TABLE V.
COMPARSION BETWEEN THE PROPOSED 3D-GLCM MODEL WITH OTHER CNN BASED STRATAGIES. THE EVALUATION RESULTS ARE TWO-FOLD CROSS-VALIDATION METHOD.
Methods | Model | AUC | ACC | SEN | SPE | p-value |
---|---|---|---|---|---|---|
CT images based CNN | R-IMG | 0.60±0.11 | 0.60 | 0.66 | 0.54 | <0.0001 |
C-IMG | 0.67±0.07 | 0.64 | 0.69 | 0.59 | <0.0001 | |
ResNet-18 | 0.63±0.06 | 0.57 | 0.68 | 0.46 | <0.0001 | |
R-Hybrid | 0.67±0.08 | 0.64 | 0.56 | 0.73 | <0.0001 | |
C-Hybrid | 0.70±0.07 | 0.66 | 0.73 | 0.59 | <0.0001 | |
M-IMG (20) | 0.81±0.06 | 0.74 | 0.87 | 0.60 | <0.0001 | |
M-Hybrid (20) | 0.83±0.06 | 0.76 | 0.76 | 0.76 | <0.0001 | |
M-IMG (80) | 0.68±0.10 | 0.63 | 0.76 | 0.50 | <0.0001 | |
M-Hybrid (80) | 0.73±0.06 | 0.68 | 0.79 | 0.55 | <0.0001 | |
M-IMG (vote) | 0.73±0.07 | 0.68 | 0.83 | 0.52 | <0.0001 | |
3D-IMG (20) | 0.84±0.05 | 0.77 | 0.82 | 0.72 | <0.0001 | |
3D-IMG (80) | 0.80±0.06 | 0.77 | 0.69 | 0.87 | <0.0001 | |
GLCM based CNN | R-GLCM | 0.68±0.08 | 0.69 | 0.63 | 0.75 | <0.0001 |
C-GLCM | 0.79±0.07 | 0.72 | 0.76 | 0.68 | <0.0001 | |
M-GLCM | 0.85±0.06 | 0.77 | 0.78 | 0.77 | <0.0001 | |
3D-GLCM | 0.91±0.05 | 0.87 | 0.90 | 0.71 | 1.0000 |
ACC, SEN and SPE are short for accuracy, sensitivity and specificity.