 5). For all methods other than the cluster tests, the 

proportion of significant time points that were false positives was very low in most 

simulated studies, but ranged as high as half of significant time points for all methods except 

the Benjamini and Yekutieli (2001) FDR correction.

4. Discussion

The large datasets produced in ERP studies present a challenge for statistical analysis. On 

the one hand, being able to detect neural activity with high temporal precision, and being 

able to distinguish between different neurocognitive processes on the basis of differences in 

scalp distribution, is key to the ability of EEG to reveal how the brain works. On the other 

hand, such complex data provide multiple opportunities for effects to emerge from sampling 

noise. We need statistical methods that can flexibly and reliably detect effects where they 

exist, both in time and space, while appropriately controlling the Type I error rate. 

Traditional approaches that require us to prespecify fixed spatial and temporal analysis 

parameters may control the Type I error rate, but they fail to give us the flexibility and power 

we need to detect true effects. Importantly, as discussed in the Introduction, this directly 

contributes to the rate of false discoveries and therefore to failures of replication.

Mass univariate approaches provide an alternative approach to statistical analysis, and have 

been around for over a decade (Blair & Karniski, 1993; Maris & Oostenveld, 2007). 

However, they have not been widely adopted for ERP analysis, both because permutation-

based methods of correction have not been widely available for complex factorial designs, 

and because mass univariate methods are often perceived as sacrificing power and as 

appropriate only for exploratory analysis situations. Here we show that neither of these 

issues should be a barrier to the widespread adoption of mass univariate statistics. First, we 

show that permutation-based tests can appropriately control the Type I error rate with EEG 

data, even for designs where an exact permutation test is not possible. Second, we show that, 

when used in conjunction with a priori spatiotemporal regions of interest, mass univariate 
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approaches can actually offer better power than traditional mean amplitude approaches, 

demonstrating that these approaches have advantages outside of exploratory analyses.

4.1 Approximate permutation-based tests can be used in factorial designs with ERP data

The first barrier to the widespread adoption of permutation-based mass univariate statistics 

in ERP studies is the perception that they are not appropriate for factorial designs of the type 

used in most ERP experiments. With such designs, it is not possible to carry out 

permutation-based tests that control the Type I error rate at exactly the specified α. As a 

result, most current widely available software has only supported single factor designs (Mass 

Univariate Toolbox: Groppe et al., 2011a; FieldTrip: Oostenveld et al., 2011; but see the 

LIMO MEEG Toolbox: Pernet et al., 2011).

This problem, however, is surmountable: we have known for some time that it is possible to 

carry out approximate tests by permuting residuals. This approach yields a Type I error rate 

that is asymptotic to α as the sample size increases (see Supplementary Materials; 

Anderson, 2001; Freedman & Lane, 1983; Still & White, 1981). Previous work using 

simulated data (Anderson & Ter Braak, 2003; Still & White, 1981) and fMRI data (Winkler 

et al., 2014) has shown that such approximate tests can control the Type I error rate, even in 

small samples. Here we carried out such simulations with real EEG data. We examined the 

two most common permutation-based mass univariate corrections used in EEG research: the 

Fmax test and the cluster mass test. Our findings show that with common sample sizes used 

in ERP research, these approximate approaches control the Type I error rate at acceptable 

levels. Even under suboptimal experimental conditions of 8 subjects and 10 trials per 

condition, the Type I error rate was increased to a maximum of .077 for Fmax and .068 for 

the cluster methods.

These findings greatly extend the usefulness of mass univariate permutation-based methods, 

since many, or perhaps most, ERP studies use factorial designs that aim to examine 

interaction effects. Indeed, the permutation of residuals method tested here can also be 

extended to designs with continuous predictors (ANCOVA and multiple regression: see 

Anderson, 2001; Freedman & Lane, 1983; Winkler et al., 2014), meaning that they can be 

adapted to cover the large majority of statistical analyses in ERP research (for an 

implementation of cluster-based corrections with ANCOVA and regression, see the permuco 

R package: https://cran.r-project.org/web/packages/permuco/index.html).

4.2 Mass univariate approaches offer better power than traditional spatiotemporal 
averaging approaches for analyzing ERP data

The second main barrier to the widespread adoption of mass univariate statistics for ERP 

studies is the perception that they sacrifice power and should be therefore be reserved for 

exploratory analyses only. Here we show that this assumption is not justified. Using 

simulations constructed from real EEG noise and real ERP effects, we directly compared the 

power of mass univariate approaches and traditional spatiotemporal averaging approaches, 

both under conditions where strong a priori assumptions about the temporal and spatial 

location of effects are possible (as is necessary for traditional analysis approaches), and 

under more exploratory analysis parameters.
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When we used long time windows and the full electrode montage, mass univariate 

approaches showed much greater power than mean amplitude approaches. This, of course, is 

not surprising. Obviously, averaging across many electrodes and time points where there are 

small or zero effects would be expected to greatly reduce power. This is precisely why mass 

univariate approaches have been suggested for exploratory analyses. What was more 

surprising, however, was that when we selected time windows and spatial regions that 

coincided with where we knew the true ERP effects to localize, mass univariate analyses still 

performed slightly better than averaging across this spatiotemporal region. Perhaps most 

encouragingly given the need for some flexibility in many studies, as constraints on 

spatiotemporal regions of interest were loosened, mass univariate approaches showed 

relatively modest reductions in power in most cases.

These findings have important implications. They suggest that ERP researchers do not need 

to choose between two extremes—a fully exploratory mass univariate analysis approach that 

includes all electrode sites and all time points, or a rigid a priori spatiotemporal averaging 

approach that prespecifies exactly where and when a particular ERP effect is expected to be 

produced. These two extremes, of course, have their place. When a new phenomenon is 

being studied and we don’t know which components are likely to be modulated, mass 

univariate analyses can give us reasonable power to detect effects with a fully exploratory 

analysis. And when closely replicating a previous study using a well-characterized 

paradigm, it may be possible to specify exactly when and where effects will be observed.

However, our impression is that the large majority of ERP studies fall between these two 

extremes: we often have some general idea of where and when to expect a particular ERP 

effect, but this is accompanied by some uncertainty. For example, in our own work we have 

found that late positive components (such as those sensitive to emotion or syntax and 

semantics) can vary in timing and precise spatial location depending on the nature of the 

stimuli and the task given to participants. When conducting a study examining these 

components, we may know we are looking for a posteriorly distributed positivity somewhere 

between 300 and 1000 ms, but we may not know exactly which time window, or which 

posterior electrode sites, will best capture the effect. In this situation, in order to provide the 

best possible balance of flexibility and power with appropriate Type I error control, it makes 

sense to carry out mass univariate analysis over posterior electrodes from 300–1000 ms.

4.3 Power of different mass univariate approaches

Consistent with previous work (Groppe et al., 2011b), our simulations also showed that 

different mass univariate approaches are better tailored to detecting different kinds of ERP 

effects. The FDR approaches were outperformed by the permutation-based approaches in all 

simulations and therefore will not be discussed further. The Fmax approach showed the best 

power for detecting a highly focal effect, whereas the cluster-based approach showed the 

best power for detecting effects that were widely distributed across space and time. The 

relative advantages and disadvantages of various mass univariate approaches are 

summarized in Table 1.

These strengths and weaknesses of Fmax and cluster mass tests can be understood when we 

look closer at how each works. When power is framed in terms of whether an effect is 
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detected at all (as opposed to the extent of the effect, see below), the power of Fmax depends 

only on the size of the effect at its peak. The cluster mass statistic (the sum of the F-values in 

a cluster), on the other hand, depends both on the size of the effect (i.e., the size of 

individual F-values) and the number of time points and electrodes included. This approach is 

therefore less helpful for detecting highly focal effects that form small clusters.

While in the present simulations the cluster mass test showed only slightly greater power 

than Fmax for the P300 and N400, this was because these effects were large at their peak in 

addition to being temporally and spatially broadly distributed. The cluster mass correction 

would presumably much more significantly outperform Fmax for long lasting effects with 

less prominent peaks (e.g., the contingent negative variation, lateralized readiness potential, 

and various slow waves). Similarly, in all but the most stringent analysis parameters, the 

difference between Fmax and the cluster test for the P1 was quite large. However, it is worth 

emphasizing here that this effect was simulated and was temporally and spatially focal to a 

degree that is rare in real ERP effects. Thus the differences will likely be smaller in the large 

majority of actual use cases.

4.4 How should effects revealed by mass univariate approaches be interpreted?

Our suggestion that mass univariate analysis should be used in conjunction with 

spatiotemporal regions of interest, rather than reserved purely for exploratory analyses, 

raises questions of how such results should be interpreted. For example, if one is used to 

defining and operationalizing the N400 effect as an average difference between 300 and 500 

ms at a particular subset of electrode sites, what are we to make of a mass univariate 

analyses showing an effect from 391 to 433 ms? What if only a 20 ms window reaches 

significance?

These questions relate, in part, to the challenge of determining whether and when an 

observed ERP effect can be equated to a particular mechanism or can be identified with a 

known theoretical entity. What we label an “N400” or “P300” is a matter of interpretation 

that is largely independent of the statistical approach. For example, we may not think a 25 

ms difference in where effects peak across studies is theoretically meaningful, but we know 

an effect peaking at 600 ms is not an N400 effect (Federmeier & Laszlo, 2009). There is no 

avoiding these issues of interpretation; only theory and scientific judgment can answer such 

questions, and these must be employed with mass univariate analysis just as they are with 

traditional approaches.

These questions also relate more specifically to the interpretation of temporal and spatial 

information given by mass univariate analyses. Mass univariate approaches are primarily 

helpful for inferring whether a particular effect exists within a spatiotemporal region of 

interest while controlling the probability of detecting an effect in error. They are not 

designed to give the most accurate estimate of the temporal extent or spatial distribution of 

an effect. This is clearly illustrated by our simulation results. The cluster mass procedure 

does not allow for conclusions about individual time points or electrodes with a known error 

rate or level of confidence because it only tests the significance of the cluster as a whole (see 

discussion in Sassenhagen & Draschkow, 2019). While our simulations suggest that the 

cluster-based correction can give a reasonable (though conservative) estimate of the true 
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timecourse of an effect when (familywise) power is relatively high, it becomes increasingly 

misleading as power decreases. The Fmax test, in contrast, controls the probability that even 

one significant time point will be a false positive, but our simulations clearly show that this 

is at the expense of a very high Type II error rate at individual time points: that is, the Fmax 

test severely underestimate the true duration of effects.

Once again, it is important to note that exactly these same interpretation problems exist 

when using spatiotemporal averaging approaches for statistical analysis. The fact that a 

difference is significant when we average across 300 to 500 ms does not mean it exists at all 

those time points or that it doesn’t exist outside those time points. It also does not tell us that 

differences were driven by the same time points in two studies showing an effect in the same 

averaged time window.

Despite ERPs being known for their temporal precision, characterizing the time course of an 

ERP effect accurately is challenging (Luck, 2014), and unfortunately mass univariate 

analyses do not solve this problem. If the conclusions a researcher wants to draw depend on 

precisely which time points show an effect or something specific about the spatial 

distribution of an effect, analyses designed to directly address such questions should be 

employed (for discussion of how to best quantify the onset, peak, or offset of ERP effects, 

see Kiesel, Miller, Jolicœur, & Brisson, 2008; Luck, 2014).

4.5 Limitations of mass univariate approaches and open questions

No statistical technique is a magic bullet. Mass univariate statistics are certainly not a 

substitute for good theories and strong experimental design (Meehl, 1997), or for informed 

and ethical conduct of research. And, like any technique, they are not appropriate for all 

situations and all research questions. Here we consider some current limitations of mass 

univariate methods and some open questions for future research.

One challenge is generalizing mass univariate approaches beyond simple hypothesis testing. 

In many cases, calculation of effect sizes along with estimation approaches, such as 

confidence intervals (CI), are preferable to hypothesis testing, and many authors have argued 

for replacing (or at least supplementing) hypothesis testing with estimation methods (Cohen, 

1994; Cumming, 2014; Groppe, 2017; Meehl, 1997; Nickerson, 2000). Unfortunately, in the 

case of the cluster mass test, which showed the greatest power in many of our simulations, 

there is no obvious way of calculating a meaningful effect size or CI. However, CI 

equivalents of the tmax correction (Groppe, 2017) and FDR corrections (Benjamini & 

Yekutieli, 2005) are possible. Because Type I error is related to the coverage of a CI (i.e., the 

rate at which the CI contains the true population value) and power is closely related to 

estimation precision (i.e., width of the CI), our simulation results are also relevant to the use 

of these procedures.

Another open question for mass univariate approaches is how they can be extended to more 

complex models. For example, mixed effects regression using individual trial data, with both 

subjects and items as random effects, are becoming increasingly popular in ERP research. 

These models have several advantages, including the ability to examine continuous measures 

for each trial (e.g., calculating the linear effect of word frequency on the N400 rather than 
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simply comparing binary high and low frequency conditions), and the ability to account for 

item-level variance that is one cause of variable effects in the literature and some replication 

failures (Clark, 1973; Judd, Westfall, & Kenny, 2012). However, at the present time, 

combining permutation-based approaches with single-trial analyses requires nontrivial or 

impossible computational power (Nielson & Sederberg, 2017). These more complex models 

can be combined with FDR approaches (e.g., Nieuwland et al., in press), but our simulations 

show that FDR does not have power as high as the permutation-based approaches. Another 

alternative approach is to first calculate a model from single-trial data within each subject 

and then use the coefficients from this model to calculated subject-level analyses. This 

approach is common in fMRI research and is implemented for EEG in the Linear Modelling 

(LIMO) of MEEG toolbox (Pernet et al., 2011). These models can account for parametric 

effects at the single trial level and can be combined with the mass univariate corrections 

discussed here. However, they do not account for item-specific variability as a random effect 

as is now commonly done in mixed linear modelling.

There are other cases where spatiotemporal averaging approaches may still be required, or at 

least make analyses much simpler. One such case is between-group designs where the 

timing of effects differs between groups. For example, in a comparison of older and younger 

adults, the N400 effect will be delayed for older adults (Kutas & Iragui, 1998). For a 

particular study, this may not be of theoretical interest; the question may be, instead, whether 

the magnitude of the effect differs while ignoring timing. This question cannot be tested with 

a mass univariate approach that compares matched time points across the groups. Instead, 

the usual approach of averaging across different time windows for each group would be 

more useful.

4.6 Conclusions

In conclusion, we argue that wider adoption of mass univariate analyses can play an 

important role in building a more reliable and replicable ERP literature. Our simulations 

show that the mass univariate approach is appropriate for a much broader range of studies 

and situations than has generally been assumed. Our results suggest that ERP researchers 

need not fear that they must commit themselves to exactly where and when effects will 

appear in order to have reasonable power: compared to the widely used mean amplitude 

approach, mass univariate approaches show equivalent or better power (given equivalent 

spatial and temporal assumptions) with greater flexibility.

Mass univariate approaches are already well-established and ubiquitous in cognitive 

neuroscience: they are the default approach to the analysis of fMRI data and they are 

commonly used for EEG and MEG time-frequency analyses. We see no reason this should 

not also be the case in ERP research. We therefore conclude this paper with a bold 

suggestion: at least when working with trial-averaged ERPs, most ERP researchers should 

change the way they conduct statistical analysis. Specifically, the current results suggest that 

in many ERP studies, mass univariate approaches will provide the best combination of 

power and Type I error control.

Fields and Kuperberg Page 24

Psychophysiology. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Real ERP effects used in simulations of power.
See text for details.

Fields and Kuperberg Page 29

Psychophysiology. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Type I error rate of approximate permutation tests.
Bar graphs show the Type I error rate of the permutation of residuals method for a 3 × 3 

ANOVA interaction with varying numbers of subjects and trials. Type I error rate for mean 

amplitude (averaged across time points and electrodes) with parametric ANOVA is shown 

for reference. Error bars show the Clopper-Pearson 95% confidence interval of the 

proportion.
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Figure 3. Familywise power.
Plotted is the proportion of all simulated studies where at least one time point was correctly 

identified as showing an effect. Error bars show the Clopper-Pearson 95% confidence 

interval of the proportion.
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Figure 4. Elementwise power.
Elementwise power is defined as the proportion of time points with a true effect that were 

indicated as significant. Plots show the distribution of this proportion across the subset of all 

simulated studies where at least one time point was significant. The black bar shows the 

median, the limits of the box show the 25th and 75th percentile, and the lines extend to the 

5th and 95th percentile. (Note that the box is missing in some places because the median, 

25th percentiles, and 75th percentile were identical.)
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Figure 5. Familywise false discovery rate (FDR).
Out of all studies with any significant effect, how many included at least one false positive 

time point? Error bars show the Clopper-Pearson 95% confidence interval of the proportion. 

“NA” indicates that false positives were not possible for these analyses because all time 

points examined contained a true effect.
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Figure 6. Elementwise false discovery rate (FDR).
Elementwise FDR is defined as the proportion of significant time points that are false 

positives. Plots show the distribution of this proportion across the subset all simulated 

studies where at least one time point was significant. The black bar shows the median, the 

limits of the box show the 25th and 75th percentile, and the lines extend to the 5th and 95th 

percentile. (Note that the box is missing in some places because the median, 25th percentiles, 

and 75th percentile were identical.)
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Table 1.

Summary of advantages and disadvantages of various mass univariate methods.

Method Advantages Disadvantages

Permutation-based 
Fmax correction

• Best power for spatially and temporally focal 
ERP effects.

• Controls the probability that even one false 
positive time point is present, allowing for 
claims that each individual significant time 
point represents a true effect.

• Less power for spatially and temporally 
extended effects, especially if the effect 
is not large at its peak.

• Substantially underestimates the true 
temporal extent of effects.

Permutation-based 
cluster mass 
correction

• Best power for spatially and/or temporally 
broadly distributed effects.

• When overall power is high, gives a reasonable 
estimate of the time course of effects.

• Does not allow for claims about 
whether individual time points show an 
effect with a given error rate.

• When overall power is low, clusters 
may include many false positive time 
points.

False Discovery 
Rate correction 
(Benjamini & 
Hochberg, 1995; 
Benjamini, Krieger, 
& Yekutieli, 2006)

• Can be combined with any statistical model or 
test conducted at each time point/electrode and 
thus extendable to models that are not feasible 
with permutation tests (e.g. single trial mixed 
linear regression).

• Provides reasonable power to detect effects, 
albeit less than the permutation-based methods.

• Less power than permutation-based 
cluster methods to detect extended 
effects, and less power than 
permutation-based Fmax methods to 
detect focal effects.

• Statistical assumptions may not be met 
by EEG data, leading to an inflated 
false discovery rate at individual time 
points.

False Discovery 
Rate correction 
(Benjamini & 
Yekutieli, 2001)

• Can be combined with any statistical model or 
test conducted at each time point/electrode and 
thus extendable to models that are not feasible 
with permutation tests (e.g. single trial mixed 
linear regression).

• Makes no assumptions about correlation 
between time points and electrodes, and thus 
correctly controls false discovery rate at 
individual time points.

• Generally offers the lowest power of all 
methods.
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