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Abstract

Quantification of anatomical shape changes currently relies on scalar global indexes which are 

largely insensitive to regional or asymmetric modifications. Accurate assessment of pathology-

driven anatomical remodeling is a crucial step for the diagnosis and treatment of many conditions. 

Deep learning approaches have recently achieved wide success in the analysis of medical images, 

but they lack interpretability in the feature extraction and decision processes. In this work, we 

propose a new interpretable deep learning model for shape analysis. In particular, we exploit deep 

generative networks to model a population of anatomical segmentations through a hierarchy of 

conditional latent variables. At the highest level of this hierarchy, a two-dimensional latent space is 

simultaneously optimised to discriminate distinct clinical conditions, enabling the direct 

visualisation of the classification space. Moreover, the anatomical variability encoded by this 

discriminative latent space can be visualised in the segmentation space thanks to the generative 

properties of the model, making the classification task transparent. This approach yielded high 

accuracy in the categorisation of healthy and remodelled left ventricles when tested on unseen 

segmentations from our own multi-centre dataset as well as in an external validation set, and on 

hippocampi from healthy controls and patients with Alzheimer’s disease when tested on ADNI 
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data. More importantly, it enabled the visualisation in three-dimensions of both global and 

regional anatomical features which better discriminate between the conditions under exam. The 

proposed approach scales effectively to large populations, facilitating high-throughput analysis of 

normal anatomy and pathology in large-scale studies of volumetric imaging.

Index Terms

Shape Analysis; Explainable Deep Learning; Generative Modeling; MRI

I Introduction

THE quantification of anatomical changes and their relationship with disease is a 

fundamental task in medical image analysis, ultimately leading to new clinical insights and 

enhanced risk assessment and treatment. Recent improvements in the medical image 

analysis field have been characterised by an increase of large-scale population-based 

initiatives [1], [2], [3] together with development of automated segmentation pipelines of 

anatomical structures [4], [5], which recently achieved human-level performance [6]. In this 

context, the development of novel data-driven processing tools to enable quantitative 

assessment of the differences between normal anatomy and pathology has now received 

significant interest [7], [8], [9].

Alterations in shape and structure of an organ associated with an underlying pathology, here 

defined as pathological remodelling, are of particular interest for the classification and risk-

stratification of patients. Hypertrophic cardiomyopathy (HCM) is a cardiac disease defined 

by the presence of left ventricular (LV) hypertrophy that cannot be solely explained by 

abnormal loading conditions [10]. In HCM, hypertrophy manifests in complex regional 

patterns not readily quantifiable using volumetric indices [11]. Similarly, atrophic changes in 

the hippocampus are considered as relevant biomarkers for the diagnosis and prediction of 

Alzheimer’s disease (AD), and proved to differently affect distinct local areas of the 

hippocampal shape [12], [9]. For most human organs, the gold-standard imaging technique 

to assess structural shape changes is magnetic resonance (MR) which enables imaging at 

high-resolution and in three-dimensions (3D) [13], [5]. Despite the advances in MR 

imaging, classification and risk-stratification of patients still rely on scalar indexes 

describing pathological remodeling (e.g. left ventricular mass or hippocampal volume), 

which neglect regional or asymmetric effects that occur during pathology whose 

quantification could improve early detection and risk stratification [8], [13], [12], [9].

Machine learning approaches have achieved outstanding results in the medical image 

analysis domain, such as in the discrimination of physiological versus pathological 

hypertrophy patterns from multiple manually-derived cardiac indices [14], between patients 

with dilated cardiomyopathy patients and controls [15] and of patients with AD and mild 

cognitive impairment patients as well as healthy controls [16]. In particular, deep learning 

methods proved to be powerful features extractors for the classification of clinical conditions 

from medical images[17], [18]. Despite their tremendous success, however, a major 

drawback is their lack of interpretability, which currently hampers their translation to 
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clinical practice. In fact, the physiological reason that drives the classification result is often 

as important as the classification result itself [18].

In this work, we propose a new deep learning approach to learn a hierarchy of conditional 

latent variables that (1) models a population of anatomical segmentations of interest, (2) 

enables the classification of distinct clinical conditions by using the highest level of the 

hierarchy and (3) whose anatomical effect can be visualised and quantified in the original 

segmentation space. These contributions are achieved by specialising the highest level of a 

deep hierarchical generative model for the classification of distinct clinical conditions. As a 

consequence, thanks to the generative properties of the model, distinct segmentations 

corresponding to different values of the highest level can be generated, making the 

classification model interpretable. In addition, by constraining the highest level to be two-

dimensional, the feature space in which the classification is performed can also be directly 

visualised. Therefore, our approach consists in an automated data-driven tool which enables 

the detailed analysis of the pathological remodelling patterns associated with a large number 

of clinical conditions.

II Related Work

An autoencoder is a non-linear dimensionality reduction technique which learns a compact 

feature representation of the input data by encoding it into and decoding it from a low-

dimensional feature vector. Deep autoencoder-based architectures have achieved wide 

success in computer vision applications as an extension of PCA-based approaches, including 

feature learning of 3D objects [19]. Autoencoder-based models have also been used to learn 

compact representations of medical images [17]. Relevant to this work, Oktay et al. [20] 

showed how autoencoder-derived features of LV segmentations outperform PCA features in 

the classification of healthy subjects versus dilated cardiomyopathy and HCM patients.

Deep generative models have demonstrated great performance in learning data distributions 

over a low-dimensional set of latent variables and in generating new unseen samples, which 

is not possible with standard autoencoder models. Within this class of models, variational 

autoencoder (VAE) models [21] learn a continuous latent representation by enforcing it to 

behave according to a predefined distribution. VAEs have been successful at learning the 

latent space representing deforming 3D shapes for a variety of applications, including shape 

space embedding and generation, outperforming state-of-the-art methods [22], [23]. In the 

medical imaging domain, VAEs have been exploited to approximate the distribution and 

likelihood of previously unseen MR images [24], to learn a low-dimensional manifold of 3D 

fetal skull segmentations [25] and to learn a low-dimensional probabilistic deformation 

model for cardiac image registration [26].

Hierarchical VAEs are a class of generative models that decompose the input data into a 

hierarchical representation [27], [28]. Although highly flexible, these models have been 

traditionally difficult to optimise, especially in the training of their higher levels, as often 

their lowest layer alone can contain enough information to reconstruct the data distribution, 

and the other levels are ignored. In this work, we focus on the ladder VAE (LVAE) 

framework [28], which was shown to be capable of learning a deeper and more distributed 
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latent representation by combining the approximate likelihood and the data-driven prior 

latent distribution at each level of the generative model.

In hippocampus shape analysis, Shakeri et al. [29] employed a VAE model to learn a low-

dimensional representation of co-registered hippocampus meshes, which was employed in 

conjuction with a multi-layered perceptron (MLP) to classify healthy subjects from AD 

patients. The network input consisted of mesh vertices coordinates, and the representation 

was learned through two fully connected layers. Similarly, in our preliminary work [30] we 

modified the 3D convolutional VAE framework in order to learn a low-dimensional latent 

representation of 3D LV segmentations, which was not only able to encode the 3D 

segmentations manifold, but also to discriminate different conditions by performing the 

classification task in the latent space. In the same work, we proposed a latent space 

navigation method to explore the anatomical variability encoded by the learned latent space. 

This consisted in iteratively modifying the latent representation of a segmentation obtained 

from an healthy subject along the direction that maximized its probability to be classified as 

pathological. By decoding the different latent representations in the original space of the 

segmentations, our technique allowed the visualisation of the anatomical changes caused by 

this transformation.

The following limitations characterize our preliminary work: 1) The learned VAE latent 

space not only encoded the factors of variation that most discriminate between classes, but 

also all the other factors of variation that regulate shape appearance. The latent space 

navigation was thus a necessary step to attempt the offline estimation of the variations linked 

to the pathological remodeling. In this work, we aim at automatically learning a latent space 

that encodes only these changes. 2) Our previous work required an additional offline 

dimensionality reduction technique to visualize in two dimensions the clustering obtained in 

the VAE latent space, which would however not reflect the real distribution of the shapes in 

the learned latent space. In this work, we aim at directly learning this two-dimensional latent 

space. 3) The latent space navigation method proposed in our previous work could only 

obtain subject-specific paths (with no obvious navigation stopping criteria). In this work, we 

aim at providing a means to extract the more clinically appealing population-based 

inferences.

In the later work of Bello et al. [31], a supervised denoising autoencoder was used to learn a 

latent code representation of right ventricular contraction patterns and, at the same time, to 

perform survival prediction. Not being a generative model, the effect of task-specific 

features learned by the proposed model could not be visualised, making the prediction task 

not explainable and population based inferences difficult to obtain. In addition, an additional 

offline dimensionality reduction step was also required to visualise in two-dimensions the 

distribution of different groups of subjects.

Contributions

In this paper, we aim to extend our preliminary work [30] on classification and visualisation 

of discriminative features by employing LVAEs, with the aim of assisting clinicians in 

quantifying the morphological changes related to disease, and in order to develop medical 
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image classifiers that can visualise the morphological features driving the classification 

result. The main contributions of this work can be described as follows:

• We demonstrate that an interpretable classifier of anatomical shapes can be 

developed by performing a classification task of interest in the highest level of a 

LVAE model. In this way, the latent variables of this level automatically encode 

the most discriminative features for the task under exam, while the other 

subsequent levels model the remaining factors of anatomical variation in the 

data.

• We show that the LVAE highest latent space can be assumed to be two-

dimensional so that the classification space can be directly visualised without 

further offline dimensionality reduction steps. Furthermore, we demonstrate how 

the anatomical variability encoded by this latent space can be visualised in the 

original space of the segmentations thanks to the generative properties of the 

model, enabling the visualisation of the anatomical effect of the most 

discriminative features between different conditions.

• We demonstrate how the proposed LVAE-based method achieves high 

classification accuracy of HCM versus healthy 3D LV segmentations and of AD 

versus healthy controls 3D hippocampal segmentations. More importantly, we 

show how the model captures and enables the easy visualisation of the most 

discriminative features between the conditions under exam. Finally, we show that 

the learned hierarchical representations provide higher reconstruction accuracy 

compared to single-latent-space VAEs.

• While hierarchical VAEs have been mainly evaluated on benchmark datasets, 

here we successfully apply them on two real-world 3D medical imaging datasets. 

We show insights on the model functioning and optimal training, and we make 

the implementation of proposed method publicly available1.

III Methods

This section is organised as follows. First, in subsection A and B, we summarise the 

theoretical foundations of the proposed method. Second, in subsection C, we describe our 

modifications to the original VAE and LVAE frameworks towards explainable shape analysis 

(graphical models in Fig. 1). Then, in subsection D, we describe the datasets used in this 

work for the classification of healthy subjects versus HCM patients and of heathy controls 

versus AD patients. Finally, in subsection E, we provide a detailed description of the LVAE 

models used in this work (model summary in Fig. 2 for the cardiac application).

A Variational Autoencoder (VAE)

Given a training set of N anatomical segmentations X = {xj, j = 1, …N} of a structure of 

interest from a population S, a VAE [21] is a probabilistic generative model that aims at 

learning the distribution pθ (x) of the population of segmentations x ∈ S under study. The 

1https://github.com/UK-Digital-Heart-Project/lvae_mlp
DOI 10.5281/zenodo.3247898
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distribution pθ (x) is learned from the data by using a model of latent variables z ∈ ℛp, 

where p ≪ d and d is the number of pixels/voxels in a segmentation x ∈ S. The VAE 

graphical model is depicted in Fig. 1 (a) and the generative model is defined as

pθ x = ∫
z

pθ x, z dz = ∫
z

pθ x z pθ z dz (1)

where pθ (z) is the prior distribution over the variables z, pθ (x|z) is the generative (or 

decoder) network and θ are the learnable parameters of the model. However, directly 

optimising log(pθ (x)) for the N segmentations of the training set X is computationally 

infeasible, as it requires to compute the integral in Eq. 1 over all the z values. The VAE 

framework addresses this issue by introducing a variational distribution qϕ(z|x) to 

approximate the posterior distribution of the latent variables z, pθ (z|x). After applying 

Bayes’ rule and rearranging [32], the following equation can be derived

log p x − KL qϕ z x pθ z x =
Eqϕ z x log pθ x z − KL qϕ z x pθ z (2)

where KL is the Kullback-Leibler (KL) divergence. By assuming that the qϕ(z|x) is modeled 

with an high capacity function, the right-hand side of Eq. (2) becomes a lower bound for 

log(pθ (x)) and can be optimized via stochastic gradient descent. The first term in the lower 

bound represents a reconstruction loss, i.e. how accurate is the generative model pθ (x) in the 

reconstruction of the segmentation x from the latent space values z using the generative (or 

decoder) network pθ (x|z). The second term is a regularization term that makes qϕ(z|x) match 

with its prior distribution pθ (z) on the latent variables z.

B Ladder Variational Autoencoder (LVAE)

A Ladder VAE (LVAE) [28] is a hierarchical latent variable model that employs a hierarchy 

of i = 1, …, L conditional latent variables in the generative model and it is schematised in 

Fig. 1 (d). The total prior distribution pθ (z) of this model is factorised as:

pθ z = pθ zL ∏
i = 1

L − 1
pθ zi zi + 1 (3)

pθ zi zi + 1 = N zi μp, i zi + 1 , σp, i2 zi + 1 ∀i < L (4)

pθ(zL) = N (zL 0, 1) (5)

where the highest latent space (i = L) has a prior distribution pθ (zL) which is typically 

assumed to be a Gaussian distribution with μp,L = 0 and σp, L
2 = 1 (Eq. 5), while the other 

levels in the hierarchy have their prior values of μp,i and σp, i2  that conditionally depend on the 

upper levels of the ladder (Eq. 4).

Biffi et al. Page 6

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 December 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



The LVAE inference model also differs from a standard VAE. In particular, each layer i in 

the hierarchy of the latent variables is conditioned on the previous stochastic layers and the 

total inference model qϕ(z|x) is specified by the following fully factorised Gaussian 

distribution:

qϕ z x = qϕ z1 x ∏
i = 1

L − 1
qϕ zi + 1 zi (6)

qϕ zi ⋅ = N zi μd, i, σd, i
2 (7)

In contrast with standard hierarchical VAEs [27], where the inference qϕ(z|x) and prior 

distributions pθ (z) are computed separately with no explicit sharing of information, the 

LVAE framework introduces a new inference mechanism. As shown in Fig. 1 (e), at each 

level i, an approximate likelihood estimation μe,i and σe, i2  of its latent Gaussian distribution 

parameters is obtained from the encoder branch. This likelihood estimation is combined with 

the prior estimates μp,i and σp, i2  obtained from the generative branch to produce a posterior 

estimation μd,i and σd, i
2  of the latent Gaussian distribution at that level i. In particular, this 

sharing mechanism between the inference (encoder) and generative (decoder) branches is 

performed at each level i ≠ L through a precision-weighted combination of the form:

σd, i
2 = 1

σe, i−2 + σp, i−2 μd, i = μe, iσe, i−2 + μp, iσp, i−2

σe, i−2 + σp, i−2 (8)

while μd,L = μe,L and σd, L
2 = σe, L

2 . This combination enables to build a data-dependent 

posterior distribution at each level, N μd, i, σd, i
2 , that is both a function of the values 

assumed in the higher levels of the generative model and of the inference information 

derived of the subsequent (lower) levels. The loss function of the LVAE is the same of a 

VAE (Eq. 2) with the only difference that the number of KL divergence terms is equal to the 

number of levels L in the ladder. These KL divergence terms force the learned prior and 

posterior distributions at each level to be as close as possible. The sharing of information 

between the encoder and decoder through Eq. 8 promotes the learning of a data-dependent 

prior distribution better suited for the dataset to be modelled. Moreover, this provides a 

better and more stable training procedure as the inference (encoder) branch iteratively 

corrects the generative distribution, instead of learning the posterior and prior values 

separately [28].

The full LVAE generative model has therefore the following formulation:

pθ x = ∫
z

pθ x z1 pθ zL ∏
i = 1

L − 1
pθ zi zi + 1 dz (9)
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C LVAE for Interpretable Shape Analysis

In our previous work [30], we proposed a modification of the standard VAE framework 

presented in Section III-A to include a classification network p(y|z) able to predict the 

disease class label y associated with a segmentation x by using its latent representation z (the 

corresponding graphical model is shown in Fig. 1 (b)). In this work, we hypothesise that 

such modification can be extended to the LVAE framework by connecting a MLP p(y|zL), 

which classifies the disease status y of an input segmentation x, to the highest latent space zL 

(graphical model in Fig. 1 (c)). By training the LVAE+MLP architecture end-to-end we aim 

at obtaining a very low-dimensional latent space zL which encodes the most discriminative 

features for the classification task under study, while the other latent spaces will encode all 

the other factors of variation needed to reconstruct the input segmentations x. This has two 

main advantages: 1) template shapes for each disease class can be obtained by sampling 

from the learned distributions in a top-down fashion (starting from the highest level in the 

hierarchy p(zL|y) and subsequently from every prior pθ(zi|zi+1)). The posterior p(zL|y) can be 

estimated by kernel density estimation and, since zL is typically very low-dimensional, this 

estimation is straightforward; 2) if the latent space zL is designed to be 2D or 3D, the 

distributions p(zL|y) in the classification space can be directly visualised without the need of 

further offline dimensionality reduction techniques required in previous works [30], [31].

D Datasets

Cardiac Dataset—A multi-centre cohort consisting of 686 HCM patients and 679 healthy 

volunteers was considered for this work. All subjects underwent cardiac phenotyping at a 

1.5-T on Siemens (Erlangen, Germany) or Philips (Best, Netherlands) system using a 

standard cardiac MR protocol. HCM patients were confirmed with reference to established 

diagnostic criteria [13]. LV short-axis cine images were acquired with a balanced steady-

state free-precession sequence. The end-diastolic (ED) and end-systolic (ES) phases were 

automatically segmented using a previously published and extensively validated cardiac 

multi-atlas segmentation framework [33]. As a first post-processing step, the obtained LV 

short-axis stack segmentations were upsampled using a multi-atlas label fusion approach. 

For each segmentation, twenty manually annotated high-resolution atlases at ED and ES 

were warped to the subject space using free-form non-rigid registration and fused with 

majority vote, leading to an upsampled high-resolution segmentation (2mm x 2mm x 2mm) 

[34]. In a second step, all segmentations were aligned onto the same reference space at ED 

by means of landmark-based and subsequent intensity-based rigid registration to remove 

pose variations. After extracting the LV myocardium label, each segmentation was cropped 

and padded to [x = 80, y = 80, z = 80, t = 1] dimensions using a bounding box positioned at 

the centre of the LV ED myocardium. This latter operation guarantees shapes to maintain 

their alignment after cropping. Finally, all segmentations underwent manual quality control 

in order to discard scans with strong inter-slice motion or insufficient LV coverage, resulting 

in 436 HCM patients and 451 healthy volunteers that were used for the final analysis 

(population characteristics and standard CMR metrics are reported at Supplementary Data 

6). As an additional external testing dataset, ED and ES segmentations from 20 healthy 

volunteers and 20 HCMs from the ACDC MICCAI17 challenge training dataset2 were also 
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used (after undergoing pre-processing using the same high-resolution upsampling pipeline 

explained above).

Brain Dataset—A total of 726 3D left and right hippocampus segmentations of healthy 

controls (HC, N = 404, 202 males, median age 74.2 [min=59.8;max=89.6]) and Alzheimer’s 

disease subjects (AD, N = 322, 177 males, median age 75.8 [min=55.1;max=91.4]) from a 

publicly available repository were analysed in this work [5]. The segmentations were 

obtained from baseline T1-weighted (T1w) MR brain images from the ADNI-1/-GO/-2 

cohorts using a multi-atlas label propagation method with expectation-maximisation based 

refinement (MALPEM) [5]. Images were automatically segmented individually and no 

additional pre-processing was performed. All segmentations were rigidly registered to the 

MNI standard reference space using nearest neighbour interpolation. Shape-based 

interpolation was applied to upsample each segmentation to 0.75mm x 0.75mm x 0.75mm 
resolution. Finally, each segmentation was cropped and padded using a bounding box 

positioned at its centre to obtain 3D segmentations of dimension [x = 60, y = 60, z = 60, t = 

1] for both the left and right hippocampus. Moreover, a 3D high-resolution left and right 

hippocampus template segmentation was obtained by averaging the upsampled and rigidly 

registered healthy controls segmentations. By thresholding the template probabilistic 

segmentation, a template triangular mesh was extracted using marching cubes algorithm 

which will be used in this work for results visualisation.

E Application to Pathological Remodelling - LVAE+MLP model details

A detailed scheme of the three-level (L = 3) LVAE+MLP architecture employed in this work 

for the classification of HCM patients versus healthy subjects is summarised in Fig. 2, while 

the corresponding architecture for the classification of healthy controls versus AD patients is 

reported in Supplementary Materials 5. For the sake of display clarity the model scheme has 

been split into two rows: the encoder (inference) branch is shown at the top while the 

decoder (generative) branch is depicted at the bottom, and the two branches are connected 

by the latent space z3. In the cardiac application, the input of the encoder branch are the 3D 

LV segmentations at ED and ES for each subject under study, which are presented as a two-

channel input (top-left of Fig. 2). A 3D convolutional encoder compresses them into a 250-

dimensional embedding through a series of 3D convolutional layers with stride 2. This 

embedding is used then as input of a deterministic inference network, which computes the 

likelihood estimates μe,i and σe,i for each level i of the hierarchy of latent variables. These 

estimates are derived by manipulating the input through a series of fully connected layers 

(black arrows), which are all followed by batch normalisation and elu non-linearity with the 

only exception of the layers computing μe,i and σe,i. At the highest latent space (i = 3 in this 

case), a shallow MLP (2 layers) is attached to learn p(y|z3), i.e. to predict the class (HCM or 

healthy) label y corresponding to the input segmentation x by just using its latent variable 

values z3. ReLu was used as non-linearity after the first layer. The latent variable values z3 

are sampled during training from N μd, 3, σd, 3
2  where μd,3 = μe,3 and σd,3 = σe,3 and they are 

also the starting point of the generative process (bottom-right of Fig. 2). At each level i of 

2https://www.creatis.insa-lyon.fr/Challenge/acdc/
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the generative (decoder) network, the prior distribution terms are computed by modifying 

the values of the previous latent space zi+1 through a fully connected layer followed by batch 

normalization and elu non-linearity and by a second fully connected layer. These prior 

values are combined with μe,i and σe,i through Eq. 8 to obtain the posterior estimates μd,i and 

σd,i from which zi is sampled. Finally, the value of z1 is passed to a 3D convolutional 

decoder which aims to reconstruct the input segmentations x through a series of upsampling 

and convolutional layers. After every convolutional and upsampling layer used in the 

architecture ReLu was applied as non-linearity, except at the output of the network where 

sigmoid was applied. All the network weights were randomly initialised from a zero-mean 

Gaussian distribution (σ = 0.02).

The training loss function of the LVAE+MLP network is composed of three contributions: 1) 

two LV segmentation reconstruction accuracy terms at ED and ES as the overlap (Dice 

score) between the input segmentation x and its reconstruction x′; 2) L KL divergence 

terms, penalising discrepancies between the learned prior and posterior distributions at each 

level and 3) a binary classification cross entropy (CE) term for the classification of healthy 

versus HCM segmentations. All the KLi divergence terms except the one of the highest level 

(i = 3) were evaluated between the prior distribution N μp, i, σp, i2  and their posterior 

distribution N μd, i, σd, i
2 , while for the highest level the prior distribution was assumed to be 

a standard Gaussian  (0, 1). The total loss function is

ℒ = DSCED + DSCES + γ ∑
i = 0

L
αi KLi + β CE (10)

and depends on αi, which weights the KL terms, on β, which weights the classification loss, 

and on γ, which is set to increase from 0 to 1 at the beginning of the training. This increase 

of γ is called deterministic warm-up and it has been commonly found useful in practice to 

converge to better local minima [28]. The weighting of the KL terms and the use of the Dice 

Score as a reconstruction metric lead to a different lower bound than standard VAE and 

LVAE. In the literature, it has been shown that the use of variants of the VAE lower-bound 

tend to favor better empirical results in various problems [35]. In this work, we adopted Dice 

score as reconstruction metric since it was successfully used in our previous work [30] and 

in related work [25] to achieve better reconstruction results on 3D anatomical segmentations.

At testing, a pair of ED and ES LV segmentations are reconstructed by starting from z3 = 

μd,3 and by assigning to z2 and z1 the values μd,2 and μd,1 computed from z3 = μd,3 and z2 = 

μd,2, i.e. no sampling is performed from the posterior distribution at each level. To interpret 

the anatomical information encoded by the highest latent space, at each level i ≠ 3, the value 

of μp,i can be assigned to zi instead of μd,i and the segmentations are reconstructed as 

explained above. In this way, by varying the values of z3, a set of segmentations at ED and 

ES can be directly generated for each point in z3, without using the inference information 

provided by μe,i and σe,i. This enables the visualisation of the anatomical information 

encoded by the highest latent space. Finally, in order to visualise the distribution of a set of 

segmentations under exam in the highest latent space, the μe,3 values of each segmentation 

can be computed through the inference network and directly plotted in a 2D space.
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IV Results

A Cardiac application

Model Training—Our in-house dataset of segmentations from healthy and HCM subjects 

was randomly divided into train, validation and test sets consisting of a total of 537 (276 

from healthy volunteers, 261 from HCMs), 150 (75 from healthy volunteers, 75 from 

HCMs) and 200 (100 from healthy volunteers, 100 from HCMs) segmentations. We adopted 

a 3-level LVAE+MLP model (Fig. 2) since adding more levels did neither improve the 

reconstruction accuracy nor the classification accuracy in the clinical application under 

exam. The model was trained on a NVIDIA Tesla K80 GPU using Adam optimiser with 

learning rate equal to 10−4 and batch size of 16. For the first 40k iterations, data 

augmentation including rotations around the three standard axis with rotation angles 

randomly extracted from a Gaussian distribution  (0, 6°) was applied in order to take into 

account small mis-registrations. This helped the final model to achieve higher reconstruction 

accuracy, as it can be seen in the tables reported in the Supplementary Data 1. In the loss 

function (Eq. 10), the KL weights were fixed to α1 = 0.02, α2 = 0.001 and α3 = 0.0001 

while γ was set to increase from 0 to 100 by steps of 0.5 every 4k iterations. The relative 

magnitude and ascending order of the KL weights αi were chosen as they provided the best 

segmentation reconstruction results (i.e. higher Dice Score). In particular, our experiments 

showed that an ascending order of the weights improves both classification and 

reconstruction accuracy in contrast with models having all the weights αi equal or in 

descending order (results are shown in Supplementary Data 2). This suggests the higher 

levels of a LVAE might be more difficult to train, and that a lower KL regularization term 

helps the training. The model produced similar results when varying these parameters within 

one order of magnitude, while a further increase in value reduced reconstruction accuracy 

and a further decrease resulted in model overfitting. The classification loss function weight β 
was instead set to 0.005: we observed that a higher value would have still produced a good 

model, but at the price of a more unstable training at the early stages. With regards to the 

number of layers and nodes adopted in the MLP, we have noticed that in general adopting a 

single fully connected layer poses a strong constraint on the latent space distribution, while 

using more than two causes overfitting. The increase of the classification and KL divergence 

weights during training through the γ parameter, known as deterministic warm-up [28], 

proved to be crucial to construct an expressive generative model (see in-depth analysis in 

Supplementary Data 1). After 220k iterations the training procedure was stopped as the 

increase of the KL divergence started to interfere with the decrease of the reconstruction and 

classification losses. In particular, this is due to the fact that in the highest latent space the 

KL divergence term tries to cluster all the data together, while the classification loss tries to 

separate the clusters. Hence the relative weight of β and α3 needs to be tuned in order to 

obtain a good equilibrium.

Classification and Reconstruction Results—All the 200 subjects in our testing 

dataset were correctly classified (100% sensitivity and specificity) by the trained prediction 

network. The same model also correctly classified 36 out of the 40 ACDC MICCAI 2017 

segmentations (100% sensitivity and 80% specificity) without the need of any re-training 

procedure. Of note, 3 of the 4 misclassified segmentations suffered from a lack of coverage 
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of the LV apex, which might be the cause for the error. The results obtained for the exemplar 

clinical application are shown in Fig. 3, where two separated clusters of segmentations have 

been discovered both on the training and on the testing data. An analogous result was 

obtained in our previous work [30]: however, the previous version of the model required an 

additional dimensionality reduction step to visualise in 2D the obtained latent space of 

segmentations, while in the new proposed framework the highest latent space is 2D by 

design. Moreover, the new model achieved higher reconstruction accuracy than the previous 

model, as shown in Table I, suggesting that a better generative model of shapes was learned. 

In particular, the table shows the reconstruction accuracy in terms of 3D Dice score and 

average 2D slice-by-slice Hausdorff distance between the 3D original and reconstructed 

segmentations on the testing and training datasets obtained by the proposed LVAE+MLP 

model and our previous VAE-based model (VAE+MLP) [30]. The VAE+MLP model was 

constructed with the same 3D convolutional encoder and decoder networks of the LVAE

+MLP model and with a single latent space composed of 98 latent variables, which 

corresponds to the total number of latent variables adopted in the LVAE+MLP model (three 

levels of 64, 32 and 2 latent variables, respectively). As it can be noticed in the table, the 

obtained Dice score results at ES are better than at ED for all the models, while the 

Hausdorff results seem to follow instead an opposite trend. This is probably due to the fact 

that since the LV is more compact at ES, the Dice score might not be sensitive to small 

misalignment of the reconstructed shape, which are instead captured by the Hausdorff 

distance.

Visualisation of the latent spaces—Thanks to the properties of the proposed model, 

the anatomical information encoded by each latent space can be directly visualised, 

especially the information embedded in the highest level (i = 3), which encodes the most 

discriminative features for the classification of healthy and HCMs 3D LV segmentations. For 

the exemplar application under investigation, little intra-cluster variability between the 

shapes generated from the latent space z3 was obtained, while much larger inter-cluster 

variability between the generated shapes was obtained. This can be seen on the left-side of 

Fig. 3 where we report a long-axis section of the 3D reconstructed segmentations at ED and 

ES at three points of the latent space z3 (for a grid visualisation of the shapes encoded by 

this latent space please refer to Supplementary Data 3). Moreover, in Fig. 4 we show the 

obtained mean average shape for each cluster, represented as a triangular mesh with point-

wise wall thickness (WT) values at vertex. This was obtained by sampling N = 1000 

segmentations from each cluster in z3 after estimating its probability density via kernel 

density estimation. Then, the obtained segmentations for each cluster were averaged to 

extract the corresponding average segmentation. Finally, a non-rigid transformation between 

the obtained average segmentation and a 3D high-resolution LV segmentation from the UK 

Digital Heart project3 was computed, and the inverse of this transformation was applied to 

the corresponding 3D high-resolution LV segmentation to warp it to the cluster specific 

average segmentation. At each of the mesh vertices, WT was then computed as the 

perpendicular distance between the endocardial and epicardial wall. The results are 

presented in Fig. 4, where it can be noticed that the average HCM shape has higher WT than 

3https://digital-heart.org/

Biffi et al. Page 12

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 December 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://digital-heart.org/


the corresponding healthy shape and it has a slightly reduced size. Fig. 5 instead reports the 

point-wise difference in WT between the HCM and the healthy shape, and it can be noticed 

that the most discriminative anatomical feature to classify an HCM shape consists in an 

increased WT in the septum, which is in agreement with the clinical literature [36]. Fig. 6 

shows a long-axis section of the reconstructed segmentations at ED and ES from the LVAE

+MLP model when only z3 posterior information is used (first column) or when also the 

posterior information in the other levels (z2, z1) is exploited: the latent spaces z2 and z1 

evidently encode different anatomical features that help to refine the structural information 

provided by z3. Results for more subjects are reported in Supplementary Data 4. Finally, we 

applied the dimensionality reduction technique tSNE [37] to visualise in two dimensions the 

distributions of z1 and z2 latent spaces and we have found that the latent representations of 

the two classes of shapes are clustered also at both these levels (plots shown in Fig. 7). A 

possible explanation relies on the fact that the generative process is a conditional: if the data 

is clustered at the top of the hierarchy, it may be easier for the network to keep the clusters 

also in the subsequent levels.

B Brain application

Model Training—As an additional benchmark test, the LVAE+MLP model proposed in 

this work was also tested for the classification of healthy controls (HC) and patients with AD 

by using only 3D segmentations of the left and right hippocampus. Data was randomly 

assigned to train, validation and testing sets consisting of a total of 562 (322 HC, 240 AD), 

64 (32 HC, 32 AD) and 100 (50 HC, 50 AD) segmentations respectively. A three level LVAE

+MLP model was also adopted for this application (scheme in Supplementary Materials 5), 

since adding more levels did not improve classification or reconstruction accuracy. In the 

loss function (Eq. 10), the KL weights were fixed to α1 = 0.03, α2 = 0.003 and α3 = 0.0003, 

γ was set to increase from 0 to 100 by steps of 0.5 every 4k iterations and β was instead set 

to 0.005. The same augmentation strategy and the rationale for the selection of the 

hyperparameters in the previous experiment were adopted. The model training was stopped 

after 200k iterations.

Classification and reconstruction results—84 out of 100 subjects were correctly 

classified by the training prediction network (78% sensitivity, 90% specificity). A VAE

+MLP model with the same 3D convolutional encoder and decoder networks of the LVAE

+MLP model, but with a single latent space of dimension 66 (equal to the total number of 

latent variables adopted in the LVAE+MLP model) was also trained. This model classified 

81 out of 100 subjects correctly (74% sensitivity, 88% specificity) on the same training, 

testing and validation splits of the previous model. On the same dataset, an accuracy of 78% 

(75% sensitivity, specificity 80%) for the same classification task was obtained by using left 

and right hippocampus volume segmentations [5]. Compared to the VAE+MLP model, the 

LVAE+MLP model achieves higher reconstruction accuracy in terms of 3D Dice score and 

2D slice-by-slice Hausdorff distance between the original segmentations and the 

reconstructed ones, these results are reported in Table II.

Visualisation of the latent spaces—Fig. 8 shows the distribution of the training and 

testing 3D hippocampus segmentations in the highest (i = 3) latent space for the trained 
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LVAE+MLP model. It can be noticed how the healthy and pathological shapes are not as 

separated as in the previous application due to the more challenging nature of the new task. 

However, two clear clusters of healthy and AD shapes can still be identified. Fig. 8 also 

shows the left and right hippocampus segmentations obtained by sampling from four distinct 

points of this latent space, which are showed together with a reference healthy shape 

sampled from a point in the healthy cluster (marked as Ref). For each reconstructed 

segmentation, the rate of hippocampal volume change (VR) with respect to the reference 

healthy shape was computed (V R =
V − V ref

V ref
× 100) . From the figure, it can be noticed how 

the AD shapes are characterized by decreased hippocampal volume, reduction that slighty 

but consistently affects more the left than the right hippocampus, in agreement with the 

previous findins on this data [5]. Moreover, a pattern in regional changes in volume can be 

identified: AD cases closer to the reference healthy shape show atrophy predominantly (if 

not only) in the tail of the hippocampus, while cases further away from the healthy class and 

deeper into the AD group show an atrophy pattern more spread throughout the whole 

hippocampal shape. In Fig. 9, we show the obtained average left and right hippocampus 

shapes from the healthy and AD distribution represented as triangular meshes. These meshes 

were obtained by sampling N = 1000 segmentations from the healthy and AD distributions 

in z3 after estimating their probability density via kernel density estimation. Then, the 

obtained segmentations for each cluster were averaged to extract the corresponding cluster 

mean segmentation. Finally, the 3D template hippocampus segmentation was non-ridigly 

registered to each obtained cluster specific average segmentation and the estimated 

transformation was applied to the corresponding high-resolution mesh. In the first row of 

Fig. 9, it can be noticed how the reconstructed template AD segmentation (red) which is 

shown together with the HC segmentation (grey and opaque) is more atrophied and it is 

characterized by a bending of the head of both the left and right hippocampus. The second 

row displays the vertex-by-vertex L2 distance between the two mean shapes demonstrating a 

more pronounced regional atrophy in the hippocampal head consistent with the CA1 and 

subiculum regional athrophy already reported in the literature [9], [38]. The right 

hippocampus is characterized by a 13.5% decrease in volume between the healthy shape and 

the AD shape, while the decrease in volume for the left hippocampus is 14.6%. The volume 

ratio between the AD right and left hippocampus is 3.6% and 2.5% in the healthy mean 

shape. Finally, the plots resulting from the application of tSNE dimensionality reduction 

technique to the z1 and z2 training data values are shown at the bottom of Fig. 7.

V Discussion

In this work, we presented a data-driven framework which learns to model a population of 

3D anatomical segmentations through a hierarchy of conditional latent variables, encoding at 

the highest level of the hierarchy the most discriminative features to differentiate distinct 

clinical conditions. This is achieved by implementing and extending for the first time the 

LVAE framework to a real-world medical imaging application. In particular, by performing a 

classification task in the highest level of the LVAE hierarchy of latent variables, we can force 

this latent space to encode the most discriminative features for a clinical task under exam, 

while the other levels encode the other factors of anatomical variation needed to model the 

manifold of segmentations under analysis. Being a generative model, this framework 
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provides the advantage of enabling the visualisation and quantification of the remodeling 

effect encoded by each latent space in the original segmentation space. Hence, the 

anatomical differences used by the classifier to distinguish different conditions can be easily 

visualised and quantified by sampling from the highest level posterior distribution computed 

from a given database of shapes. Moreover, by designing this latent space to be two or three 

dimensional, no additional offline dimensionality reduction technique is required to visually 

assess the distribution of these shapes in the latent space. As a consequence, this method not 

only provides a deep learning classifier that uses a task-specific latent space in the 

discrimination of different clinical conditions, but more importantly enables the visualisation 

of the anatomical features encoded by this latent space, making the classification task 

transparent.

With the aim of assisting the clinicians in quantifying the morphological changes related to 

disease, we have applied the proposed framework for the automatic classification of heart 

and brain pathologies against healthy controls. In the reported cardiac application, the 

learned features achieved high accuracy in the discrimination of healthy subjects from HCM 

patients on our unseen testing dataset and on a second external testing dataset from the 

ACDC MICCAI 17 challenge. On the more challenging task of classification of healthy 

versus AD hippocampi, the model achieved better classification accuracy than using 

volumetric indices [5] and our previous method. Moreover, the visualisation of the features 

encoded in the highest level of the adopted LVAE+MLP model showed how the proposed 

model is able to provide the clinicians with a 3D visualisation of the most discriminative 

anatomical changes for the task under study, making the data-driven assessment of regional 

and asymmetric remodelling patterns characterizing a given clinical condition possible.

On both applications, we have also showed that the proposed LVAE+MLP model allows the 

construction of a better generative model in comparison to a VAE-based model with a single 

latent space [30]. To the best of our knowledge, this result confirms for the first time that 

hierarchical latent spaces provide a more accurate generative model on a real clinical 

dataset. Moreover, this work also gives insights on the functioning of these models on 3D 

anatomical segmentations, including how the different levels of latent variables encode 

different anatomical features, and how to optimally train this class of models for the 

reconstruction of these 3D anatomical segmentations.

While this work showed the potentialities of the proposed method on two common 

classification tasks, this method is domain-agnostic and could be applied to other 

classification problems where pathological remodelling is a predictor of a disease class 

label. However, further work is needed to explore the full potential of this approach, for 

instance in order to visualize the pathological remodeling of different disease subgroups 

characterized by different clinical endpoints. Of note, we expect that on very difficult tasks 

one or two more dimensions in the highest latent space might be needed, although further 

increasing the dimensionality will go against the rationale of the proposed approach. In fact, 

our aim is to encode the most discriminative anatomical information for the classification 

task under exam in the highest latent space, while the other latent spaces are intentionally 

left to model the remaining factors of variation. Interestingly, Fig. 7 shows that the shapes 

are clustered also in the other latent spaces, probably encoding additional variability of the 
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disease groups not useful for the specific classification task. By specializing the 

classification task to more categories, we expect some information currently encoded in the 

other latent spaces to be moved and encoded in the highest one. For instance, studying 

multiple disease subgroups would enable a finer representation of the spectrum of 

remodeling patterns against which patients can be compared. Presently this was not 

achievable as the model has been optimized to discriminate only between healthy and 

diseased subjects, although a step in this direction was taken in Fig. 8, showing how 

different latent space points map to different hippocampal volume measures.

In comparison with the previous (generative) model [30] and Bello et al. [31] model, the 

proposed method requires tuning of a few additional hyperparameters, i.e. the number of 

adopted levels in the ladder and their weights importance in the model loss function. On the 

other hand, our approach is fully data-driven and it spares the need for further downstream 

dimensionality reduction and latent space navigation techniques, which would themselves 

require separate optimization and human intervention, potentially adding bias to the 

analysis. The proposed method also enables the derivation of population-based inferences 

(Fig. 4, 5 and 9), which could neither have been obtained from our previous model (due to 

the subject-specific nature of the latent-space navigation), nor from the one of Bello et al. 
(due to the non-generative nature of the model).

Another limitation shared by our previous and current approach is the fact that the input 

segmentations need to be rigidly registered to train the model. Future work should consider 

how to extend the proposed method to unregistered shapes, for example with the 

introduction of spatial transformer modules inside the architecture. In this work, as the 

output of the model is binary, Dice score was adopted as reconstruction metric. However, 

other alternatives exist, for example by modeling the model output with a Bernoulli 

distribution [32], and they will be investigated in future work. Finally, the prior distribution 

adopted in the highest latent space is a standard Gaussian distribution (0, 1): future work 

could consider alternative prior distributions which could further favour the clustering of 

shapes. Even more interestingly, the interpretability and visualisation properties of the 

proposed method indicate that it could constitute an interesting tool for unsupervised 

clustering of shapes, for example by learning in the highest level discrete random variables.

VI Conclusions

In recent years, the medical image analysis field has witnessed a marked increase both in the 

construction of large-scale population-based imaging databases and in the development of 

automated segmentation frameworks. As a consequence, the need for novel approaches to 

process and extract clinically relevant information from the collected data has greatly 

increased. In this work, we proposed a method for data-driven shape analysis which enables 

the classification of different groups of clinical conditions through a very low-dimensional 

set of task-specific features. Moreover, this framework naturally enables the quantification 

and visualisation of the anatomical effects encoded by these features in the original space of 

the segmentations, making the classification task transparent. As a consequence, we believe 

that this method will be useful for the study of both normal anatomy and pathology in large-

scale studies of volumetric imaging.
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Fig. 1. 
Graphical models of a standard VAE (a), of our previously proposed method [30] (b) and the 

new LVAE-based approach (c). x represents and anatomical segmentation, y the disease 

class label and z the latent variables to learn. Schematic representation of a three-level LVAE 

(d) and of the flow of information (e). Circles represent stochastic variables, diamonds 

represent deterministic variables. Variables in light blue represent the inputs of the network.
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Fig. 2. 
Detailed scheme of the LVAE+MLP architecture adopted in this work for the cardiac 

application. Top: encoder model; Bottom: decoder model. At testing, segmentations class 

scores y are computed with z3 = μe,3. The green arrows indicate the loss function terms used 

to train the network.
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Fig. 3. 
Latent space clusters in the highest latent space (l = 3) obtained by the proposed LVAE

+MLP model on both the in-house training and testing datasets as well as on the ACDC 

dataset (entirely used as an additional testing dataset). Dimension 1 and 2 represent the two 

dimensions of μe,3. On the left, long-axis sections of the reconstructed 3D segmentations at 

ED and ES obtained by sampling from three points in z3 are shown.

Biffi et al. Page 22

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 December 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 4. 
Average healthy and HCM shapes at ED and ES sampled from the two clusters in the 

highest latent space of proposed LVAE+MLP model. The colormap encodes the vertex-wise 

wall thickness (WT), measured in mm.
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Fig. 5. 
Point-wise difference in wall thickness (dWT) at ED and ES between the healthy and the 

HCM average shapes of Fig. 4. Left - lateral wall; Right - septal wall.
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Fig. 6. 
Long-axis section of reconstructed segmentations at ED and ES by the LVAE+MLP model, 

using only z3 information (first column) or also using the posterior information of the other 

latent spaces (z2, z1). Last column: ground-truth (GT) segmentation. DSC = Dice Score 

between the segmentation at that column and the GT.
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Fig. 7. 
tSNE visualisation of the latent spaces z2 and z1. Top: cardiac application. Bottom: brain 

application.
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Fig. 8. 
Latent space clusters in the highest latent space (l = 3) obtained by the proposed LVAE

+MLP model on the brain dataset. Left and right hippocampus shapes (in blue) at four points 

in the latent space have been reconstructed and showed together with a reference shape (in 

grey and opaque) sampled from the healthy control shapes (Ref, Coord: [2,2]). The first 

image is a view from the top, second image a view from the bottom.
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Fig. 9. 
First row: Average healthy (in grey and opaque) and AD (in red) left and right hippocampus 

shapes sampled from the two clusters in the highest latent space of proposed LVAE+MLP 

model. Second row: vertex-by-vertex L2 distance between the two mean shapes.
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Table I

Cardiac. Dice score (DSC) and average 2D slice-by-slice Hausdorff distance (H) at ED and ES and their 

standard deviation for the proposed LVAE+MLP model and for the VAE+MLP model proposed in [30] on 

training and testing sets.

VAE+MLP vs LVAE+MLP Reconstruction Accuracy

DSCED DSCES HED[mm] HES[mm]

VAE+MLP train 0.81±0.04 0.85±0.04 6.30±1.25 5.96±1.20

LVAE+MLP train 0.85±0.04 0.88±0.03 5.70±1.12 5.58±1.00

 VAE+MLP test 0.78±0.04 0.83±0.04 6.98±1.65 6.75±1.61

 LVAE+MLP test 0.81±0.04 0.85±0.04 6.54±1.62 6.40±1.56
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Table II

Brain. Dice score (DSC) and average 2D slice-by-slice Hausdorff distance (H) for the left (l) and right (r) 

hippocampus and their standard deviation for the proposed LVAE+MLP model and for the VAE+MLP model 

proposed in [30] on training and testing sets.

VAE+MLP vs LVAE+MLP Reconstruction Accuracy

DSCl DSCr Hr[mm] Hl[mm]

VAE+MLP train 0.81±0.05 0.80±0.05 3.35±0.67 3.28±0.69

LVAE+MLP train 0.85±0.04 0.85±0.03 3.05±0.69 2.96±0.66

 VAE+MLP test 0.79±0.05 0.79±0.05 3.51±0.64 3.49±0.67

 LVAE+MLP test 0.82±0.03 0.82±0.03 3.31±0.68 3.23±0.65
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