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ABSTRACT The continuous spread of antimalarial drug resistance is a threat to cur-
rent chemotherapy efficacy. Therefore, characterizing the genetic diversity of drug
resistance markers is needed to follow treatment effectiveness and further update
control strategies. Here, we genotyped Plasmodium falciparum resistance gene mark-
ers associated with sulfadoxine-pyrimethamine (SP) and artemisinin-based combina-
tion therapy (ACT) in isolates from pregnant women in Ghana. The prevalence of the
septuple IRNI-A/FGKGS/T pfdhfr/pfdhps haplotypes, including the pfdhps A581G and
A613S/T mutations, was high at delivery among post-SP treatment isolates (18.2%)
compared to those of first antenatal care (before initiation of intermittent preventive
treatment of malaria in pregnancy with sulfadoxine-pyrimethamine [IPTp-SP]; 6.1%;
P � 0.03). Regarding the pfk13 marker gene, two nonsynonymous mutations (N458D
and A481C) were detected at positions previously related to artemisinin resistance in
isolates from Southeast Asia. These mutations were predicted in silico to alter the
stability of the pfk13 propeller-encoding domain. Overall, these findings highlight
the need for intensified monitoring and surveillance of additional mutations as-
sociated with increased SP resistance as well as emergence of resistance against
artemisinin derivatives.

KEYWORDS Plasmodium falciparum, pfdhfr, pfdhps, pfk13, sulfadoxine-
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In sub-Saharan Africa, Plasmodium falciparum infection represents one of the major
causes of low birth weight (1–3). As such, expanded efforts to diminish the burden of

the disease on affected populations have been increasingly prioritized over the last two
decades (4). Intermittent preventive treatment of malaria in pregnancy (IPTp) with
sulfadoxine-pyrimethamine (SP) has been the principal intervention toward that and
has been successful across different transmission settings (5–7). However, growing
concern over the rise and spread of SP resistance and its impact on the effectiveness
of IPTp is rising, especially in eastern and southern Africa, where levels of parasite
resistance to SP are high. Regardless, no alternative has been identified that effects
positively on birth weight and is well tolerated (8–10). As such, the World Health
Organization (WHO) updated its IPTp-SP policy from at least 2 doses to a monthly dose
starting from the second trimester (11). This increase in SP pressure in pregnant women
has likely favored the selection of parasites carrying mutant haplotypes in the pfdhfr/
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pfdhps genes that confer increased resistance to SP, for example, pfdhps K540E, A581G,
and A613S/T mutations, which have been previously correlated with high levels of SP
resistance (12). However, the prevalence of these mutations is lower in west and central
Africa compared to eastern and southern Africa. Notwithstanding this, SP-resistant
parasites are susceptible to artemisinin (ART)-based combination therapy (ACT), which
is the first-line treatment in the management of uncomplicated malaria (13). However,
since its inception, only a few studies have been conducted to determine the spread of
resistance to these drugs in Ghana. In this study, we aimed to characterize the genetic
diversity of SP and ART resistance markers among parasites from pregnant women in
southern Ghana.

RESULTS
Study population characteristics. The general characteristics of pregnant women

have been described elsewhere (14). In total, 223 isolates were evaluated, consisting of
151 isolates from pregnant women enrolled during their first antenatal clinic (ANC) visit
and 72 isolates from pregnant women enrolled during delivery (Fig. 1). Of these, 68.6%
(153/223), 63.2% (141/223), and 46.2% (103/223) of samples were successfully ampli-
fied, sequenced, and genotyped, respectively, for the pfdhfr and pfdhps genes and the
pfk13 propeller-encoding gene fragment. At ANC, 64.7% (99/153), 65.2% (92/141), and
50.5% (52/103) isolates were successfully genotyped, respectively, for pfdhfr, pfdhps,
and pfk13. At delivery, 37.2% (57/153), 32.6% (46/141), and 49.5% (51/103) were also
genotyped for pfdhfr, pfdhps, and pfk13, respectively.

Prevalence of pfdhfr and pfdhps mutations. Mutant pfdhfr alleles were predom-
inant at codons 108 (S108N, 93.5%, 112/153), 59 (C59R, 90.8%, 111/153); and 51 (N51I,
85%, 130/153) (Table 1). The high prevalence of these mutant pfdhfr alleles was
observed at both time points (Table 2). In the pfdhps gene associated with sulfadoxine
resistance, the prevalence of mutant alleles was high at codons 436 (S436A/F, 95.0%,
134/141) and 437 (A437G, 96.4%, 133/141), but very low at codon 540 (K540E, 0.7%;
1/141). Mutations at codons 581 (A581G) and 613 (A613S/T) were, respectively, found
in 12.8% (18/141) and 17.7% (25/141) of the isolates (Table 1). These proportions were
similar at both time points (data not shown), except for mutant alleles at codon 581
(A581G), which were preferentially found in post-IPTp-SP treatment isolates (ratio of
first ANC to delivery of 1:1.7) (Table 2).

Prevalence of pfdhfr and pfdhps haplotypes. Five and nine different haplotypes
were detected for pfdhfr and pfdhps genes, respectively.

For pfdhfr, 6.5% (10/153) of isolates carried the wild-type (NCSI) haplotype, while
79.7% (96/153) carried the triple IRNI mutant haplotype. Double mutant haplotypes
occurred at a low prevalence: 7.8% (12/153) and 2.0% (3/153) for NRNI and ICNI,
respectively. A single mutant haplotype NCNI was observed once (0.7%; 1/153).

FIG 1 Study flow chart. ATS, acidic terminal segment of Pf var gene; pfdhfr, dihydrofolate reductase;
pfdhps, dihydropterate synthase; pfk13, kelch13.
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For pfdhps, two haplotypes predominated: the double mutant A/FGKAA and qua-
druple mutant A/FGKGS/T haplotypes that were present in 71.6% (101/141) and 9.9%
(14/141) of isolates, respectively. Of the remaining isolates, 7.8% (11/141), 2.8% (4/141),
and 0.7% (1/141) carried the triple mutant A/FGKAS/T, A/FGKGA, and A/FGEAA hap-
lotypes, respectively. Overall, 2.1% (3/141) and 1.4% (2/141) of isolates carried a single
mutant haplotype SGKAA or A/FAKAA, while 3.6% (5/141) isolates carried a mixed
haplotype (Table 3).

Combined pfdhfr-pfdhps haplotypes. Of the successfully sequenced isolates, 126
were analyzed for combined pfdhfr and pfdhps haplotypes. Ten distinct haplotypes
were observed. A quintuple mutant haplotype, consisting of triple IRNI and double
A/FGKAA mutations, was the most common combined pfdhfr/pfdhps haplotype (63.5%;
80/126), followed by the septuple combined haplotype IRNI � A/FGKGS/T (10.3%;
13/126). The prevalence of other combined haplotypes was low. Only one isolate was
wild type at both pfdhfr and pfdhps loci. The combined quintuple mutant haplotype
was observed at similar proportions at both the first ANC (63.4%, 52/82) and delivery
(63.6%, 28/44). However, there was a high prevalence of septuple mutant haplotypes
observed at delivery (18.2%) compared to the first ANC (6.1%) (P � 0.03; chi-squared
test) (Table 4).

Mutation frequency in the pfk13 propeller-encoding domain. The pfk13
propeller-encoding domain was sequenced for a total of 113 P. falciparum isolates from

TABLE 1 Prevalence of pfdhfr, pfdhps, and pfk13 SNPs among study isolates

Gene (total no.) SNP
No. (%) of wild-type
isolates

No. (%) of
mutations

No. (%) of mixed-type
isolates

pfdhfr (153)a N51I 23 (15.0) 130 (85.0) 0 (0)
C59R 14 (9.2) 111 (90.8) 0 (0)
S108N 10 (6.5) 112 (93.5) 0 (0)
I164L 153 (100) 0 (0) 0 (0)

pfdhps (141)a S436A/F 2 (1.4) 134 (95.0) 5 (36)
A437G 5 (3.6) 133 (96.4) 0 (0)
K540E 140 (99.3) 1 (0.7) 0 (0)
A581G 123 (87.2) 18 (12.8) 0 (0)
A613S/T 116 (82.63) 25 (17.7) 0 (0)

pfk13 (103)a E455G 101 (98.1) 2 (1.9)
N458D 101 (98.1) 2 (1.9)
A481C 102 (99.0) 1 (1.0)
T535A 102 (99.0) 1 (1.0)
Y616S 102 (99.0) 1 (1.0)
L618V 101 (98.1) 2 (1.9)
A621G 102 (99.0) 1 (1.0)
L663I 102 (99.0) 1 (1.0)
N672I 101 (98.1) 2 (1.9)

apfdhfr, dihydrofolate reductase; pfdhps, dihydropteroate synthase; pfk13, kelch13 propeller-encoding gene.

TABLE 2 Distribution of pfdhfr and pfdhps at first ANC and delivery among study isolates

Gene SNP

Data from first ANC visit (n � 99) Data from time of delivery (n � 57)

No. (%) of wild-type
isolates

No. (%) of
mutations

No. (%) of mixed-type
isolates

No. (%) of wild-type
isolates

No. (%) of
mutations

No. (%) of mixed-type
isolates

pfdhfra N51I 15 (15.2) 82 (82.2) 0 (0) 8 (13.6) 48 (81.4) 0 (0)
C59R 8 (8.1) 89 (89.9) 0 (0) 6 (10.2) 50 (84.8) 0 (0)
S108N 5 (5.1) 92 (92.9) 0 (0) 5 (8.5) 51 (86.4) 0 (0)

pfdhpsa S436A/F 1 (1.0) 91 (91.9) 2 (2.0) 1 (1.8) 43 (75.4) 3 (5.3)
A437G 2 (2.0) 90 (90.9) 0 (0) 0 (0.0) 46 (80.7) 0 (0)
K540E 91 (91.9) 1 (1.0) 0 (0) 44 (77.2) 0 (0.0) 0 (0)
A581G 83 (83.8) 9 (9.1) 0 (0) 35 (61.4) 9 (15.8) 0 (0)
A613S/T 77 (77.8) 15 (15.2) 0 (0) 34 (59.6) 10 (17.5) 0 (0)

apfdhfr, dihydrofolate reductase; pfdhps, dihydropteroate synthase.
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both time points. Ten isolates failed to generate high-quality sequences and were
discarded for further analysis. Among the 103 remaining sequences, 10 (9.7%) harbored
nonsynonymous mutations only found in one (A481C, T535A, Y616S, A621G, L663I) or
two (E455G, N458D, L618V, N672I) isolates. Interestingly, the nonsynonymous muta-
tions N458D and A481C are related to positions at which ART resistance mutations
(N458Y and A481V) were previously described in isolates from Southeast Asia (15).
Another mutation (T535A) was observed at a position found mutated in Southeast Asia
(T535M), although its relationship with ART resistance remains uncharacterized. The
location of these pfk13-nonsynonymous mutations was spotted on the propeller
tertiary structure (Fig. 2). Those were mainly located on the loops connecting blades
(Table 5), except the mutation T535A, which was located on the inner strand (strand
A) lining the central channel of the domain. Finally, the mutation N672I was
localized at the shallow pocket, predicted as a putative propeller interaction surface
(16).

The Missence 3D tool was used to predict structural damages caused by nonsyn-
onymous mutations. None were predicted to be damaging for the propeller tertiary
structure (Table 5). However, the DynaMut server predicted that five mutations may
decrease the propeller domain stability, including mutations N458D and A481C.

Relationships between the number of IPTp doses taken, sulfadoxine-pyrime-
thamine plasma levels, and prevalence of pfdhfr/pfdhps mutations. Based on the
declaration and verification on the ANC booklet, 9.1% (4/44) of pregnant women
reported taking one dose of IPTp-SP, and 9.1% (4/44) reported taking two doses, while
63.6% (28/44) of pregnant women took three or more SP doses. Five pregnant women
did not receive any SP during their pregnancy.

To explore the relationship between plasma SP levels and the prevalence of drug
resistance mutations, we measured SP and ACT residual levels in peripheral plasma

TABLE 3 Prevalence of pfdhfr and pfdhps haplotypes

Gene (total no.) Category Haplotype No. (%)

pfdhfr (153)a Wild type NCSI 10 (6.5)
Single NCNI 1 (0.7)
Double ICNI 3 (2.0)

NRNI 12 (7.8)
Triple IRNI 96 (79.7)

pfdhps (141)a Single A/FAKAA 2 (1.4)
SGKAA 3 (2.1)

Double A/FGKAA 101 (71.6)
Triple A/FGEAA 1 (0.7)

A/FGKGA 4 (2.8)
A/FGKAS/T 11 (7.8)

Quadruple A/FGKGS/T 14 (9.9)
Mixed type S/AAKAA 2 (1.4)

S/AGKAA 3 (2.1)
apfdhfr, dihydrofolate reductase; pfdhps, dihydropterate synthase.

TABLE 4 Combined pfdhfr/pfdhps haplotypes based on sample time point and study site

Gene (n) Category Haplotype
No. (%) at first ANC
visit (total n � 82)

No. (%) at delivery
(total n � 44)

pfdhfr/pfdhps (126) Wild type NCSI/SAKAA 1 (1.2) 0 (0.0)
Double NCSI-A/FGKAA 3 (3.7) 4 (9.1)
Triple NCNI-A/FGKAA 1 (1.2) 0 (0.0)
Quadruple ICNI-A/FGKAA 2 (2.4) 0 (0.0)

NRNI-A/FGKAA 8 (9.8) 1 (2.3)
IRNI-A/FAKAA 1 (1.2) 0 (0.0)

Quintuple IRNI-A/FGKAA 52 (63.4) 28 (63.6)
Sextuple IRNI-A/FGEAA 1 (1.2) 0 (0.0)

IRNI-A/FGKAS/T 8 (9.8) 3 (6.8)
Septuple IRNI-A/FGKGS/T 5 (6.1) 8 (18.2)
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at delivery. SP and ACT residual levels were measured in 31 plasma samples, with
sulfadoxine metabolites being detected in 77.4% (24/31) of samples at a mean con-
centration of 3,467 � 5,543.1 �g/ml, while pyrimethamine metabolites were detected
in 16.1% (5/31) of samples at a mean concentration of 4.0 � 10.2 ng/ml. Women in
whom pyrimethamine was detected were also sulfadoxine positive; however, sulfadox-
ine was detected in more women. Therefore, we considered the presence of sulfadox-
ine as a proxy for SP in the analyses.

There was no association between the number of IPTp-SP doses taken and the
frequency of observed mutant alleles or combined haplotypes among women at
delivery. When the analysis was carried out with the SP level in the blood taken as a
quantitative variable between women whose parasites were mutated or not, A581G
and A613S/T were associated with increased SP levels (both P � 0.05; Welch t test). This
significant difference was, however, lost when the pfdhfr and pfdhps haplotypes were
combined. Finally, we were unable to determine an association between either ACT
treatment or level of ACT metabolites and pfk13 mutations because only one pregnant
woman had taken ACT during pregnancy.

DISCUSSION

Gains achieved toward the fight against malaria are now dwindling, especially in
sub-Saharan Africa, where most of the burden is felt. This is attributable to the high

90°

III II

I

VIV

IV

ABC
D

T535A

A481C

N458D

E455G

N672I

L663I

A621G

L618V

Y616S

View from the bottom face of PfK13 propeller structure View from the side of PfK13 propeller structure

Bottom face

Top face

A481C

N458D

E455G N672I

L663I

A621G

L618V

Y616S

T535A

FIG 2 Location of amino acids associated with pfk13 mutations observed in southern Ghana on the PfK13 propeller tertiary
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TABLE 5 Prediction of structural damages and structure stability of the mutant propeller
domains

Mutation Bladea Locationb Statec Result from Missence 3D Result from DynaMutd

E455G I BC loop Exposed Not damaging �0.140
N458D I BC loop Exposed Not damaging �0.664
A481C II DA loop Buried Not damaging �0.230
T535A III Strand A Exposed Not damaging �0.116
Y616S V DA loop Exposed Not damaging �3.063
L618V V DA loop Buried Not damaging �0.865
A621G V DA loop Exposed Not damaging �0.148
L663I V DA loop Exposed Not damaging �0.073
N672I VI DA loop Buried Not damaging �0.180
aBlade refers to the six Kelch-repeat motifs of the PfK13 propeller domain, labeled I to VI.
bMutations are either located on strands (innermost, strand A; outermost, strand D) (Fig. 2). Each loop
connects two strands; for example, the DA loop connects strand D with the strand A of the next blade.

cA position is supposed to be exposed to the solvent when it exhibited relative solvent accessibility � 16%.
dValues correspond to the folding free energy (ΔΔG), expressed in kcal/mol. Negative and positive values
suggest destabilizing and stabilizing effects, respectively.
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transmission rate and the low coverage of intervention strategies. In regard to these,
the WHO is now recommending an increased administration of SP as part of IPTp to
correct the coverage deficit (11). Thus, understanding the effect of the increased drug
pressure on parasite populations is crucial to the sustainability of the IPTp program,
particularly in western Africa, where quintuple mutations (triple pfdhfr with double
pfdhps mutations) are low (drugresistancemaps.org).

In this study, we characterized parasites obtained from pregnant women coming for
their first contact with antenatal care and those of women at delivery who participated
in ANCs and have been exposed to several doses of IPTp-SP. Ghana, like other African
countries, has adopted and is implementing the new IPTp-SP policy, which advocates
an increase in the number of treatment doses, and we have recently reported that this
new policy was very well implemented in Ghana (14). This study is one of the first to
assess the SP-resistant genetic variation among parasite populations in pregnant
women in the context of increased IPTp-SP pressure. One noteworthy observation here
is the high prevalence of highly mutated pfdhfr/pfdhps haplotypes observed among
posttreatment isolates compared to the first ANC. The observation of a clear tendency
toward the increase of highly mutated parasites in women still infected at delivery
draws attention to a possible selection of these mutant parasites by treatment. Overall,
the prevalence of mutant pfdhfr and pfdhps haplotypes conferring SP resistance was
high among the parasite isolates in the study participants at both the first ANC visit and
at delivery, respectively, with 63% and 64% of isolates carrying the quintuple pfdhfr/
pfdhps mutant haplotype (IRNIA/FGKAA). This is in agreement with Mouchenhaupt
et al. (17) and other studies in Africa (18–21) where the prevalence of the quadruple
pfdhfr/pfdhps mutant haplotype (IRNIA/FGKAA) had been reported as very high with
almost fixation of the triple pfdhfr mutant haplotype. This predominance of triple pfdhfr
mutant parasites could be due to the transmission advantage that SP resistant parasites
have since acquired in the context of continuous use of the drug (22). When looking
specifically at the pfdhps gene, additional critical mutations capable of further impact-
ing resistance to SP, like mutations at codons 581 (A581G) and 613 (A613S/T) of the
pfdhps gene, have been observed at frequencies close to those reported among
children in northern Ghana (23). However, in this study, we especially noted that these
proportions slightly increased from 9% and 15% at first ANC (that is, before the
initiation of IPTp-SP) to 16% and 18% at delivery, respectively. The fact that parasites
carrying these mutations are found more in women at delivery with higher SP con-
centrations in their blood suggests that these parasites are better able to withstand
these conditions and therefore to withstand SP treatment. When considering these
observations, and adding to the fact that parasites carrying the K540E mutation are also
present in the study area as recently reported in one isolate from Bioko Island in
Equatorial Guinea (24), one may wonder whether the conditions necessary for the
emergence of full resistance to SP in West Africa will not be gradually favored with the
current IPTp-SP strategy. Whether the successful implementation of IPTp in Ghana
raises fears in this regard remains a topical issue. These findings warn of the impact of
increasing uptake of IPTp-SP on the rising level of resistance among circulating
parasites if these few mutants come to disseminate and become the dominant popu-
lation. In a meta-analysis study assessing IPTp-SP effectiveness, which includes 42,394
births, a mutation at codon 540 (K540E) was associated with a high prevalence of low
birth weight (25). Therefore, it would certainly be necessary to study the impact on the
pregnancy outcome of the pfdhps A581G and A613S/T mutant parasites that seem to
be favored in the context of IPTp-SP.

The polymorphism data generated on the pfk13 gene revealed two nonsynonymous
mutations related to positions known to confer artemisinin resistance in Southeast Asia
(26–29). However, the changes in amino acid observed differ from those described in
Asia, and further investigations are needed to check whether they confer a survival
advantage to parasites pressured by ART. Importantly, one Singaporean returning from
Ghana presented with a P. falciparum infection exhibiting the N458D mutation and was
not effectively cured by ACT treatment (30). These findings, in addition to those
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reported by Ocan et al. from Uganda (31), Bayih et al. in northwest Ethiopia (32), and
Ouattara et al. from Mali (33), are suggestive indications of possible ART resistance
emergence in Africa. However, several studies have shown that increased parasite
survival under ART pressure may also be caused by mutations at other loci such as
pfap2-mu, pfcoronin, falcipain 2a, and pfubp1 mutations (34–36) that were not investi-
gated here.

In conclusion, this study shows the high prevalence of quintuple-pfdhfr/pfdhps
mutations in parasite isolates from two Ghanaian study sites with the development of
additional mutations that confer higher resistance to SP. The spread of these new
mutations could be facilitated by the continued pressure of IPTp-SP and may impact
negatively on its effectiveness. Thus, other interventions to better protect pregnancy
from malaria infection and its damaging effects on mother and child should be
evaluated now and not wait until the efficacy of SP is completely eroded. On the other
hand, the description of mutations on ART resistance-related positions of the pfk13
gene in this study also resonates as an alert for more surveillance on the emergence of
resistance against ART derivatives, currently part of the recommended treatment of
uncomplicated malaria cases during pregnancy.

MATERIALS AND METHODS
Ethics statement. Ethical clearance was obtained from the Institutional Ethics Review Committee of

the Noguchi Memorial Institute for Medical Research (NMIMR) and the Ethical Review Committee of the
Ghana Health Service. Written informed consent was obtained from each participant.

Study area and design. The study was a cross-sectional hospital-based survey conducted from
December 2015 to May 2017 in two distinct communities in southern Ghana: Kpone on-Sea, a peri-urban
community, and Maamobi, an urban community, both within the Greater Accra region in Ghana. Malaria
transmission is perennial, with two peaks, one from April to July and the other from September to
November. A two-parallel cross-sectional enrollment was carried out among pregnant women attending
the first antenatal clinic (ANC) and at delivery. A detailed description of the study sites and design is
reported elsewhere (14).

PCR assays for the detection and amplification of pfdhfr, pfdhps, and pfk13 genes. DNA
extraction was carried out on total blood from the peripheral circulation or placenta at delivery using the
QIAamp DNA blood minikit (Qiagen, France) according to the manufacturer’s recommendation. The
presence of P. falciparum parasites was tested in duplicate by real-time quantitative PCR (qPCR) targeting
the 18S rRNA of P. falciparum (37). Subsequently, pfdhfr and pfdhps genes were amplified by nested PCR,
and the conditions for amplification were as previously described (38), while that of pfk13 was amplified
as previously described in reference 26. Mutations of the pfdhfr, pfdhps, and pfk13 genes in the amplified
nested PCR products were purified and detected subsequently by Sanger sequencing (GATC, Cologne,
Germany). All sequences generated were analyzed with the Chromas software (Technelysium Pty Ltd.)
and then aligned using MEGA 5.2 (39) and compared with reference genes of the P. falciparum 3D7
genome.

Effect(s) of pfk13 nonsynonymous mutations on the structure and stability of the PfK13
propeller domain. The tools Missence3D (40) and DynaMut (41) were used to predict, respectively, the
structural damages and structure stability alterations caused by amino acid changes in the propeller
domain of the PfK13 protein. We used the X-ray crystallographic tertiary structure determined at a
resolution of 1.5 Å (PDB ID 4YY8, chain A) (42). Beforehand, all the missing atoms were added with Swiss
PDB Viewer (43).

Antimalarial drug level measurements. Plasma sulfadoxine and pyrimethamine levels were mea-
sured by liquid chromatography coupled to tandem mass spectrometry (TSQ Quantum Ultra; Thermo
Fisher, France) as previously reported (44). Briefly, using Oase 96-well microplates (Waters, France), 100 �l
of plasma was mixed with 300 �l of acetonitrile containing quinidine-d3 (50 ng/ml) as an internal
standard. Phospholipids were eliminated by positive pressure (20 lb/in2 during 1 min), and eluents were
evaporated at room temperature. Dry residues were dissolved in 20 mM ammonium formate buffer with
formic acid (0.5% vol/vol) before 10 �l was injected into the system. This was used to measure
metabolites of sulfadoxine, pyrimethamine, amodiaquine, lumefantrine, primaquine, artemisinin, and
quinine. Homemade and external controls obtained from the Worldwide Antimalarial Resistance Network
(WWARN) were used as controls.

Statistical analysis. All data were analyzed with R programming. The chi-squared test was used to
determine the association between the single nucleotide polymorphisms (SNPs) of the pfdhfr and pfdhps
genes and the number of doses of SP taken. Association between mutations observed and the level of
SP in the peripheral plasma were tested using the Welch t test or logistic regression where appropriate.
P values of less than 0.05 indicated significance.
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