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Abstract: Mitochondria are crucial cellular organelles. Under extracellular stimulations, mitochondria undergo con-
stant fusion and fission dynamics to meet different cellular demands. Mitochondrial dynamics is regulated by spe-
cialized proteins and lipids. Dysregulated mitochondrial dynamics has been linked to the initiation and progression 
of diverse human cancers, affecting aspects such as cancer metastasis, drug resistance and cancer stem cell 
survival, suggesting that targeting mitochondrial dynamics is a potential therapeutic strategy. In the present review, 
we summarize the molecular mechanisms underlying fusion and fission dynamics and discuss the effects of mito-
chondrial dynamics on the development of human cancers.
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Introduction

Mitochondria are semiautonomous intracellu-
lar organelles vital to cellular physiological 
activity. As the main site of oxidative respiration 
to produce ATP, mitochondria are not only the 
cellular ‘powerhouse’ but also the site where 
many crucial metabolic processes take place 
[1]. Because of their functional diversity, mito-
chondria play important roles in cell prolifera-
tion, apoptosis, calcium ion storage and reac-
tive oxygen species (ROS) generation [2, 3]. 
Furthermore, mitochondria play an important 
role in immunity and inflammation [4].

In most cells, mitochondria are highly dynamic 
and, through fusion and fission, undergo con-
stant changes in number and morphology in 
response to metabolic and extracellular insults 
[5]. These fission and fusion events determine 
the shape of mitochondria and further influ-
ence their function. 

Mitochondrial dynamics contributes to the gen-
esis and progression of various kinds of human 
cancers [6]. Elucidating the role of mitochon-
drial dynamics in human cancers is of great 
importance, as this understanding will offer 
new insights into related treatments.

After presenting a detailed description of pro-
tein mediators and lipids that have been 

acknowledged to regulate mitochondrial fusion 
and fission, this review focuses on summarizing 
fundamental cellular functions impacted by un- 
balanced fusion and fission. In addition, an over- 
view of cancers involving dysregulated mito-
chondrial dynamics is presented in the third 
section.

Regulation of mitochondrial fusion and fission

Mitochondrial dynamics is exquisitely regulated 
by proteins and lipids (Figure 1).

Proteins involved in mitochondrial fusion

In mammalian cells, the fusion machinery 
includes three essential GTPases, mitofusin 
(Mfn) 1 and 2 on the outer mitochondrial mem-
brane (OMM) and optic atrophy protein 1 (Opa1) 
on the inner mitochondrial membrane (IMM) [7, 
8].

Mfn1 and Mfn2 coordinate OMM fusion. The 
c-terminal heptad repeats of Mfn1 and Mfn2 
have been shown to form an intermolecular 
antiparallel coiled coil via which adjacent mito-
chondria may be drawn together and initiate 
mixing of their lipid bilayers, leading to fusion of 
the OMM [9].

Opa1 drives IMM fusion [10]. Opa1 is localized 
to the mitochondrial intermembrane space and 
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Figure 1. A schematic diagram of mitochondrial dynamics. Human mitochondria undergo constant fusion and fission dynamics. The fusion of the OMM is mediated 
by Mfn1/2. PA generated by MitoPLD promotes fusion of the OMM. CL and Opa1 coordinate IMM fusion. Mic60 also interacts with Opa1. ER tubules mark sites of fis-
sion. During mitochondrial fission, Drp1 is recruited to mitochondria by receptors such as Fis1, Mid49, Mid51 and Mff. GDAP1 and sacsin are two additional proteins 
localized in the OMM that facilitate fission. Drp1 activity is regulated by posttranslational modifications such as phosphorylation and ubiquitination. The preconstric-
tion process is completed by actin filaments, and Drp1 performs mitochondrial scission. Lipids, including ceramides, PA and DAG, participate in mitochondrial fis-
sion. PA, phosphatidic acid; OMM, outer mitochondrial membrane; CL, cardiolipin; Drp1, dynamin-related protein 1; DAG, diacylglycerol; ER, endoplasmic reticulum.
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the IMM. OPa1 has 8 isoforms, and the steady-
state morphology of mitochondria depends on 
the balance of the long and short Opa1 iso-
forms [11]. Opa1 is likely to interact with Mfns 
to form intermembrane protein complexes that 
couple OMM fusion to IMM fusion [12].

The mitochondrial structural protein Mic60, 
also called mitofilin, appears to be a key player 
in regulating mitochondrial shape [13]. In- 
creased levels of Mic60 suppress mitochondri-
al fission in neurites, producing elongated neu-
ritic mitochondria [14]. Mic60 also interacts 
with Opa1 [15]. MitoPLD belongs to the phos-
pholipase D superfamily of signaling enzymes 
that generate phosphatidic acid (PA). MitoPLD 
is anchored to the mitochondrial surface [16], 
and MitoPLD-generated PA facilitates mito-
chondrial fusion [17].

Mitochondrial fission proteins

Endoplasmic reticulum (ER) tubules contact 
mitochondria and mark the sites of mitochon-
drial division [18]. Several outer membrane pro-
teins, including Mff, Fis1, Mid49 and Mid51, 
have been identified as dynamin-related pro-
tein 1 (Drp1) receptors [19-21]. Drp1 is recruit-
ed to the mitochondrial surface via its trans-
membrane receptors and assembles into oligo-
meric complexes. Before the scission of mito-
chondria by Drp1, preconstriction is completed 
by actin and nonmuscle myosin II. A study 
reported that myosin II induced stochastic 
deformations of the interstitial actin network 
and exerted pressure on the mitochondrial sur-
face, promoting mitochondrial fission [22].

The activity of Drp1 is regulated by posttransla-
tional modifications. Several different post-
translational modifications of Drp1, including 
phosphorylation, ubiquitination and sumoy- 
lation, regulate its activity, thus influencing the 
fission process [23-26].

Moreover, human Fis1 was reported to regulate 
mitochondrial fission in the absence of Drp1. 
Fis1 binds to Mfn1, Mfn2 and Opa1, thus inhib-
iting their GTPase activity and the fusion 
machinery [27].

GDAP1 is another protein involved in mitochon-
drial fission events. This protein is localized in 
the OMM [28]. In animal models, neurons from 
GDAP1-knockout mice show large and defec-
tive mitochondria [29].

Sacsin localizes to the OMM in a variety of cell 
lines [30]. Loss of sacsin induces the genera-
tion of hyperfused mitochondria. The results of 
a coimmunoprecipitation assay showed that 
sacsin interacts directly with Drp1 [31].

Syntaphilin (SNPH) has been identified to inhib-
it mitochondrial trafficking in neurons [32]. 
SNPH can be ubiquitinated at Lys111 and 
Lys153 in the microtubule-binding domain by 
the E3 ligase CHIP. SNPH ubiquitination results 
in anchoring of SNPH to tubulin, which inhibits 
the movement of mitochondria. Perturbation of 
SNPH ubiquitination causes recruitment of 
Drp1 to mitochondria [33].

Lipids involved in regulating mitochondrial dy-
namics

Apart from proteins, accumulating evidence 
implies the striking role of lipids in the gover-
nance of mitochondrial dynamics.

Phospholipids are the primary lipid compo-
nents of the mitochondrial membrane. Cardio- 
lipin (CL) is a mitochondria-specific phospho-
lipid [34]. It is synthesized from PA in the IMM 
[35]. CL is related to the assembly of Opa1. 
Liposomes containing CL bind to purified Opa1 
and Mgm1, stimulating their assembly into lipo-
somes [36]. In addition, CL has been shown to 
stimulate the oligomerization of Drp1, which 
induces its tubulation and sequential mito-
chondrial fission [37, 38].

PA is produced mainly in the ER and is then 
transported to the OMM through an ER-mito- 
chondria contact site [39]. PA promotes mito-
chondrial fusion possibly by creating a negative 
curvature in the opposing OMM [40]. PA also 
regulates mitochondrial fission by interacting 
with Drp1. After its oligomerization on mito-
chondria, Drp1 is blocked by PA and the satu-
rated acyl chains of phospholipids, which 
makes mitochondria resistant to the division 
induced by mitochondrial stress [41, 42].

Phosphatidylethanolamine (PE) and phospha- 
tidylserine (PS) are two other mitochondrial 
membrane components. PS is well known for 
its role in apoptosis. PE is produced from PS by 
phosphatidylserine decarboxylase (PISD) [43]. 
A novel tumor suppressor, LACTB, reduces the 
levels of mitochondrial PISD possibly through 
its proteolytic activity, thus altering the genera-
tion of PE. A reduction in the PE/PS ratio shifts 
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mitochondrial dynamics toward fission and 
exerts an anticancer effect [44].

Diacylglycerol (DAG) triggers mitochondrial fis-
sion [45]. DAG may drive actin filament polym-
erization by activating RhoA at the sites of ER 
constriction, which could shrink mitochondria 
to an appropriate diameter for Drp1 to encircle 
and cleave [46, 47].

Ceramides are synthesized in both the OMM 
and IMM [48]. Ceramides stimulate mitochon-
drial fission in cardiomyocytes [49]. Human 
choriocarcinoma cells treated with ceramides 
16:0 exhibited mitochondrial fragmentation 
through increases in the p-Drp1/Drp1 ratio and 
Mfn2 expression [50].

Biological functions of mitochondrial dynam-
ics

The continuous fusion and division processes 
of mitochondria are crucial for essential physi-
ological functions of cells (Figure 2). The main 
cellular functions involved in the link between 
mitochondrial dynamics and cancer develop-
ment are summarized herein.

Mitochondrial dynamics and ROS production

ROS, short-lived molecules consisting of un- 
paired electrons, are considered byproducts of 
cellular metabolism. The mitochondrial elec-
tron transport chain is a major contributor to 
ROS production in cancer cells [51]. Accumu- 
lating evidence demonstrates that mitochon-
drial morphology and ROS levels are closely 
related. For example, parallel changes in mito-

cells yield high levels of ROS. Depending on 
enhanced antioxidant activity, cancer cells 
managed to maintain moderate levels of ROS, 
which facilitate tumor initiation and progres-
sion. ROS participate in various cell signaling 
pathways, such as the Ras/MAPK/ERK, PI3K/
Akt and NF-κB pathways [58]. These pathways 
have been linked to cellular transformation, 
cancer cell proliferation, apoptosis resistance, 
cancer stem cells (CSCs) maintenance and  
cancer metastasis [59].

In general, aberrant mitochondrial dynamics 
might enhance ROS production, and high con-
centrations of ROS can modify fusion and fis-
sion effectors, forming a feedback loop.

Cell migration

Metastasis accounts for most cases of cancer 
progression, resulting in failure of clinal therapy 
and death of the patients. Cancer cells enter 
blood or lymphatic vessels through intravasa-
tion. After extravasation from these vessels, 
they form cloning lesions in distant organs [60]. 
Cell migration is a crucial step in metastasis. 
Accumulating data suggest the role of mito-
chondria in the dissemination of cancer cells. 
For example, mitochondrial dynamics regulates 
the migration and invasion of breast cancer 
cells; researchers found higher expression of 
Drp1 and lower expression of Mfn1 in metastat-
ic breast cancer cells than in their nonmeta-
static counterparts [61]. Recently, additional 
evidence indicating the regulatory role of mito-
chondrial dynamics in cancer metastasis has 
emerged [33, 62-64].

Figure 2. Cellular physiological activities affected by mitochondrial 
dynamics. Mitochondrial dynamics is tightly linked to the cell cycle, 
apoptosis, cell migration, mitophagy, apoptosis and ROS production.

chondrial morphology and ROS levels 
were found in patient primary fibro-
blasts [52]. Besides, genetic ablation 
of Mfn1 or Mfn2 led to elevated ROS 
levels, and mitochondrial fission pro-
moted ROS production [53, 54]. In 
turn, experimental results revealed 
that overproduced mitochondrial ROS 
altered posttranslational modifica-
tions of Drp1 and affected other 
mediators, such as Opa1 and Mfns, 
causing mitochondrial dysfunction 
[55-57].

ROS homeostasis is required for cell 
survival. Due to metabolic activity, 
gene mutation and hypoxia, cancer 
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Mitochondrial fusion and fission influence mi- 
tochondrial transportation in lymphocytes as 
well as in cancer cells. Mitochondria are re- 
distributed during lymphocyte migration. Ex- 
perimental results show that mitochondria ac- 
cumulate at the uropod of polarized lympho-
cytes in a manner dependent on unperturb- 
ed mitochondrial fission. Moreover, dysregula-
tion of mitochondrial fusion/fission suppresses 
lymphocyte polarization and migration [65].

Researchers have investigated the connection 
between mitochondrial dynamics and T cell 
metabolism. In contrast to memory T cells, ac- 
tivated effector T cells maintain a fused mito-
chondrial network. Memory T cells require mito-
chondrial fusion for development and survival, 
and forced fusion promotes the generation of 
memory-like T cells regardless of the presence 
of activating signals [66]. In animal models, T 
cell mitochondrial fusion was shown to enhance 
antitumor immune responses [67].

Mitophagy

mtDNA is frequently exposed to ROS and liable 
to mutate and damage. Accumulation of mtDNA 
mutations gradually leads to functional impair-
ment of respiratory chain complexes and finally 
reduces the bioenergetic capacity. Damaged 
mitochondria are degraded through a special-
ized form of macroautophagy called mitophagy 
[68]. The molecular pathway of mitophagy is 
divided into two pathways according to differ-
ential dependency on Parkin: the phosphatase 
and tensin homologue (PTEN)-induced putative 
kinase 1 (PINK1)-Parkin pathway and the Par- 
kin-independent pathway.

Mitochondrial dynamics has been found to be 
intertwined with mitophagy. Mitochondrial fis-
sion plays an important role, as mitophagy is 
preceded by mitochondrial division, after which 
fragmented mitochondria are encapsulated by 
autophagosomes [69]. Accordingly, overexpres-
sion of Fis1 triggers mitophagy, and depletion 
of Fis1 or overexpression of the dominant-neg-
ative Drp1 K38A mutant attenuates mitophagy 
[70].

Researchers found that the mammalian mi- 
tophagy receptor FUNDC1 interacts with and 
recruits LC3 to mitochondria for mitophagy. 
FUNDC1 interacts with both DNM1L/Drp1 and 
Opa1 to coordinate mitochondrial dynamics 

and mitophagy [71]. Another study revealed 
that PINK1 impairs the anti-fission machinery 
to ensure segregation of damaged mitochon-
dria. PINK1 indirectly interacts with Drp1 and 
enhances Drp1 activity [72]. In addition, the 
SNARE protein Syntaxin 17 (STX17) was recent-
ly identified to interact with Fis1. Fis1 loss trig-
gers abnormal STX17 accumulation on mito-
chondria, which promotes self-oligomerization 
of STX17 and mitophagy [73].

Mitochondrial dynamics and cell metabolism

A major characteristic of cancer cells is their 
reduction in mitochondrial respiration and their 
predilection to use glycolysis to obtain energy 
even under aerobic conditions [74]. However, 
many types of cancer cells obtain energy via 
oxidative phosphorylation [75]. Metabolic re- 
programming of cancer cells has been identi-
fied to occur during tumorigenesis and high-
lights the role of mitochondria during oncogen-
esis. Cellular metabolic changes impact mito-
chondrial dynamics, and mitochondrial dynam-
ics in turn alter the state of cell metabolism.

Mitochondrial dynamics has been linked to the 
balance between energy demand and nutrient 
supply. Fusion is positively associated with in- 
creased ATP production, while inhibition of 
fusion results in oxidative phosphorylation 
impairment, mtDNA depletion, and ROS pro-
duction [76]. In skeletal muscle, the liver and 
the pancreas, manipulation of key fusion and 
fission proteins causes metabolic variations 
[77]. Similarly, in cancer cells, mitochondrial 
dynamics plays a pivotal role in metabolic 
reprogramming. In prostate cancer cells, Drp1 
upregulation is required for metabolic repro-
gramming because it controls the mitochondri-
al pyruvate transport complex [78]. Further- 
more, Mfn1 regulates metastasis in hepatocel-
lular carcinoma (HCC) by shifting cell metabo-
lism from glycolysis to oxidative phosphoryla-
tion [79]. Similar experimental results have 
also been reported in other human cancers 
[64, 80-82].

On the other hand, metabolic changes influ-
ence the amount and activity of mitochondria-
shaping mediators. For example, serine depri-
vation affects mitochondrial function and inhib-
its colorectal cancer cell proliferation through 
ceramide metabolism. Supplementation of C 
16:0-ceramide was shown to partially restore 
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mitochondrial fragmentation [83]. Another st- 
udy reported that glucose starvation causes 
KAP1 phosphorylation on Ser473, which limits 
mitochondrial hyperfusion through a reduction 
in the Mfn2 level and favors breast cancer  
cell survival [84]. Similar types of interplay has 
been studied in several kinds of immune cells 
[85].

Apoptosis

Mitochondria play a critical role in cell apopto-
sis. An important step during apoptosis is  
mitochondrial outer membrane permeabiliza-
tion (MOMP), which releases cytochrome c and 
other proapoptotic factors from the intermem-
brane space into the cytosol [86]. MOMP is 
mediated by translocation of cytosolic BAX and 
BAK to mitochondria, where a pore is formed in 
the OMM, allowing the release of proapoptotic 
proteins.

Multiple lines of evidence show that Drp1 is 
crucial in cell apoptosis. Drp1 activity is re- 
quired for cytochrome c release and subse-
quent apoptotic events. For instance, SUMOy- 
lation of Drp1 stabilizes ER/mitochondrial con-
tact sites that are important for remodeling of 
cristae and release of cytochrome c [87]. Mito- 
chondrial fission appears to be an upstream 
event of apoptosis [88]. However, increased 
mitochondrial fission does not necessarily cor-

induce mitochondrial fusion by promoting the 
assembly of Mfn2 [94].

Mitochondrial dynamics in the cell cycle

Mitochondrial dynamics is critical during cell 
cycle regulation. In G1 and G2 phases, mito-
chondria form an interconnected network [95, 
96]. However, mitochondria become fragment-
ed during S phase and mitosis [97]. Mediators 
of mitochondrial dynamics, including Drp1, 
Fis1, Opa1 and mfn proteins, are linked to cell 
cycle phase transition [98-100]. For instance, 
inhibition of Drp1 causes cell cycle arrest in  
G1 phase by affecting cyclin E accumulation 
[101], and Mfn2 overexpression in VSMCs ca- 
uses G0/G1 phase arrest [102].

The serine/threonine kinase Aurora A (AURKA) 
is overexpressed in several cancers [103, 104]. 
AURKA was reported to promote mitochondrial 
fission through phosphorylation of RALA in the 
cytosol [105]. In 2018, a study showed that at 
endogenous levels, AURKA induces mitochon-
drial fragmentation but enhances mitochondri-
al fusion when overexpressed [106]. 

Imbalanced mitochondrial dynamics in hu-
man cancers

Dysregulation of mitochondrial dynamics has 
been frequently reported to drive malignant 

Figure 3. Human cancers connected with dysregulation of mitochondrial dy-
namics.

relate with apoptosis activa-
tion [89]. Mfn1 and Mfn2 
also control cell apoptosis 
by interacting with Bak or by 
triggering an influx of Ca2+ 
into mitochondria [90, 91].

Opa1 protects cells from 
apoptosis by preventing cy- 
tochrome c release. Opa1 
sustains the tightness of 
cristae junctions, a feature 
that likely regulates the mo- 
bilization of cytochrome c 
[92]. Similarly, another re- 
port found that Opa1 blunts 
cytochrome c release in he- 
patocellular cells [93].

In addition, Bax and Bak 
have been reported to regu-
late mitochondrial dynami- 
cs in healthy cells. Bax can 
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phenotypes of cancer (Figure 3). Various evi-
dence implicating mitochondrial dynamics in 
the onset and progression of cancer has em- 
erged (Table 1). We summarize the publicati- 
ons from the past five years below.

Hepatocellular cancer

Mitochondrial fission has been reported to pro-
mote cell migration, autophagy, tumor-associ-
ated macrophage infiltration and HCC progres-
sion [62, 107]. The Drp1/Mfn1 expression ra- 
tio was found to be increased in HCC tissues 
and associated with poor prognosis. Enhanc- 
ed mitochondrial fission mediated by elevated 
ROS production was found to promote the sur-
vival of HCC cells in vitro and in vivo [108]. 
Depletion of Mfn1 induced epithelial-to-mesen-
chymal transition of HCC cells [79]. However, 
another study showed that mitochondrial fusi- 
on also supported liver tumor cell growth [81]. 
Moreover, metabolic reprogramming via mito-
chondrial elongation was found to be essen- 
tial for hepatocellular cancer cell survival and 
adaptation to energy stress [80].

Ovarian cancer

Ovarian cancer is the major cause of death 
among gynecologic cancers [109]. Previous 
studies found that ovarian cancer cells exhibit 
increased Drp1 expression. Drp1 was shown to 
be coexpressed with cell cycle genes and to 
support the proliferation of ovarian cancer cells 
[110]. Similarly, a study reported that under 
hypoxic conditions, mitochondrial fission cau- 
sed cisplatin resistance in ovarian cancer cells 
[111]. In addition, salt-inducible kinase 2 was 
shown to enhance the Warburg effect in ovari-
an cancer cells through drp1-mediated fission 
[64].

Breast cancer

MYC was found to indirectly inhibit YAP/TAZ 
coactivators in breast cancer cells, thus sup-
pressing cancer development. PLD6, an OMM-
localized phospholipase, was identified as the 
mediator of MYC activity via enhancement of 
mitochondrial fusion [112]. In contrast, mito-
chondrial fission facilitates the survival, apop-
tosis and drug resistance of breast cancer ce- 
lls [84, 113, 114]. The autophagy inhibitor lien-
sinine was found to markedly increase apopto-
sis in breast cancer cells in combination with 

classical chemotherapeutic drugs by triggering 
DNM1L-mediated mitochondrial fission [115]. 
Moreover, novel Drp1 inhibitors, Drpitor1 and 
Drpitor1a, were identified to have antineoplas-
tic potency in breast cancer cells [116].

Pancreatic cancer

The Ras oncogene is frequently mutated in 
pancreatic ductal adenocarcinomas, and its 
mutation is an early event in pancreatic tumori-
genesis [117]. Expression of oncogenic Ras or 
MAPK pathway activation leads to increas- 
ed mitochondrial fragmentation, but blocking 
mitochondrial fission through knockdown of 
Drp1 inhibits tumor growth via Erk2-mediated 
phosphorylation of Drp1 on Ser616 [23]. In 
addition, FAM49B was found to be a tumor sup-
pressor in pancreatic ductal adenocarcinomas. 
FAM49B knockdown induced Drp1 phosphory-
lation and favored fission in cancer cells [118]. 
However, mitochondrial fission induced by 
knockdown of myoferlin was reported to inhibit 
cancer cell proliferation and ATP production 
[119].

Lung neoplasms

In non-small cell lung cancer (NSCLC), SIRT4 
inhibited cancer progression by decreasing mi- 
tochondrial fission [120]. Downregulation of  
the oncoprotein AIM2 enhanced mitochondri- 
al fusion [121]. Inhibition of PIM caused mito-
chondrial fragmentation and sensitized NSCLC 
cells to chemotherapy [122]. Another study 
showed that a fraction of endogenous MDM2 
was actively imported into mitochondria and 
affected mitochondrial dynamics independent 
of p53 in lung neoplasms. MDM2 depletion 
resulted in enhanced phosphorylation of DRP1 
on Ser637, leading to increased mitochondrial 
fission. Increased mitochondrial MDM2 levels 
strengthened the migratory and invasive prop-
erties of cancer cells [123].

Brain tumor

The identification of brain tumor initiating cells 
(BTICs) provided insights into human brain 
tumor pathogenesis. Drp1 showed activating 
phosphorylation in BTICs and inhibitory phos-
phorylation in bulk tumor cells. Suppression of 
Drp1 led to BTIC apoptosis and suppressed 
tumor growth. Drp1 activity regulated the down-
stream metabolic stress sensor AMP-activated 
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Table 1. A list of recent research results involving mitochondrial dynamics and cancer
Cancer type Mitochondrial dynamics Malignant property Reference
HCC Dynamin-1-like protein upregulation and Mfn1 downregulation Enhancement of cell migration [62]

HCC Mfn1 downregulation Depletion of Mfn1 modulated cancer metastasis via a metabolic shift [79]

HCC Increased DNM1L/MFN1 expression ratio Cell survival [108]

HCC Drp1 upregulation Infiltration of tumor-associated macrophages [107]

HCC Starvation-induced Drp1 Ser637 phosphorylation and suppression of its  
mitochondrial translocation 

Metabolic reprogramming [80]

HCC Excessive fusion Metabolic alteration
Promotion of cell growth

[81]

Ovarian cancer Drp1 phosphorylation on Ser616 promoted by SIK2 Support of cell growth and metastasis [64]

Epithelial ovarian cancer Correlation of Drp1 with cell cycle genes Mitotic transition and
chemosensitivity

[110]

Ovarian cancer Hypoxia-induced increase in mitochondrial fission Cisplatin resistance [111]

Breast cancer Enhanced fusion driven by myc YAP/TAZ suppression [112]

Breast cancer Mfn2 downregulation Cancer cell survival under metabolic stress [84]

Breast cancer Drp1 upregulation
Mfn1 downregulation

Cancer cell survival [113]

Breast cancer DRP1 phosphorylation on Ser637 Tamoxifen resistance [114]

Breast cancer Liensinine treatment induced fission via DNM1L activation Cellular apoptosis [115]

Pancreatic cancer Increased Drp1 phosphorylation Tumor growth [23]

Pancreatic ductal adenocarcinoma Acquisition of a myoferlin-induced branched mitochondrial structure Mitochondrial fission inhibited cancer cell proliferation [119]

Pancreatic ductal adenocarcinoma Enhanced mitochondrial fission Cell proliferation and invasion [118]

NSCLC Mfn2 upregulation Decreased ROS production [121]

NSCLC Inhibition of Drp1 phosphorylation by sirt4 Cell cycle arrest
Repressed invasion

[120]

NSCLC PIM1-inhibition induced Drp1 upregulation Chemosensitivity [122]

Lung cancer Enhanced Drp1 phosphorylation caused by MDM2 depletion Suppressed cell migration and invasion [123]

Glioblastoma Drp1 upregulation in BITCs Tumor growth [124]

Glioma Promotion of Drp1-dependent fission by NF-κB-inducing kinase Cell invasion [63]

Cervical cancer Mfn2 activation - [125]

Melanoma Drp1 upregulation Tumor growth [127]

T-ALL Drp1 phosphorylation on Ser616 Drug resistance [130]

AML Fission upregulation
In LSCs

LSC self-renewal [131]

Prostate cancer Mff repression resulting from BRD4 knockdown CSC exhaustion [133]

Prostate cancer Increased fission Tumorigenesis [132]

Gastrointestinal stromal tumor Inhibition of mitochondrial fission mediated by knockdown of Nestin Cell proliferation and invasion [134]

Colorectal cancer Drp1 phosphorylation Chemoresistance [135]

Colorectal cancer Suppression of Drp1 phosphorylation Inhibition of carcinogenesis [136]
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protein kinase (AMPK). Furthermore, Drp1 acti-
vation was found to be related to poor progno-
sis in glioblastoma, implying that mitochondrial 
dynamics is a novel therapeutic target for brain 
tumors [124]. In glioma, NF-κB-inducing kinase 
was found to promote mitochondrial fission and 
cell invasion. Drp1 was essential for NF-κB-
inducing kinase-dependent cell invasion [63].

Cervical cancer

MFN2 and Rab, as well as Ras Interactor 1 
(RIN1), were identified as new Smad2 binding 
partners required for mitochondrial fusion in 
HeLa cells. Inactive cytoplasmic Smad2 rapidly 
promoted mitochondrial fusion by recruiting 
RIN1 into a complex with MFN2. These results 
implied functional connections between Smad 
proteins and mitochondrial dysfunction [125].

Melanoma

Nutrient-sensing mechanistic/mammalian tar-
get of rapamycin complex 1 (mTORC1), which  
is frequently activated in cancer, controls cell 
growth and metabolism [126]. mTOR stimu-
lates translation of mitochondrial fission pro-
cess 1 (MTFP1), which is coupled to pro-fission 
phosphorylation and mitochondrial recruitment 
of DRP1 in melanoma cells. Potent active site 
mTOR inhibitors induce mitochondrial hyperfu-
sion due to diminished translation of MTFP1. 
Additionally, MTFP1 was identified as a critical 
effector of mTORC1 to govern cell fate deci-
sions [127].

Immune cells in cancer

Mitochondria are important in innate immune 
responses to cellular damage, stress and infec-
tion [128]. Mitochondrial dynamics might affect 
Toll-like receptor agonist-mediated inflammato-
ry responses and immune cell polarization. One 
study reported that Toll-like receptor-regulated 
switching to mitochondrial fission in tumor-
associated macrophages via ablation of the 
OMM protein FAM73b resulted in T cell activa-
tion and enhancement of antitumor immunity. 
In addition, mitochondrial morphology was 
found to alter Parkin expression and the activi-
ty of its downstream CHIP-IRF1 axis, revealing 
new potential targets for cancer immunothera-
py [67]. In another study, T cells with decreased 
surface expression of the NADase CD38 exhib-
ited intrinsically higher NAD+ levels, increased 

oxidative phosphorylation, and shifted mito-
chondrial dynamics that greatly enhanced tu- 
mor control [129].

Leukemia

Mesenchymal stem cells (MSCs) protect T cell 
acute lymphoblastic leukemia (T-ALL) cells ag- 
ainst chemotherapeutic agents. Mitochondrial 
fragmentation was observed in T-ALL cells co- 
cultured with MSCs, and Drp1 phosphorylati- 
on on Ser616 was the underlying mechanism 
[130]. Leukemia stem cells (LSCs) are thought 
to be the driving factor of acute myeloid leuke-
mia (AML) genesis and relapse after chemo-
therapy. Recently, depletion of Fis1 was dem-
onstrated to attenuate mitophagy, resulting in 
cell cycle arrest and profound weakening of 
LSC self-renewal potential. Furthermore, inhibi-
tion of AMPK signaling rescued the biological 
effect of Fis1 loss [131].

Prostate cancer

Speckle-type POZ protein (SPOP) mutations 
contribute to prostate carcinogenesis. Experi- 
mental results demonstrated that expression 
of SPOP mutants augmented mitochondrial fis-
sion [132]. Furthermore, Drp1 expression pro-
moted prostate cancer cell survival under met-
abolic stress conditions [78]. Recently, mito-
chondrial plasticity was found to be a new anti-
cancer target in CSCs of human prostate can-
cer. BRD4 is one of extra-terminal domain BET 
proteins which bind to acetylated histones  
and transcription factors. Genetic knockdown 
of BRD4 blocked mitochondrial fission by re- 
pressing Mff and depleted CSCs. Ectopic ex- 
pression of MFF rescued the exhaustion of 
CSCs [133].

Gastrointestinal cancers

Nestin was found to be upregulated in invasi- 
ve gastrointestinal stromal tumor specimens. 
Knockdown of nestin inhibited the recruitment 
of Drp1 to mitochondria, thus changing mito-
chondrial dynamics [134]. In colorectal cancer, 
the release of high-mobility group box 1 protein 
promoted Drp1 phosphorylation, leading to ch- 
emoresistance [135]. Besides, Paris Saponin II 
exhibited antitumor capacity in colorectal can-
cer by modulating Drp1-mediated mitochondri-
al fission [136].
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Conclusion

Great strides in the study of mitochondrial 
dynamics have been achieved in the past few 
years. Mitochondrial dynamics is particularly 
vital for the normal functions of mammalian 
cells. Indeed, as reviewed here, many kinds of 
human cancers are inextricably connected with 
dysregulated mitochondrial dynamics. In most 
cases, mitochondrial fission facilitates the pro-
liferation, metastasis and drug resistance of 
cancer cells, causing cancer development. Inhi- 
bitors of mitochondrial fission effectors, such 
as Drpitor1 and Drpitor1a, have shown antican-
cer efficacy. However, in some cancers, mito-
chondrial fusion has been found to promote 
malignant phenotypes of cancer cells. Though 
current research achievements on the mole- 
cular mechanisms of mitochondrial dynamics 
have provided abundant therapeutic targets  
for cancer, means to achieve maximum benefit 
by manipulating mitochondrial dynamics in spe-
cific contexts need more investigation.

Furthermore, mitochondrial dynamics affects 
the proliferation of bulk cancer cells as well as 
the survival and stemness maintenance of 
CSCs, which are responsible for tumor recur-
rence and other malignant traits. Blocking mi- 
tochondrial fission weakens the self-renewal 
capacity of CSCs and leads to CSC exhaustion 
providing a new anticancer target. In addition, 
the function of immune cells such as T cells in 
the cancer microenvironment depends on tun-
ing of mitochondrial fusion and fission, sug-
gesting the feasibility of augmenting antitumor 
immunity by targeting mitochondrial dynamics.

Developing inhibitors against mitochondrial fu- 
sion and fission proteins is a promising new 
strategy to overcome resistance to chemother-
apeutic drugs and cancer metastasis. However, 
few clinical trials of inhibitors targeting mito-
chondrial dynamics have been conducted to 
date, and much remains to be done before 
approaches targeting mitochondrial dynamics 
can be translated from the bench to the bed- 
side.
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