Skip to main content
. Author manuscript; available in PMC: 2020 Jun 4.
Published in final edited form as: IEEE Trans Med Imaging. 2019 Dec 30;39(6):2013–2024. doi: 10.1109/TMI.2019.2963177

TABLE V.

COMPARSION BETWEEN THE PROPOSED 3D-GLCM MODEL WITH OTHER CNN BASED STRATAGIES. THE EVALUATION RESULTS ARE TWO-FOLD CROSS-VALIDATION METHOD.

Methods Model AUC ACC SEN SPE p-value
CT images based CNN R-IMG 0.60±0.11 0.60 0.66 0.54 <0.0001
C-IMG 0.67±0.07 0.64 0.69 0.59 <0.0001
ResNet-18 0.63±0.06 0.57 0.68 0.46 <0.0001
R-Hybrid 0.67±0.08 0.64 0.56 0.73 <0.0001
C-Hybrid 0.70±0.07 0.66 0.73 0.59 <0.0001
M-IMG (20) 0.81±0.06 0.74 0.87 0.60 <0.0001
M-Hybrid (20) 0.83±0.06 0.76 0.76 0.76 <0.0001
M-IMG (80) 0.68±0.10 0.63 0.76 0.50 <0.0001
M-Hybrid (80) 0.73±0.06 0.68 0.79 0.55 <0.0001
M-IMG (vote) 0.73±0.07 0.68 0.83 0.52 <0.0001
3D-IMG (20) 0.84±0.05 0.77 0.82 0.72 <0.0001
3D-IMG (80) 0.80±0.06 0.77 0.69 0.87 <0.0001
GLCM based CNN R-GLCM 0.68±0.08 0.69 0.63 0.75 <0.0001
C-GLCM 0.79±0.07 0.72 0.76 0.68 <0.0001
M-GLCM 0.85±0.06 0.77 0.78 0.77 <0.0001
3D-GLCM 0.91±0.05 0.87 0.90 0.71 1.0000

ACC, SEN and SPE are short for accuracy, sensitivity and specificity.