Table VII.
SUMMARY OF LEAVE-ONE-OUT CROSS-VALIDATION RESULTS.
Methods | Model | AUC | ACC | SEN | SPE |
---|---|---|---|---|---|
CT images based CNN | R-IMG | 0.61 | 0.58 | 0.88 | 0.28 |
C-IMG | 0.68 | 0.68 | 0.71 | 0.65 | |
R-Hybrid | 0.71 | 0.73 | 0.62 | 0.84 | |
C-Hybrid | 0.74 | 0.73 | 0.78 | 0.68 | |
M-IMG (20) | 0.83 | 0.80 | 0.69 | 0.84 | |
M-Hybrid (20) | 0.84 | 0.83 | 0.93 | 0.73 | |
M-IMG (80) | 0.78 | 0.77 | 0.68 | 0.87 | |
M-Hybrid (80) | 0.78 | 0.79 | 0.65 | 0.93 | |
M-IMG (vote) | 0.82 | 0.77 | 0.94 | 0.60 | |
3D-IMG (20) | 0.70 | 0.73 | 0.61 | 0.84 | |
3D-IMG (80) | 0.79 | 0.72 | 0.78 | 0.65 | |
GLCM based CNN | R-GLCM | 0.74 | 0.73 | 0.69 | 0.77 |
C-GLCM | 0.80 | 0.79 | 0.78 | 0.81 | |
M-GLCM | 0.89 | 0.82 | 0.72 | 0.94 | |
3D-GLCM | 0.93 | 0.90 | 0.90 | 0.90 |
ACC, SEN and SPE are short for accuracy, sensitivity and specificity.