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Abstract: The majority of patients with prostate cancer die of non-cancer causes of death (COD). It is thus impor-
tant to accurately predict multi-category COD in these patients. Random forest (RF), a popular machine learning 
model, has been shown useful for predicting binary cancer-specific deaths. However, its accuracy for predicting 
multi-category COD in cancer patients is unclear. We included patients in Surveillance, Epidemiology, and End 
Results-18 cancer registry-program with prostate cancer diagnosed in 2004 (followed-up through 2016). They were 
randomly divided into training and testing sets with equal sizes. We evaluated prediction accuracies of RF and con-
ventional statistical/multinomial models for 6-category COD by data-encoding types using the 2-fold cross-validation 
approach. Among 49,864 prostate cancer patients, 29,611 (59.4%) were alive at the end of follow-up, and 5,448 
(10.9%) died of cardiovascular disease, 4,607 (9.2%) of prostate cancer, 3,681 (7.4%) of non-prostate cancer, 717 
(1.4%) of infection, and 5,800 (11.6%) of other causes. We predicted 6-category COD among these patients with a 
mean accuracy of 59.1% (n=240, 95% CI, 58.7%-59.4%) in RF models with one-hot encoding, and 50.4% (95% CI, 
49.7%-51.0%) in multinomial models. Tumor characteristics, prostate-specific antigen level, and diagnosis confirma-
tion-method were important in RF and multinomial models. In RF models, no statistical differences were found be-
tween the accuracies of training versus cross-validation phases, and those of categorical versus one-hot encoding. 
We here report that RF models can outperform multinomial logistic models (absolute accuracy-difference, 8.7%) 
in predicting long-term 6-category COD among prostate cancer patients, while pathology diagnosis itself and tumor 
pathology remain important factors. 
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Introduction

Prostate cancer is the most prevalent cancer 
and the second leading-cause of cancer dea- 
ths among men in the U.S.A., accounting for 
174,650 new cases and 31,620 deaths in 
2019 [1, 2]. More patients with prostate cancer 
died of non-cancer causes than of prostate 
cancer [3, 4]. It is thus important to under-
stand, predict and prevent non-cancer causes 
of death (CODs) among these patients, particu-

larly cardiovascular disease (CVD) [5]. However, 
only a limited number of studies investigated 
multi-category COD in prostate cancer patients, 
and none of them were focused on the predic-
tion of COD [3, 5, 6]. 

The random forest (RF) model, a widely-used 
machine/statistical learning model, improves 
the performance of decision trees through ran-
dom sampling of training data when building 
trees and random subsetting of features when 
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splitting nodes [7]. The RF model often outper-
forms several  other machine learning and con-
ventional statistical (e.g. logistic regression) 
models in predicting binary cancer-specific or 
all-cause deaths [8-12], with exceptions in a 
few simulation or biomarker studies [13, 14]. It 
has also been used to predict cancer-specific dea- 
ths in prostate cancer patients [15]. However, 
few studies have used RF model for predicting 
multi-category COD in cancer patients, or com-
pared the prediction accuracies of RF versus 
conventional statistical model (e.g. multinomial 
logistic regression) for multi-category COD. Our 
research aims to fill this gap, and we designed 
a population-based observational study to pre-
dict 12-year multi-category COD in prostate 
cancer patients using RF and multinomial logis-
tic models. 

Methods

Patient data

We extracted individual-patient data from the 
Surveillance, Epidemiology, and End Results- 
18 (SEER-18) Program (www.seer.cancer.gov) 
SEER*Stat Database with Treatment Data 
using the SEER*Stat software (Surveillance 
Research Program, National Cancer Institute 
SEER*Stat software (seer.cancer.gov/seerstat) 
version <8.3.6>) [16]. SEER-18 is the largest 
SEER database including cases from 18 states 
and covers near 30% of the U.S. population 
[17]. The datasets have been widely used and 
validated for research on breast and colorectal 
cancers [18-20]. Any summary data involving 
fewer than 15 patients were statistically sup-
pressed to protect patient identity. Since the 
SEER database is an existing, de-identified and 
publicly available dataset, this study is exempt 
from Institutional Review Board (IRB) review 
under exempt category 4. 

We included all qualified invasive prostate can-
cer cases in SEER-18 diagnosed in 2004 (2019 
data-release, followed up through December 
2016). The diagnosis year of 2004 was chosen 
because the 6th edition of the Tumor, Node and 
Metastasis staging manual (TNM6) of the 
American Joint Commission on Cancer (AJCC) 
was started in 2004 and allowed 12 years of 
follow-up. However, the AJCC 7th edition of the 
Tumor, Node and Metastasis staging manual 
(TNM7) was started in 2010, and would allow 
only up to 6 years of follow-up, which was not 

long enough in our view. The inclusion criteria 
were survival time longer than 1 month, aged 
20 years and older, with known COD and first 
primary only. 

Outcome and variables

The outcome of the statistical models was the 
patients’ 6-category COD. The COD were origi-
nally classified using SEER’s recodes of the 
causes of death according to the COD definition 
of the U.S. Mortality Data, which were extracted 
from underlying cause of death on the death 
certificates of deceased patients [21]. The 
underlying COD was the unique and most 
important etiology of the patients’ death, while 
other causes may link to the death and be 
recorded as other COD on the death certificate. 
We simplified the SEER COD into 6 categories 
based on the prevalence of COD [3, 6, 15], in- 
cluding alive, CVD, infection, non-prostate can-
cer, prostate cancer and others.

The following factors were included in the anal-
ysis as variables in RF or multinomial models: 
age at diagnosis, race/ethnicity (non-Hispanic 
White, Hispanic, non-Hispanic Black, Asian and 
Pacific Islanders, and others) [22], T, N and M 
categories of TNM6, AJCC TNM6 clinical stag-
ing, prostate specific antigen level (PSA, ng/
ml), sum of the Gleason score, chemotherapy, 
radiotherapy, surgery, and attributes of the 
county where the patient resided at the time of 
diagnosis [23]. The PSA levels and Gleason 
scores were collected from medical records as 
site specific factors of prostate cancer since 
2010 [24, 25]. Specifically, sums of the Gleason 
score were obtained from pathology report of 
resected specimen when available, or that of 
biopsy specimen if no surgery done. The 4 cen-
sus-regions of patient’s residence county were 
defined by the U.S. Census Bureau [26]. We 
converted continuous variables into 4-category 
variables based on their quartiles. The chemo-
therapy and radiotherapy data were obtained 
after signing a user agreement [25, 27]. It is 
noteworthy that no or unknown status of these 
treatments should be considered less reliable, 
while receipt of these treatments was generally 
confirmed and reliable [25, 27]. 

Statistical analysis

We compared the accuracies of the RF and 
multinomial logit models after tuning the 
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parameters of the RF model and choosing the 
model with the best accuracy. Using the two-
fold cross-validation approach, the patients we- 
re first randomly divided into two subsets of 
similar sizes (n=25,000 and 24,864, respec-
tively). In each round of the validation, one sub-
set is treated as the training data for construct-
ing models, and the other subset is treated as 
the test data for evaluating prediction perfor-
mance (Figure 1). We identified the RF model 
with the best accuracy, which is termed as tun-
ing process in data science. Specifically, we 
examined prediction accuracies (i.e. 1 - classifi-
cation error) of the models with various num-
bers of iterations (from 50 to 800 by an interval 
of 50) and variables (from 1 to 15), which were 
the number of computation rounds and the pre-
set number of the features in RF model, respec-
tively. After the two rounds of validation, the set 
of parameters that led to the RF model with the 
smallest average classification error were 
selected. 

Several sensitivity analyses were performed on 
RF models. To exclude patients lost to follow-
up, we conducted training and validation pro-
cesses in the patients who died during the fol-
low-up or was alive for >150 months (12.5 
years). 

A previous study has shown that one-hot encod-
ing could sometimes outperform complex en- 
coding systems [28]. This approach was also 
used in machine learning models of cancer 
driver genes [29]. For one-hot encoding, all mul-
ticategory variables (i.e. discrete variables with 
more than two categories) were transformed 
into a new set of binary variables. For example, 
the categorical variable for race/ethnicity group 
would be replaced by 5 binary variables repre-
senting whether the patients are non-Hispanic 
White, Hispanic, non-Hispanic Black, Asian and 
Pacific Islanders, or others, respectively. We 

trained the RF or multinomial logit models using 
the one-hot encoded data, and compared the 
results with those using multicategory vari- 
ables. 

For the multinomial logistic regression model, 
we first constructed the model using the train-
ing set (the subset with sample size of 25,000) 
and predicted the 6-category COD using the 
testing set (Figure 1). If the predicted probabil-
ity of a given COD was higher than 0.5 for a 
patient, the COD would be assigned to that 
patient. Ideally, only one COD had a predicted 
probability >0.5 and was allowed for each case, 
thus any patient with 0 or >1 predicted COD 
was considered mistakenly predicted using 
multinomial model. 

We carried out the above statistical analyses 
using the RF package and multinomial logistic 
models of Stata (version 16, College Station, 
TX) [30-32]. The 95% confidence intervals (CI) 
of prediction accuracies were estimated using 
both binomial and Poisson models, that pro-
duced very similar results. All P values were 
two-tailed, and a P value <0.05 was considered 
statistically significant. 

Results

Patients 

We identified and analyzed 49,864 men with 
prostate cancer diagnosed in 2004 in the 
SEER-18 (Table 1), including 29,611 (59.4%) 
alive, 5,448 (10.9) died of CVD, 4,607 (9.2%) of 
prostate cancer, 3,681 (7.4%) of non-prostate 
cancer, 717 (1.4%) of infection, and 5,800 
(11.6%) of other causes. The mean survival 
time was 117 months, while there were 31,273 
patients who died during follow-up or were alive 
for >150 months. The majority of the cancers 
were of AJCC 6 stage 2 (80.9%) and not treated 

Figure 1. Study flow. We randomized the patients into training and testing sets with similar sample sizes in each 
group. We then tuned the random forest (RF) model, chose the best-fit RF model, and fitted multinomial logistic 
(ML) model using the training set. Using the ML and RF models, we predicted 6-category causes of death among 
the patients in the testing set. During the cross-validation phase, we followed a similar protocol but with swapped 
datasets.
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Table 1. Baseline characteristics of included subjects
Alive, 

n=29,611
CVD, 

n=5,448
Infection, 

n=717
Non-Prostate  

cancer, n=3,681
Other cause, 

n=5,800
Prostate cancer, 

n=4,607
Total, 

n=49,864
Age (yr)¶ 63 (50-77) 74 (59-87) 75 (58-88) 70 (56-83) 73 (58-86) 72 (54-88) 67 (51-83)
Survival time (mo)¶ 146 (131-155) 77 (7-143) 78 (6-141) 78 (12-141) 82 (11-143) 59 (4-137) 117 (16-154)
Race
    API 1,453 210 43 172 268 195 2,341
    (%) (4.9) (3.9) (6.0) (4.7) (4.6) (4.2) (4.7)
    Hispanic 2,662 412 68 249 497 423 4,311
    (%) (9.0) (7.6) (9.5) (6.8) (8.6) (9.2) (8.7)
    NH Black 3,830 865 143 553 807 812 7,010
    (%) (12.9) (15.9) (19.9) (15.0) (13.9) (17.6) (14.1)
    NH White 21,093 3,920 461 2,690 4,189 3,147 35,500
    (%) (71.2) (72.0) (64.3) (73.1) (72.2) (68.3) (71.2)
    Unknown/Other 573 41 <15* 17 39 30 702
    (%) (1.9) (0.8) (0.5) (0.7) (0.7) (1.4)
TNM6 T category
    T1/2 26,641 4,873 635 3,245 5,201 2,917 43,512
    (%) (90.0) (89.5) (88.6) (88.2) (89.7) (63.3) (87.3)
    T3/4 2,543 278 40 281 329 890 4,361
    (%) (8.6) (5.1) (5.6) (7.6) (5.7) (19.3) (8.8)
    Unknown/Other 427 297 42 155 270 800 1,991
    (%) (1.4) (5.5) (5.9) (4.2) (4.7) (17.4) (4.0)
TNM6 N category
    0 28,140 4,850 631 3,354 5,226 3,057 45,258
    (%) (94.7) (88.3) (87.2) (90.6) (89.4) (65.2) (90.2)
    1 283 64 <15* 60 55 357 830
    (%) (1.0) (1.2) (1.6) (0.9) (7.6) (1.7)
    Unknown/Other 1,307 579 82 289 566 1,272 4,095
    (%) (4.4) (10.5) (11.3) (7.8) (9.7) (27.1) (8.2)
TNM6 M category
    0 28,615 4,911 648 3,389 5,291 2,794 45,648
    (%) (96.3) (89.4) (89.5) (91.5) (90.5) (59.6) (91.0)
    1 160 182 25 120 174 1,363 2,024
    (%) (0.5) (3.3) (3.5) (3.2) (3.0) (29.1) (4.0)
    Unknown/Other 955 400 51 194 382 529 2,511
    (%) (3.2) (7.3) (7.0) (5.2) (6.5) (11.3) (5.0)
AJCC6 staging
    1 47 21 <15* <15* 26 <15* 110
    (%) (0.2) (0.4) (0.5) (0.2)
    2 25476 4459 574 3013 4785 2054 40361
    (%) (86.0) (81.9) (80.1) (81.9) (82.5) (44.6) (80.9)
    3 2110 173 19 200 216 328 3046
    (%) (7.1) (3.2) (2.7) (5.4) (3.7) (7.1) (6.1)
    4 607 252 38 200 240 1595 2932
    (%) (2.1) (4.6) (5.3) (5.4) (4.1) (34.6) (5.9)
    Unknown/Other 1371 543 81 258 533 629 3415
    (%) (4.6) (10.0) (11.3) (7.0) (9.2) (13.7) (6.9)
Chemotherapy
    None/Unknown 29,617 5,472 720 3,671 5,821 4,516 49,817
    (%) (99.6) (99.6) (99.5) (99.1) (99.6) (96.4) (99.3)
    Received 113 21 <15* 32 26 170 366
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    (%) (0.4) (0.4) (0.9) (0.4) (3.6) (0.7)
Radiotherapy
    None/Unknown 18,450 3,364 446 2,094 3,537 3,257 31,148
    (%) (62.1) (61.2) (61.6) (56.6) (60.5) (69.5) (62.1)
    Received 11,280 2,129 278 1,609 2,310 1,429 19,035
    (%) (37.9) (38.8) (38.4) (43.5) (39.5) (30.5) (37.9)
Surgery
    Local Excision 1,093 599 72 270 657 483 3,174
    (%) (3.7) (11.0) (10.0) (7.3) (11.3) (10.5) (6.4)
    No surgery 15,142 4,261 578 2,649 4,413 3,666 30,709
    (%) (51.1) (78.2) (80.6) (72.0) (76.1) (79.6) (61.6)
    Prostatectomy 13,376 588 67 762 730 458 15,981
    (%) (45.2) (10.8) (9.3) (20.7) (12.6) (9.9) (32.1)
Rural-urban continuum 2003§
    Metro 26,709 4,758 635 3,178 4,958 4,039 44,277
    (%) (89.8) (86.6) (87.7) (85.8) (84.8) (86.2) (88.2)
    Non-Metro 3,021 735 89 525 889 647 5,906
    (%) (10.2) (13.4) (12.3) (14.2) (15.2) (13.8) (11.8)
Census region
    Midwest 2,946 658 77 399 613 429 5,122
    (%) (10.0) (12.1) (10.7) (10.8) (10.6) (9.3) (10.3)
    Northeast 4,797 882 123 631 874 721 8,028
    (%) (16.2) (16.2) (17.2) (17.1) (15.1) (15.7) (16.1)
    South 5,573 1,140 176 843 1,393 1,009 10,134
    (%) (18.8) (20.9) (24.6) (22.9) (24.0) (21.9) (20.3)
    West 16,295 2,768 341 1,808 2,920 2,448 26,580
    (%) (55.0) (50.8) (47.6) (49.1) (50.3) (53.1) (53.3)
Percent of education attainment, quartile§
    Q1, <15.08 8,001 1,200 140 836 1,339 1,029 12,545
    (%) (26.9) (21.9) (19.3) (22.6) (22.9) (22.0) (25.0)
    Q2, 15.09-18.15 7,538 1,287 182 898 1,448 1,193 12,546
    (%) (25.4) (23.4) (25.1) (24.3) (24.8) (25.5) (25.0)
    Q3, 18.17-25.79 7,236 1,420 189 997 1,492 1,212 12,546
    (%) (24.3) (25.9) (26.1) (26.9) (25.5) (25.9) (25.0)
    Q4, >50.77 6,955 1,586 213 972 1,568 1,252 12,546
    (%) (23.4) (28.9) (29.4) (26.3) (26.8) (26.7) (25.0)
Percent of persons in poverty, quartile§
    Q1, <21.18 8,034 1,210 160 865 1,305 1,044 12,618
    (%) (27.0) (22.0) (22.1) (23.4) (22.3) (22.3) (25.1)
    Q2, 21.33-29.81 7,655 1,258 152 929 1,364 1,129 12,487
    (%) (25.8) (22.9) (21.0) (25.1) (23.3) (24.1) (24.9)
    Q3, 29.86-37.36 7,276 1,493 220 986 1,662 1,256 12,893
    (%) (24.5) (27.2) (30.4) (26.6) (28.4) (26.8) (25.7)
    Q4, >67.40 6,765 1,532 192 923 1,516 1,257 12,185
    (%) (22.8) (27.9) (26.5) (24.9) (25.9) (26.8) (24.3)
Percent of foreign-born residents, quartile§
    Q1, <5.95 6,864 1,467 188 1,041 1,747 1,254 12,561
    (%) (23.1) (26.7) (26.0) (28.1) (29.9) (26.8) (25.0)
    Q2, 5.98-15.22 7,739 1,399 172 922 1,498 1,157 12,887
    (%) (26.0) (25.5) (23.8) (24.9) (25.6) (24.7) (25.7)
    Q3, 15.45-21.55 7,412 1,257 179 866 1,342 1,171 12,227
    (%) (24.9) (22.9) (24.7) (23.4) (23.0) (25.0) (24.4)
    Q4, >38.52 7,715 1,370 185 874 1,260 1,104 12,508
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with prostatectomy (61.6%). We randomly divid-
ed the cases into training and testing sets 
(Table S1), and found the outcome and all 
covariates were similarly distributed in these 
sets, except radiotherapy status (P=0.047). For 
the sensitivity analyses on the patients who 
died during follow-up or were alive >150 
months, CODs were similarly distributed in the 
training and testing sets (data not shown).

Predicting multi-category causes of death with 
random forests model

There were 17 variables with categorical encod-
ing and 61 variables with one-hot encoding, 

and 240 candidate models in each tuning pro-
cess. Our tuning processes showed that the 
prediction accuracy increased with the itera-
tion number in either conventionally or one-hot 
encoded data (Figure 2), as shown before [30]. 
The mean prediction-accuracy for 6-category 
COD were 58.6% (95% CI, 58.2%-59.1%) in the 
RF models with conventional encoding and 
59.1% (95% CI, 58.7%-59.4%) in those with 
one-hot encoding. The best accuracy was 
reached in the model of 3 variables and 800 
iterations with conventional encoding (59.2%, 
95% CI [58.6%-59.8%], Table 2 and Figure 3) 
and that of 1 variable and 700 iterations with 
one-hot encoding (59.6%, 95% CI [58.9%-

    (%) (26.0) (24.9) (25.6) (23.6) (21.6) (23.6) (24.9)
Confirmation method of diagnosis
    Microscopic 29,628 5,321 697 3,652 5,688 4,223 49,209
    (%) (99.7) (96.9) (96.3) (98.6) (97.3) (90.1) (98.1)
    Radiologic and clinic 40 122 21 43 104 285 615
    (%) (0.1) (2.2) (2.9) (1.2) (1.8) (6.1) (1.2)
    Unknown/Other 62 50 <15* <15* 55 178 359
    (%) (0.2) (0.9) (0.9) (3.8) (0.7)
PSA, quartiles (ng/ml)
    <4.9 8,360 765 88 665 874 367 11,119
    (%) (28.2) (14.0) (12.3) (18.1) (15.1) (8.0) (22.3)
    5.0-6.8 7,406 829 108 735 1,023 337 10,438
    (%) (25.0) (15.2) (15.1) (20.0) (17.6) (7.3) (20.9)
    6.9-11.3 6,331 1,199 157 804 1,239 580 10,310
    (%) (21.4) (22.0) (21.9) (21.8) (21.4) (12.6) (20.7)
    11.3+ 4,081 1,487 216 887 1,494 2,331 10,496
    (%) (13.8) (27.3) (30.1) (24.1) (25.8) (50.6) (21.1)
    Unknown/Other 3,433 1,168 148 590 1,170 992 7,501
    (%) (11.6) (21.4) (20.6) (16.0) (20.2) (21.5) (15.0)
Gleason score
    5 <15* <15* <15* <15* <15* <15* 15
    6 264 37 <15* 21 26 19 374
    (%) (0.9) (0.7) (0.6) (0.5) (0.4) (0.8)
    7 219 29 <15* 22 28 32 335
    (%) (0.7) (0.5) (0.6) (0.5) (0.7) (0.7)
    8 36 15 <15* <15* <15* 20 94
    (%) (0.1) (0.3) (0.4) (0.2)
    9 <15* <15* <15* <15* <15* <15* 65
    (%) (0.1)
    10 <15* <15* <15* <15* <15* <15* <15*
    Unknown/Other 29,069 5,358 701 3,624 5,728 4,493 48,973
    (%) (98.2) (98.4) (97.8) (98.5) (98.8) (97.5) (98.2)
Note: AJCC, 6th edition clinical staging of the American Joint Commission on Cancer; TNM6, 6th edition Tumor, node and metastasis staging manual 
of the American Joint Commission on Cancer; API, Asian Pacific Islanders; NH, Non-Hispanic; CVD, cardiovascular disease; PSA, Prostate specific 
antigen; *, statistically suppressed; ¶, 95% confidence intervals in parenthesis; §, County attributes of Year 2000; Education attainment defined as 
percent of residents with less than high-school graduate in the county; Person in poverty defined as percent of residents with income below 200% of 
poverty in the county.
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Figure 2. Characteristics of random forest models. During cross validation process, prediction accuracies of ran-
dom forest models varied by the corresponding numbers of variable and iteration (Heatmap graphs: A. Categorical 
data encoding; B. One-hot data encoding). The random forest models provided relative importance values for all 
included variables (C and D. Relative importance values of the top 10 variables in the chosen random forest models 
using categorical encoding and one-hot encoding, respectively). Note: *, Continuous variables were converted to 
4-category variables by their respective quartiles; Dx, diagnosis; PSA, Prostate specific antigen; Education attain-
ment defined as percent of residents with less than high-school graduate in the county; Person in poverty defined 
as percent of residents with income below 200% of poverty in the county.

Table 2. Prediction accuracy for long-term 6-category causes of death among the patients with pros-
tate cancer diagnosis in 2004 (follow up through Dec. 2016)

Predicted classes Alive, 
n=14,746

CVD, 
n=2,689

Infection, 
n=371

Non-Prostate 
cancer, 

n=1,873

Other 
cause, 

n=2,897

Prostate 
cancer, 

n=2,288

Total, 
n=24,864

Random forest model 
    Alive, % 87.70* 52.73 52.29 67.49 55.82 39.9 73.75
    CVD, % 3.79 15.88* 15.90 10.04 15.08 8.92 7.54
    Infection, % 0.21 0.67 0.27* 0.32 0.69 0.31 0.33
    Non-Prostate cancer, % 1.94 3.35 2.96 2.94* 3.11 3.23 2.44
    Other cause, % 3.82 17.44 16.44 10.62 15.05* 10.01 7.87
    Prostate cancer, % 2.54 9.93 12.13 8.60 10.25 37.63* 8.06
Multinomial model
    Alive, % 82.63* 33.51 31.27 51.84 37.04 32.87 64.34
    NA, % 17.37 66.49 68.73 48.16 62.96 67.13 35.66
Note: CVD, cardiovascular disease; NA, not available; *, correct prediction.
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60.2%], Table S2 and Figure 3). The best RF 
model with one-hot encoding appeared to out-
perform that with conventional encoding, but 
no statistically significant difference was found. 
Alive was the COD that all RF models could pre-
dict with the best accuracy, while cancer patho-
logical staging and age at diagnosis were top-
important factors in the RF models (Figure 3). 
The sensitivity analyses revealed that the pre-
diction accuracies were statistically similar in 
the training phase, and cross-validation phase, 
but statistically lower in the models in patients 
who died during follow-up or was alive for >150 
months (Figure 3). 

Predicting multi-category causes of death with 
multinomial model

As the RF models, and the multinomial logi- 
stic regression models with one-hot encoding 
seemed to have better goodness of fit than 
with categorical encoding (pseudo/adjusted 
R-square =0.1707 versus 0.1416, respective-
ly). Because multinomial models used a step-
wise approach (i.e. identify the most possible 
COD versus others, then second most possible 
COD versus remaining possible COD…until the 
last possible COD) to determine the best-fit out-
come, it is possible that more than one out-
come (i.e. COD) had a probability ≥0.5. However, 
the predicted COD in multinomial model was 

only unique in being alive among the 6-catego-
ry COD and all other categories were of <0.5 
probability (Table 2). The mean prediction-
accuracy was 50.4% (95% CI, 49.7%-51.0%) in 
the multinomial models, and lower than RF 
models, except the RF model on the patients 
who died during follow-up or was alive for >150 
months (Figure 3). Age at diagnosis, AJCC6 
staging, confirmation method of diagnosis, sur-
gery and PSA level were associated with all 
6-category COD in multinomial model, while 
other factors were only linked to some of the 
6-category COD (Table S3). 

Discussion

In this study, we investigated the multilevel pre-
diction problem of prostate patients’ COD using 
a carefully constructed RF model. In the 
patients with prostate cancer diagnosed in 
2004, 59.4% were alive at the end of 12-year 
follow-up, while the top-3 CODs were CVD, pros-
tate cancer and non-prostate cancer. We pre-
dicted 6-category COD among these patients 
with a mean accuracy of 59.1% (95% CI, 58.7%-
59.4%) in the tuned RF model with one-hot 
encoding, and 50.4% (95% CI, 49.7%-51.0%) in 
the multinomial logit model, suggesting RF 
models outperformed multinomial model. Tu- 
mor characteristics, PSA level, diagnosis confir-
mation-method, and radiotherapy status were 

Figure 3. Summary of prediction accuracies by model and data type. In the tuning process and sensitivity analyses, 
we computed the validation accuracy of each random forest model (n=240), and chose the one with the best ac-
curacy as the final model. The error bars show 95% confidence intervals of prediction accuracies in those models 
and data types during tuning process, except 3 models, whose 95% confidence intervals were calculated for the 
accuracy of a single binomial model (indicated by *). One-hot indicates one-hot encoding of the data; balanced set 
refers to the sensitivity analysis with training and testing sets that had balanced distribution of all variables.
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the top-ranked variables in RF model, but only 
age, surgery, diagnosis confirmation-method, 
PSA level and AJCC6 stages as the factors were 
linked to all of the COD (versus alive) in multino-
mial models.

The proportions of various COD in our study are 
similar to those in previous reports [4]. Given 
the increasing proportion of deaths from COD 
other than prostate cancer, it is critical to accu-
rately predict or identify the factors linked to 
these COD among prostate cancer patients. 
Several studies have attempted to predict can-
cer-specific or all-cause deaths in prostate can-
cer patients using clinical pathological and 
genomic/genetic factors [15, 33-36]. However, 
few studies to our knowledge predict the multi-
category COD. Multinomial logistic regression 
is suitable for analyzing categorical/multi-cate-
gory outcomes [31, 32]. In this study, multino-
mial logistic regression seems only able to pre-
dict the alive status of the 6-category COD if  
a unique COD was successfully identified. In 
the meantime, a tuned RF model outperformed 
multinomial logistic regression in predicting 
6-category COD by 17.2% higher prediction 
accuracy (8.7% absolute accuracy-difference). 
This finding agrees with previous findings that 
RF’s accuracy is similar to or better than sup-
port vector machines, artificial neural network 
and logistic regression in predicting various 
clinical outcomes [9-11, 37], but contrasts to a 
study showing that its accuracy is inferior to 
that of logistic regression [38]. It is plausible, 
but needs additional validation, that RF could 
also be highly useful in predicting multi-catego-
ry COD or outcomes of other diseases. Despite 
the slightly better accuracy linked to data with 
one-hot encoding than standard encoding, we 
found no statistical differences between the 
two methods. This finding is inconsistent with 
previous reports [28, 29], and needs further 
validation. We also noticed that the minimal 
depths of trees in our best-fit RF models were 
usually 1 to 3. Those observations may help 
develop and improve machine learning models 
for predicting multi-category COD in cancer or 
other patients.

This study has several strengths that are note-
worthy. First, this population-based study pro-
vides early evidence on the frequencies of vari-
ous COD among the prostate cancer patients 
who were followed up for 12 years. Second, we 

tuned RF models for predicting 6-category COD 
in prostate cancer patients, while existing RF 
models on prostate cancer only predicted bina-
ry cancer-specific death [15, 33], all-cause 
death [33, 39] or cancer recurrence [40]. 
Compared with binary death-outcomes, multi-
ple-category COD are more informative, but 
much more difficult to predict. This is support-
ed by the low success rate of multinomial mod-
els in predicting unique COD. Third, the tuned 
RF models in this study outperformed multino-
mial models in predicting 6-category COD. 
Indeed, the multinomial model was only able to 
predict alive as a unique COD, and missed 
other COD. Fourth, we characterized RF models 
and identified the model with best accuracy, 
while few of the prior works tuned their models 
[15, 33, 40]. Fifth, we are able to able to achieve 
a promising prediction accuracy given the large 
sample size of this prostate cancer dataset and 
the cross-validation procedure [41]. Some of 
previous studies on prostate cancer survivals 
using machine learning/RF models had either 
large sample sizes [15] or cross validation [42-
44], but few combined both. Small sample size 
was indeed reported as the most common limi-
tation of machine learning studies on cancer 
prognosis and prediction [41]. Finally, age, PSA 
level and tumor characteristics were found 
linked to long-term 6-category COD in prostate 
cancer patients in both RF and multinomial 
models. Three socioeconomic factors, includ-
ing race, education attainment of patient’s res-
idence-county, average poverty-level of pa- 
tient’s residence-county, were found important 
in RF models, supporting a previous report on 
race and survival [15]. Future research is need-
ed to further investigate these factors.

This study also has the following limitations. 
The prediction accuracy for 6-category COD in 
this study is not yet as good as prediction for 
binary outcomes, such as all-cause deaths 
[33]. Moreover, despite some shared factors, 
RF models did not completely agree with multi-
nomial models on the factors linked to 6-cate-
gory COD. However, RF and other machine 
learning models are known for their limitations 
in identifying associated factors [45]. In addi-
tion, an external validation dataset might be 
needed, but is unavailable, largely due to the 
lack of registry-data. SEER18 is the largest 
population cancer dataset in the North America 
[16]. Thus, it is very challenging to obtain anoth-
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er population dataset of similar size for valida-
tion. However, we prospectively used the cross 
validation approach to validate our findings, as 
previously recommended [41, 45]. Finally, 
Gleason scores were available in a very small 
proportion of the patients, but might otherwise 
improve prediction accuracy [46]. 

Conclusions

In this population-based study, CVD, prostate 
cancer and non-prostate cancer were the most 
common long-term COD among prostate can-
cer patients. RF and multinomial models could 
predict 6-category COD among these patients 
with acceptable prediction accuracy, which 
needs further improvement. Those models 
enable clinicians to gain more granular prog-
nostic information on prostate cancer patients, 
and target at the relevant COD to improve sur-
vival. We also show that a tuned RF model out-
performs multinomial models by 8.7% (abso-
lute difference), or 15,195 person-case for the 
cases diagnosed in 2019 alone in the U.S. 
Additional studies are needed to better predict 
multiple-category COD of other cancers.
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Table S1. Baseline characteristics of the training and validation sets
Training set (n=25,000) Testing set (n=24,864) Total (n=49,864) P value

Survival time (mo) 117 (16-154) 117 (16-154) 117 (16-154) 0.183
Cause of death 0.663
    Alive 14865 14746 29611
    (%) (59.5) (59.3) (59.4)
    CVD 2759 2689 5448
    (%) (11.0) (10.8) (10.9)
    Infection 346 371 717
    (%) (1.4) (1.5) (1.4)
    Non-Prostate cancer 1808 1873 3681
    (%) (7.2) (7.5) (7.4)
    Other cause 2903 2897 5800
    (%) (11.6) (11.7) (11.6)
    Prostate cancer 2319 2288 4607
    (%) (9.3) (9.2) (9.2)
Age at diagnosis, quartile (yr) 0.539
    <61 6665 6502 13167
    (%) (26.7) (26.2) (26.4)
    61-67 6303 6353 12656
    (%) (25.2) (25.6) (25.4)
    67-74 6040 6043 12083
    (%) (24.2) (24.3) (24.2)
    75+ 5992 5966 11958
    (%) (24.0) (24.0) (24.0)
Race 0.317
    API 1184 1157 2341
    (%) (4.7) (4.7) (4.7)
    Hispanic 2098 2213 4311
    (%) (8.4) (8.9) (8.7)
    NH Black 3500 3510 7010
    (%) (14.0) (14.1) (14.1)
    NH White 17859 17641 35500
    (%) (71.4) (71.0) (71.2)
    Unknown/Other 359 343 702
    (%) (1.4) (1.4) (1.4)
TNM6 T category 0.850
    T1/2 21823 21689 43512
    (%) (87.3) (87.2) (87.3)
    T3/4 2191 2170 4361
    (%) (8.8) (8.7) (8.8)
    Unknown/Other 986 1005 1991
    (%) (3.9) (4.0) (4.0)
TNM6 N category 0.744
    0 22638 22469 45107
    (%) (90.6) (90.4) (90.5)
    1 406 420 826
    (%) (1.6) (1.7) (1.7)
    Unknown/Other 1956 1975 3931
    (%) (7.8) (7.9) (7.9)
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TNM6 M category 0.997
    0 22813 22686 45499
    (%) (91.3) (91.2) (91.3)
    1 1009 1003 2012
    (%) (4.0) (4.0) (4.0)
    Unknown/Other 1178 1175 2353
    (%) (4.7) (4.7) (4.7)
AJCC6 staging 0.662
    1 62 48 110
    (%) (0.3) (0.2) (0.2)
    2 20258 20103 40361
    (%) (81.0) (80.9) (80.9)
    3 1529 1517 3046
    (%) (6.1) (6.1) (6.1)
    4 1452 1480 2932
    (%) (5.8) (6.0) (5.9)
    Unknown/Other 1699 1716 3415
    (%) (6.8) (6.9) (6.9)
Chemotherapy 0.793
    None/Unknown 24820 24680 49500
    (%) (99.3) (99.3) (99.3)
    Received 180 184 364
    (%) (0.7) (0.7) (0.7)
Radiotherapy 0.047
    None/Unknown 15578 15278 30856
    (%) (62.3) (61.5) (61.9)
    Received 9422 9586 19008
    (%) (37.7) (38.6) (38.1)
Surgery 0.389
    Local Excision 1610 1564 3174
    (%) (6.4) (6.3) (6.4)
    No surgery 15323 15386 30709
    (%) (61.3) (61.9) (61.6)
    Prostatectomy 8067 7914 15981
    (%) (32.3) (31.8) (32.1)
Rural-urban continuum 2003§ 0.887
    Metro 22084 21974 44058
    (%) (88.3) (88.4) (88.4)
    Non-Metro 2916 2890 5806
    (%) (11.7) (11.6) (11.6)
Census region 0.315
    Midwest 2628 2494 5122
    (%) (10.5) (10.0) (10.3)
    Northeast 4033 3995 8028
    (%) (16.1) (16.1) (16.1)
    South 5081 5053 10134
    (%) (20.3) (20.3) (20.3)
    West 13258 13322 26580
    (%) (53.0) (53.6) (53.3)
Percent of education attainment, quartile§ 0.456
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    Q1, <15.08 6450 6296 12746
    (%) (25.8) (25.3) (25.6)
    Q2, 15.09-18.15 6293 6213 12506
    (%) (25.2) (25.0) (25.1)
    Q3, 18.17-25.79 6233 6246 12479
    (%) (24.9) (25.1) (25.0)
    Q4, >50.77 6024 6109 12133
    (%) (24.1) (24.6) (24.3)
Percent of persons in poverty, quartile§ 0.182
    Q1, <21.18 6406 6173 12579
    (%) (25.6) (24.8) (25.2)
    Q2, 21.33-29.81 6212 6170 12382
    (%) (24.9) (24.8) (24.8)
    Q3, 29.86-37.36 6375 6448 12823
    (%) (25.5) (25.9) (25.7)
    Q4, >67.40 6007 6073 12080
    (%) (24.0) (24.4) (24.2)
Percent of foreign-born residents, quartile§ 0.223
    Q1, <5.95 6259 6080 12339
    (%) (25.0) (24.5) (24.8)
    Q2, 5.98-15.22 6481 6365 12846
    (%) (25.9) (25.6) (25.8)
    Q3, 15.45-21.55 6068 6124 12192
    (%) (24.3) (24.6) (24.5)
    Q4, >38.52 6192 6295 12487
    (%) (24.8) (25.3) (25.0)
Confirmation method of diagnosis 0.686
    Microscopic 24553 24407 48960
    (%) (98.2) (98.2) (98.2)
    Radiologic and clinic 306 302 608
    (%) (1.2) (1.2) (1.2)
    Unknown/Other 141 155 296
    (%) (0.6) (0.6) (0.6)
PSA, quartiles (ng/ml) 0.854
    <4.9 5546 5573 11119
    (%) (22.2) (22.4) (22.3)
    5.0-6.8 5231 5207 10438
    (%) (20.9) (20.9) (20.9)
    6.9-11.3 5179 5131 10310
    (%) (20.7) (20.6) (20.7)
    11.3+ 5243 5253 10496
    (%) (21.0) (21.1) (21.1)
    Unknown/Other 3801 3700 7501
    (%) (15.2) (14.9) (15.0)
Gleason score 0.957
    5 <15* <15* 15
    (%) (0.0)
    6 192 182 374
    (%) (0.8) (0.7) (0.8)
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    7 169 166 335
    (%) (0.7) (0.7) (0.7)
    8 50 44 94
    (%) (0.2) (0.2) (0.2)
    9 35 30 65
    (%) (0.1) (0.1) (0.1)
    10 <15* <15* <15*
    (%)
    Unknown/Other 24541 24432 48973
    (%) (98.2) (98.3) (98.2)
Note: AJCC, 6th edition clinical staging of the American Joint Commission on Cancer; API, Asian Pacific Islanders; NH, Non-His-
panic; TNM6, 6th edition Tumor, node and metastasis staging manual of the American Joint Commission on Cancer; CVD, car-
diovascular disease; PSA, Prostate specific antigen; *, statistically suppressed; §, Country attributes of Year 2000; Education 
attainment defined as percent of residents with less than high-school graduate in the county; Person in poverty defined as 
percent of residents with income below 200% of poverty in the county.

Table S2. Prediction accuracy for long-term 6-category causes of death among the patients with pros-
tate cancer diagnosed in 2004 (12-year follow up) using one-hot encoding

Predicted classes Alive, 
n=14,746

CVD, 
n=2,689

Infection, 
n=371

Non-Prostate 
cancer, n=1,873

Other cause, 
n=2,897

Prostate cancer, 
n=2,288

Total, 
n=24,864

Random forest model
    Alive, % 88.87* 56.56 57.68 69.62 59.20 41.78 75.67
    CVD, % 3.54 14.95* 13.75 9.24 13.95 8.65 7.04
    Infection, % 0.20 0.60 0.27* 0.27 0.62 0.39 0.31
    Non-Prostate cancer, % 1.70 2.98 2.43 2.72* 2.93 2.80 2.17
    Other cause, % 3.49 15.43 15.09 9.72 13.84* 9.35 7.17
    Prostate cancer, % 2.20 9.48 10.78 8.44 9.46 37.02* 7.64
Multinomial model
    Alive, % 84.90* 34.85 32.35 53.66 39.28 27.93 65.79
    Prostate cancer, % 0.01 0.00 0.27 0.00 0.00 0.09* 0.02
    NA, % 15.09 65.15 67.39 46.34 60.72 71.98 34.19
Note: CVD, cardiovascular disease; NA, not available; *, correct prediction.
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Table S3. Factors associated with long-term 6-category cause of death among men with prostate cancer in multinomial model

Covariate
Cause of death

CVD Infection Non-Prostate cancer Other causes Prostate cancer
coefficient (95% CI) P coefficient (95% CI) P coefficient (95% CI) P coefficient (95% CI) P coefficient (95% CI) P

Age at diagnosis, quartile (yr)* 0.92 (0.88 to 0.97) <0.001 0.91 (0.78 to 1.03) <0.001 0.62 (0.57 to 0.67) <0.001 0.84 (0.79 to 0.88) <0.001 0.51 (0.46 to 0.55) <0.001

AJCC6 staging* 0.15 (0.04 to 0.27) 0.007 0.34 (0.10 to 0.58) 0.005 0.15 (0.02 to 0.29) 0.021 0.14 (0.02 to 0.25) 0.019 0.68 (0.58 to 0.77) <0.001

Confirmation method of diagnosis* 0.54 (0.24 to 0.85) 0.001 0.70 (0.16 to 1.24) 0.011 0.29 (-0.09 to 0.68) 0.136 0.69 (0.39 to 0.98) <0.001 0.66 (0.39 to 0.93) <0.001

Surgery* -0.76 (-0.86 to -0.66) <0.001 -0.84 (-1.07 to -0.61) <0.001 -0.45 (-0.56 to -0.34) <0.001 -0.79 (-0.88 to -0.70) <0.001 -1.04 (-1.14 to -0.94) <0.001

PSA, quartiles (ng/ml)* 0.17 (0.13 to 0.20) <0.001 0.16 (0.07 to 0.25) <0.001 0.13 (0.09 to 0.17) <0.001 0.14 (0.11 to 0.17) <0.001 0.34 (0.30 to 0.38) <0.001

Chemotherapy 0.23 (-0.45 to 0.92) 0.505 -0.11 (-2.11 to 1.88) 0.911 0.73 (0.11 to 1.36) 0.022 0.00 (-0.74 to 0.74) 0.999 2.03 (1.63 to 2.44) <0.001

Census region -0.12 (-0.17 to -0.07) <0.001 -0.15 (-0.27 to -0.03) 0.016 -0.04 (-0.10 to 0.02) 0.160 -0.01 (-0.06 to 0.04) 0.829 0.06 (0.00 to 0.12) 0.048

Percent of education attainment, quartile§ 0.08 (0.01 to 0.15) 0.019 0.11 (-0.06 to 0.28) 0.198 0.14 (0.06 to 0.21) 0.001 0.11 (0.04 to 0.17) 0.002 0.08 (0.01 to 0.16) 0.031

Percent of persons in poverty, quartile§ 0.08 (0.01 to 0.15) 0.032 0.01 (-0.16 to 0.18) 0.929 -0.06 (-0.14 to 0.02) 0.161 0.01 (-0.06 to 0.08) 0.788 -0.03 (-0.11 to 0.05) 0.436

Percent of foreign-born residents, quartile§ -0.08 (-0.13 to -0.03) 0.003 -0.11 (-0.24 to 0.02) 0.109 -0.10 (-0.16 to -0.04) 0.001 -0.19 (-0.24 to -0.14) <0.001 -0.13 (-0.18 to -0.07) <0.001

Gleason score -0.03 (-0.13 to 0.07) 0.566 -0.07 (-0.30 to 0.16) 0.565 -0.04 (-0.15 to 0.07) 0.454 0.06 (-0.05 to 0.17) 0.257 -0.05 (-0.16 to 0.06) 0.341

Race 0.03 (-0.02 to 0.08) 0.292 -0.23 (-0.34 to -0.11) <0.001 0.04 (-0.03 to 0.10) 0.252 0.01 (-0.05 to 0.06) 0.796 -0.03 (-0.09 to 0.03) 0.267

Radiotherapy -0.22 (-0.31 to -0.12) <0.001 -0.40 (-0.63 to -0.16) 0.001 -0.07 (-0.18 to 0.04) 0.238 -0.22 (-0.32 to -0.13) <0.001 -0.37 (-0.48 to -0.26) <0.001

Rural-urban continuum 2003§ -0.03 (-0.18 to 0.13) 0.720 -0.23 (-0.64 to 0.17) 0.261 0.11 (-0.07 to 0.28) 0.239 -0.03 (-0.17 to 0.12) 0.739 -0.01 (-0.18 to 0.17) 0.948

TNM6 T category 0.08 (-0.05 to 0.21) 0.242 0.15 (-0.15 to 0.45) 0.335 0.19 (0.03 to 0.35) 0.017 0.03 (-0.11 to 0.16) 0.714 0.50 (0.39 to 0.61) <0.001

TNM6 N category -0.05 (-0.13 to 0.02) 0.190 -0.08 (-0.24 to 0.09) 0.365 -0.08 (-0.17 to 0.01) 0.065 -0.05 (-0.12 to 0.03) 0.218 -0.18 (-0.24 to -0.12) <0.001

TNM6 M category 0.08 (-0.08 to 0.24) 0.322 -0.34 (-0.68 to 0.00) 0.053 0.06 (-0.13 to 0.25) 0.511 0.06 (-0.10 to 0.22) 0.447 0.06 (-0.07 to 0.19) 0.357
Note: AJCC, 6th edition clinical staging of the American Joint Commission on Cancer; TNM6, 6th edition Tumor, node and metastasis staging manual of the American Joint Commission on Cancer; CVD, cardiovascular disease; PSA, Prostate specific an-
tigen; *, factors linked to all causes of death; §, Country attributes of Year 2000; Education attainment defined as percent of residents with less than high-school graduate in the county; Person in poverty defined as percent of residents with income 
below 200% of poverty in the county.


