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Abstract

Purpose—The tumor microenvironment (TME) consists of a heterogenous cellular milieu that 

can influence cancer cell behavior. Its characteristics have an impact on treatments such as 

immunotherapy. These features can be revealed with single-cell RNA sequencing (scRNA-seq). 
We hypothesized that scRNA-seq analysis of gastric cancer (GC) together with paired normal 

tissue and peripheral blood mononuclear cells (PBMCs) would identify critical elements of 

cellular deregulation not apparent with other approaches.

Experimental Design—scRNA-seq was conducted on seven patients with GC and one patient 

with intestinal metaplasia. We sequenced 56,167 cells comprising GC (32,407 cells), paired 

normal tissue (18,657 cells) and PBMCs (5,103 cells). Protein expression was validated by 

multiplex immunofluorescence.

Results—Tumor epithelium had copy number alterations, a distinct gene expression program 

from normal, with intra-tumor heterogeneity. GC TME was significantly enriched for stromal 

cells, macrophages, dendritic cells (DCs) and Tregs. TME-exclusive stromal cells expressed 

distinct extracellular matrix components than normal. Macrophages were transcriptionally 

heterogenous and did not conform to a binary M1/M2 paradigm. Tumor-DCs had a unique gene 

expression program compared to PBMC DCs. TME-specific cytotoxic T cells were exhausted with 
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two heterogenous subsets. Helper, cytotoxic T, Treg and NK cells expressed multiple immune 

checkpoint or costimulatory molecules. Receptor-ligand analysis revealed TME-exclusive inter-

cellular communication.

Conclusions—Single-cell gene expression studies revealed widespread reprogramming across 

multiple cellular elements in the GC TME. Cellular remodeling was delineated by changes in cell 

numbers, transcriptional states and inter-cellular interactions. This characterization facilitates 

understanding of tumor biology and enables identification of novel targets including for 

immunotherapy.

INTRODUCTION

Gastric cancer (GC) is the fifth most common cancer and the third leading cause of cancer 

deaths worldwide (1). The current histopathologic classification scheme designates GCs as 

either intestinal or diffuse according to the morphology, differentiation and cohesiveness of 

glandular cells. Intestinal GC is preceded by changes in the gastric mucosa called the Correa 

cascade that progresses through inflammation, metaplasia, dysplasia and adenocarcinoma 

(2). Diffuse GCs lack intercellular adhesion and exhibit a diffuse invasive growth pattern. 

Recent integrated genomic and proteomic analyses including by the Cancer Genome Atlas 

(TCGA) and the Asian Cancer Research Group (ACRG) have refined the classification of 

GC into distinct molecular subtypes that include the intestinal and diffuse classification 

(3,4). Regardless of the histopathologic or molecular subtype, GCs are not isolated masses 

of cancer epithelial cells. Rather, these tumors have a complex morphology where cancer 

cells are surrounded by the tumor microenvironment (TME), a cellular milieu containing 

diverse cell types such as fibroblasts, endothelial and immune cells.

Increasingly, it is recognized that the cellular features of the TME play an important role in 

enabling tumors to proliferate and metastasize. A major component of the TME that 

influences tumor cell survival as well as response to treatments such as immune checkpoint 

blockade is the diverse and deregulated cellular states of the immune cells (5). Thus, the 

cellular characterization of the TME provides a more sophisticated picture of the context of 

tumor cell growth within its tissue of origin, characteristics of immune infiltrate and inter-

cellular interactions.

The major objective of this study was to determine the specific cellular and transcriptional 

features that distinguish the GC TME from normal gastric tissue. We sought to define these 

differences at the resolution of single cells with single-cell RNA-seq (scRNA-seq). We 

delineated cell-specific features that are otherwise lost when using “bulk” methods in which 

molecular analytes cannot be attributed to their cell-of-origin. We accomplished this by 

using an extensive analytical framework (Figure 1A) (6–9) that revealed changes in 

transcriptional states, regulatory networks and intercellular communication between 

matched gastric tumor and normal tissue from the same patients, together with peripheral 

blood mononuclear cells (PBMCs) from a subset of patients. Our study identified cellular 

and biological features that are specific to the TME and thus offer insights which may help 

infer new therapeutic targets.
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METHODS

Sample acquisition

All samples were acquired with informed consent under an approved institutional review 

board protocol from Stanford University as surgical resections or endoscopic biopsies. 

Matched normal tissue was obtained from sites displaced at least several centimeters from 

the tumor and was confirmed to lack tumor cells on histopathology review.

Tissue processing and single-cell sequencing

Tissues were collected immediately after resection and dissociated into a single-cell 

suspension (Supplementary Methods). PBMCs were isolated using density gradient 

centrifugation. Single-cell libraries were generated from cell suspensions using Chromium 

Single Cell 3′ Library & Gel Bead Kit v2 (10x Genomics, Pleasanton, CA, USA) as per 

manufacturer’s protocol and sequenced on Illumina sequencers (Illumina, San Diego, CA) 

(Supplementary Table S1). Cell Ranger v 3.0 (10x Genomics) ‘mkfastq’ and ‘count’ 

commands were used with default parameters and alignment to GRCh38 to generate matrix 

of unique molecular identifier (UMI) counts per gene and associated cell barcode. Datasets 

are available under dbGAP identifier phs001818.v1.p1.

Clustering analysis

We used Seurat (v2.3.4) (9) to create data objects from the matrix outputs. We removed cells 

that expressed fewer than 200 genes, had greater than 20% mitochondrial genes or had 

number of UMI in an outlier range indicative of potential doublets (Supplementary Table 

S1). We excluded genes detected in fewer than three cells. Data was normalized to log scale 

using the ‘NormalizeData’ function with a default scale parameter of 10000. Highly variable 

genes were identified using the ‘FindVariableGenes’ function with parameters for 

x.low.cutoff=0.0125, x.high.cutoff=6 and y.cutoff=0.5. The effects of variation in sequencing 

depth were regressed out by including ‘nUMI’ as a parameter in the ‘ScaleData’ function. 

These variable genes were used as input for PCA using the ‘RunPCA’ function. The first 20 

principal components (PCs) and a resolution of 0.8 were used for clustering using 

‘FindClusters’. UMAP was used for two-dimensional representation of first 20 PCs with 

‘RunUMAP’.

Differential gene expression for identifying markers of a cluster relative to all other clusters 

or compared to a specific cluster was determined using the ‘FindAllMarkers’ or 

‘FindMarkers’ functions respectively. Parameters provided for these functions were: genes 

detected in at least 25% cells; differential expression threshold of 0.25 log fold change using 

Wilcoxon rank sum test with p < 0.05 following Bonferroni correction. We compared the 

marker genes for each cluster to literature-based markers of cell lineages to assign a cell 

lineage per cluster (Supplementary Table S2).

Individual Seurat data objects were merged iteratively using the ‘MergeSeurat’ function after 

filtering doublets identified by DoubletFinder, an R package that enables computational 

identification of doublets (Supplementary methods) (10). The merged object was processed 

as described above with library preparation batch and number of UMIs (Supplementary 
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Table S1) included as parameters for regression in the ‘ScaleData’ function to regress batch 

effects and variation in sequencing depth respectively. The ‘DoHeatmap’, ‘FeaturePlot’, 

‘DimPlot’, DotPlot’, ‘VlnPlot’ were used for visualization.

For a secondary cluster analysis of each cell lineage from this aggregated dataset, clusters of 

interest were identified and subset using ‘SubsetData’ with parameter ‘do.clean’ set to true. 

Detection of variable genes, scaling with UMI regression, PCA, clustering and UMAP were 

repeated as described above. Following this step, we removed clusters with co-expression of 

cell lineage markers as multiplets (Supplementary Table S3). Proportions of each cell type 

relative to the total number of cells in the sample were compared for tumor and normal sites 

using two proportions z-test and represented as box plots after re-clustering analysis for each 

lineage.

A Complete description of methods is available under Supplementary Methods.

RESULTS

Cohort of gastric cancer and intestinal metaplasia

We obtained tissues from surgical resections or endoscopic biopsies from seven patients with 

GC and one patient with gastrointestinal metaplasia (GIM). These tissue samples 

represented paired gastric tumor and normal tissue from the same patient derived from the 

same anatomical region. Four tumors were located at the gastroesophageal junction (GEJ) 
and four in the body and antrum. We analyzed matched PBMCs from two patients. Based on 

histopathology review, the GC tumors had intestinal, diffuse or mixed features 

(Supplementary Table S4, Figure 1B, Supplementary Figure 1A). We classified tumors into 

microsatellite stability (MSS) or microsatellite instability (MSI) molecular subtypes based 

on expression of the DNA mismatch repair proteins MLH1, MSH2, MSH6 and PMS2 

according to immunohistochemistry (IHC) (Supplementary Table S4, Supplementary 

Methods). Histopathology showed that three patients (P5931, P6207, P6342) had active 

gastritis or intestinal metaplasia in paired non-malignant tissue.

Single-cell transcriptomic profiles from gastric cancer

With scRNA-seq, we obtained transcriptional profiles of 32,407 single-cells from tumors or 

metaplasia, 18,657 single-cells from paired normal tissue and 5,103 PBMCs (Supplementary 

Table S1). To determine gene expression changes, we employed a series of analytical steps 

for each individual dataset including quality filtering, principal component analysis (PCA) 
and graph-based clustering (9,11) (Supplementary Methods). We employed uniform 

manifold approximation and projection (UMAP) to reduce the dimensionality of this data 

and allow the visualization of cell-type clusters defined by their transcriptional profiles.

Differentially expressed (DE) genes were identified as genes expressed in greater than 25% 

of cells in a cluster and having a log fold change greater than 0.25, using a cut-off of p < 

0.05 following Bonferroni correction. We compared the DE genes from each cluster to 

known marker genes of various cell types (Supplementary Table S2). This information 

enabled us to link clusters to specific cell types including epithelial cells (expressing PGC, 

TFF1, MUC5AC, EPCAM, GIF, CHGA), fibroblasts (THY1, DCN, COL4A1, FAP), 

Sathe et al. Page 4

Clin Cancer Res. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



endothelial cells (PECAM, ENG, VWF, SELE), immune cells (PTPRC) such as CD4 T 

(CD3D, CD4, IL7R), cytotoxic T (CD3D, CD8A, CD8B), regulatory T (FOXP3, IL2RA), 

NK (NKG7, GNLY), B (MS4A1), plasma cells (immunoglobulin genes), mast cells 

(TPSAB1) and macrophages (CD68, CD14, FCGR3A). Examination of cells expressing 

markers of disparate cell types facilitated the computational detection of doublets (Figure 

1C, 1D, Supplementary Methods).

Data integration for joint cell analysis across all samples

To determine the similarities and differences among all of the samples and patients, we 

aggregated tumor, metaplastic, normal sites and PBMCs scRNA-Seq data into a single data 

matrix. To reduce experimental variance, we regressed out batch effects from library 

preparation and variation in sequencing depth. Also, we removed computationally detected 

doublets (Supplementary Methods).

Clustering analysis identified 40 distinct clusters that were specific for a variety of cell types 

including epithelial, stromal (fibroblasts, endothelial cells), lymphocytes, macrophages and 

mast cells – they were found among all of the patient samples (Supplementary Figures 1B 

and 1C, Figure 1E). On closer examination, each cell type had multiple distinct 

transcriptional states. For additional characterization, we aggregated data for each cell type 

across samples and conducted a clustering analysis (Supplementary Methods).

Classifying tumor, normal and metaplastic epithelial cell populations

We detected differences between tumor, metaplastic and normal epithelial cells, differences 

in tumor epithelium derived from different patients as well as sub-clonal heterogeneity 

within an individual tumor. Re-clustering analysis of epithelial cells from our integrated 

dataset revealed three subclasses. The first subclass consisted of normal gastric epithelial 

cells – over 80% were derived from normal gastric samples (Figure 2A, B, C). Normal 

epithelial cells were detected in all samples regardless of their origin from tumor, normal or 

metaplastic tissue (Supplementary Figure 2C, Supplementary Table S5).

The second subclass consisted of tumor-specific epithelial cells, which we label as the ‘GC 

type 1’. Approximately 98% of these cells originated from tumor samples. Interestingly, 

each cluster in this subclass was dominated by a single patient (Supplementary Figure 2C, 

Supplementary Table S5) – this indicated the extent of inter-tumor heterogeneity among all 

of the GCs, meaning that each individual tumor had distinct transcriptional properties.

The third subclass involved epithelial cells derived from GC as well as normal tissue, which 

we label as ‘GC type 2’. It also contained around 58% of cells from patient P6649 who had 

gastric metaplasia but did not have GC (Supplementary Figure 2C). We detected a range 

covering 11 to 68% of cells from normal tissues of patients with background metaplasia or 

gastritis on histology (P5931, P6207, P6342) (Supplementary Table 4, Supplementary figure 

2C, Supplementary Table 5) in this subclass. Given their origin, these cells are likely to 

represent metaplastic or dysplastic epithelium, which had transcriptional features that 

overlapped with tumor epithelium.
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As an independent determination of gastric tumor versus normal epithelial cells, we 

employed a different method called scPred that uses a supervised machine learning 

algorithm and thus provides highly accurate cell type assignment (12). We randomly subset 

tumor and normal site derived cells into two. One subset from each of these classes was 

included in the training dataset to build the scPred prediction model. We tested this model on 

all of the remaining cells for all samples. When we compared the scPred results to our 

Seurat analysis, the results were concordant. Eighty-nine percent and seventy-seven percent 

of cells in the ‘GC type 1’ and ‘GC type 2’ subclasses were not classified as normal gastric 

epithelial cells indicating that machine-learning confirms the distinction between normal, 

GC type 1 and GC type 2 cells (Figure 2D, Supplementary Figure 2D). Thus, scPred 

confirmed the transcriptional differences among the epithelial subclasses identified by our 

clustering analysis.

Gene expression differences among the epithelial cell subclasses

Differential expression analysis distinguished the three subclasses of epithelial cells. In 

normal gastric epithelium, we identified distinct mucosal populations such as pit, mucous 

neck, zymogen secreting chief, intrinsic factor producing parietal and neuroendocrine cells 

(Supplementary Figure 2B). In contrast, GC type 1 and GC type 2 subclasses downregulated 

some of these gastric mucosa marker genes such as MUC6, TFF2, TFF1, MUC5AC 
(Supplementary Table S6). The GC type 1 subclass had increased expression of intestinal 

mucosa markers TFF3, FABP1, SPINK4, MUC13 and REG4. The GC type 2 subclass had 

significantly increased expression of previously identified gastric cancer marker genes KRT7 
and KRT17 (3), SOX4 and HES1 that have been implicated in metaplasia pathogenesis (13). 

Compared to normal cells, both GC type 1 and type 2 had upregulation of gene sets that 

included pathways for Myc, DNA repair and Notch signaling (Supplementary Figure 2E). 

However, only GC type 1 cells had higher upregulation of EMT and KRAS signaling.

Copy number alterations distinguish tumor and normal epithelium

Using scRNA-seq, one can detect amplifications or deletions at chromosome arm level by 

analyzing concomitant increase or decrease in gene expression respectively (14) 

(Supplementary Methods). To identify them, we analyzed each patient’s normal epithelial 

subclass cells against those from matched GC type 1 or GC type 2 subclass (Figure 2E, 

Supplementary Figure 3A). Copy number changes were inferred according to the posterior 

probability for each cell to belong to one of the two components with lower or higher gene 

expression indicative of deletion or amplification respectively.

A diverse spectrum of chromosome arm imbalances was present in these tumors. For patient 

P6207, we detected amplifications in 7p, 7q, 8q and 9q with a deletion in 10p. Patient 

P6342’s tumor had amplification of 20q with deletion of 4q. Patient P5846’s tumor had an 

amplification of 19q. Patient P5866’s tumor had deletion of 16q. Patient P5931’s tumor also 

had amplifications of 7p and 7q, which we have successfully identified using single-cell 

DNA sequencing (15). For Patient P6649 with metaplasia and P6592, samples contained 

only a small number of cells with significant copy number changes. We excluded the sample 

from patient P6709 from this analysis since we only detected 21 epithelial cells from the 

tumor site, possibly indicative of response to neoadjuvant chemotherapy (Supplementary 
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Figures 2B, 1A, Supplementary Table 4). These CNA results provide additional orthogonal 

confirmation of the distinction between normal and tumor epithelial cells in our GC data set.

Cancer cell differences across samples and tumor clonal heterogeneity

We analyzed GC type 1 and GC type 2 cells across patients for the transcriptional activation 

of various oncogenic pathways. We observed significant differences in activation levels 

reaffirming the transcriptional heterogeneity between patients (Figure 2F). Interestingly, 

these activation profiles did not cluster according to differences between the molecular 

subtypes of MSI and MSS.

The individual patient tumors contained multiple clusters of GC type 1 and GC type 2 cells, 

an indication of intra-tumor sub-clonal heterogeneity. Pathway activation analysis grouped 

these clusters into three to five sub-populations for each patient’s tumor confirming a sub-

clonal structure (Figure 2G, Supplementary Figure 4). For example, heterogeneity in P6207 

was characterized by differences in cell cycle, KRAS pathway, Wnt activation (Figure 2G). 

We postulate that these sub-populations may provide a distinct growth advantage to the 

tumor.

TME reprogramming leads to macrophage states other than M1 and M2 classification

TME macrophages had distinct cellular and gene expression changes compared to normal 

gastric tissue consistent with the observation that macrophages acquire heterogenous 

phenotypes depending on their activating stimulus (16). Macrophage phenotypes are called 

M1 or M2 with anti and pro-tumorigenic functions respectively. However, the gene 

expression signatures we observed did not fall in line with either the canonical M1 or M2 

classifications.

Specifically, we detected various subclasses of myeloid lineage cells as seen with 11 distinct 

clusters across all patients (Figure 3A-D, Supplementary Figure 5A, Supplementary Table 

7). The nine monocyte-macrophage clusters were defined by marker gene expression of 

CD14, FCGR3A, CD68. The two dendritic cell (DC) clusters were defined by marker gene 

expression of CLEC4C, ID2, IRF4, CD83 (Figure 3C). Notably, macrophages were 

significantly enriched in tumor compared to normal gastric tissue (Figure 3E).

We examined the expression of marker genes for M1 (e.g. CCL19, TNF, CCL5) and M2 

(e.g. MRC1, CCL18, CCL13, CD163) states across the macrophage clusters (16) (Figure 

3F). Expression of M1/M2 genes did not distinguish the clusters. Moreover, these genes 

were co-expressed in the same cluster. This suggests that the transcriptional heterogeneity 

was independent of the M1/M2 classification. We identified the significantly DE genes 

across all clusters to assess heterogeneous phenotypes (Supplementary Table 8). This 

revealed that heterogeneity was related to differences in the expression of HSP family genes, 

THBS1, chemokines including CCL20, CCL18, CCL3, matrix metalloproteinase genes, 

complement family and cell cycle regulation genes (Figure 3G). Clusters also showed 

differential enrichment of hallmark gene set activity confirming their distinct transcriptional 

programs (Supplementary Figure 5B).
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PBMC monocytes clustered distinctly from tumor or normal macrophages indicating 

transcriptional differences (Figure 3B, D). As it stands, conventional single-cell clustering 

methods do not delineate the dynamic process of cell differentiation. A new type of method 

called trajectory analysis, uses single-cell gene expression to determine the transition among 

specific cell type lineages and states. Our trajectory analysis of tissue macrophages and 

PBMC monocytes yielded three different trajectory states (Figure 3H). Monocytes were 

present in a single trajectory state with few tissue macrophages. The majority of tissue 

macrophages differentiated along two distinct states. This suggests that tumor-infiltrating 

macrophages differentiate from monocytes but retain some fundamental similarities to 

macrophages within normal tissue.

DCs had two subclasses. One had genes that define plasmacytoid DCs including IL3RA 
(CD123) and CLEC4C (CD303) – this subclass was detected predominantly in PBMCs 

(Figure 3C, Figure 3D). A second was enriched in the TME and showed significant DE of 

activated DC gene markers CD83, CCR7, IL7R and ID2 (17) (Supplementary Table S9, 

Supplementary Figure 5C) (18). This subclass expressed the chemokines CCL22, CCL17, 

CCL19 and IL32 which are associated with recruitment of naïve T cells. Moreover, it highly 

expressed IDO1, characteristic of an immunosuppressive phenotype (19,20). This result 

represented a novel gene expression program in TME infiltrating DCs not previously 

described.

We compared activity levels of 1,558 experimentally derived immunologic gene signatures 

containing the term ‘macrophage’, ‘DC’ or ‘monocyte’ (Supplementary Methods, 

Supplementary Table S10) to these gene expression profiles. The identity of monocyte and 

DCs were confirmed using this approach. Also, these results provided gene set information 

indicating the activation phenotype of tumor-specific DCs. Each macrophage cluster was 

enriched for gene sets derived from a variety of experimental conditions. Hence, 

macrophage heterogeneity likely reflects stimulus-based context within the TME.

Regulatory genes controlling expression of a group of genes are referred to as regulons. We 

identified regulons for these different transcriptional cell states (6). This analysis identified 

transcriptional regulators such as IRF4 in DCs and also revealed a distinct set of regulatory 

genes defining the various macrophage populations including NFKB1, ETS2, CREM, REL, 

STAT1, FOXO3, etc. (Supplementary Table S11). Our data provides direct in vivo evidence 

that tumor-specific macrophages exist in a continuum of stimulus-dependent functional 

states regulated by a specific set of genes rather than the M1/M2 paradigm.

TME exhausted T cells have high CXCL13 expression and proliferation

Exhausted T cells (TEx) were a prominent feature of the gastric TME compared to normal 

tissue. The TME was also significantly enriched for Treg cells compared to normal. Initially, 

we identified CD4 helper T, CD8 T, NK, Treg, plasma and B cells using classic 

immunophenotyping markers. We filtered clusters with high expression of HSP family genes 

and lacking lineage markers (Supplementary Figure 6 A,B,C,D, Supplementary methods).

Cytotoxic CD8 T lymphocytes (CTLs) were distributed across five different clusters 

indicative of transcriptionally distinct cell states (Supplementary Figure 7A). They were 
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observed among all patients with the majority detected in P5866, P5931 and P6207 

(Supplementary Table 12). We examined each cluster for the dominant sample origin 

(normal, tumor or PBMC), expression of naïve markers (CCR7, SELL), tissue effector 

memory markers (CD69, ITGAE, ITGA1) and cytotoxic genes (GZMB, GZMA, PRF1, 

IFNG, NKG7) (Figure 4A, B). CTL subclasses included naïve tumor CTLs (cluster 0), 

effector normal CTLs (cluster 1), effector PBMC CTLs (cluster 19) and two subclasses of 

tumor effector CTLs (clusters 6, 22). Differential expression analysis identified distinct 

signatures among these subclasses (Supplementary Table S13).

Within cancer one observes TEx cells with reduced cytotoxic activity and expression of 

inhibitory receptors (21). In the TME, both CTL subclasses had low expression of PRF1 and 

IFNG while expressing granzymes (Figure 4B), indicative of a TEx phenotype (22). 

Furthermore, they expressed multiple immune checkpoints (PDCD1, TIGIT, CD96, 

HAVCR2 (TIM3), LAG3, CTLA4, VSIR); the expressions levels of these checkpoints is an 

indicator of the degree of immunosuppression. These cells also expressed multiple co-

stimulatory molecules (ICOS, TNFRSF18 (GITR), CD27, TNFRSF9, CD40, CD226, 

TNFRSF4) (Figure 4B).

We compared the transcriptional profiles of tumor, normal and PBMC CTLs to previously 

published gene signatures to further understand the tumor TEx phenotype. First, we used 

gene signatures from T cell exposure to viruses. This experimental setup distinguishes the 

transcriptional program of naïve cells unexposed to virus, effector cells responding to the 

lymphocytic choriomeningitis virus (LMCV) and TEx cells responding to a specific clone 

13 of LCMV (22). This result confirmed our assignment of naïve, effector and TEx classes 

across the five clusters. The two tumor-specific TEx clusters had greater enrichment for the 

exhaustion signatures generated with LCMV clone 13 (Supplementary Figure 7B). Also, we 

compared the CTL transcriptional profiles to three independently derived TEx profiles from 

single-cell analysis of human tumors, one from mouse tumors, together with signatures for 

cytotoxicity and proliferation (Figure 4C) (23–25). This result confirmed the low-

cytotoxicity, high-exhaustion phenotype in both subclasses of tumor-TEx cells. Interestingly, 

these TEx subclasses were derived mainly from tumor samples from P5931, P6207, P6592 

and P6709 that received neoadjuvant therapy (Supplementary Figure 7A).

The two subclasses of tumor-TEx cells differed in the extent of their exhaustion and 

proliferation gene expression program (Figure 4C). The subclass with higher proliferation 

(cluster 22) was associated with greater exhaustion indicative of an active immune response, 

which has previously been associated with terminal exhaustion (26). Immune checkpoint or 

costimulatory molecule gene expression was not significantly different between the two. The 

second subclass (cluster 6) had lower exhaustion and proliferation plus significantly higher 

expression of CXCL13 as previously identified in tumor but not in viral TEx 

(Supplementary Figure 7C) (27). These cells expressed high RBPJ, NR3C1 and BATF that 

are regulators of CD8 T cell fate (28). Our results thus demonstrated that effector CTLs in 

the TME are exhausted unlike normal tissue or PBMCs with two distinct subclasses 

characterized by high CXCL13 expression or proliferation.
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To verify our findings, we conducted multiplex immunofluorescence staining for pan-

cytokeratin/SOX-10 (epithelial cells), CD45RO (memory T cells), CD3 (T cells) and PD-1 

(TEx) in tumors from four patients where adequate tissue samples were available (Figure 

4D, Supplementary Figure 8A). We detected these cell lineages in all samples including 

cellular sub-populations of effector T cells (CD45RO, CD3 positive) and exhausted effector 

T cells (PD-1, CD45RO, CD3 positive) based on co-expression analysis (Supplementary 

Figure 8B). The stromal cells and macrophages were also apparent as they lacked expression 

of these markers.

Increased Tregs in the gastric TME contribute to immunosuppression

Tregs were significantly enriched in the gastric TME compared to normal gastric tissue, thus 

indicating an important mode of immunosuppression (Supplementary Figure 9A, B). 

Majority of cells were detected in P5866, P5931, P6207 and P6592 (Supplementary Table 

12). The Treg cells had two distinct subclasses distinguished by higher expression of 

markers of proliferation (eg. MKI67, TYMS) in one sub-class (cluster 22). In addition, Tregs 

expressed several immune checkpoint and costimulatory molecules representing potential 

targets to modulate their function (Supplementary Figure 9C).

CD4 T cells were represented by four subclasses, mainly represented in P5866, P5931 and 

P6207 (Supplementary Table 12). Three of these were characterized by expression of naïve 

markers (CCR7, SELL) originating from the PBMCs or normal gastric tissue 

(Supplementary Figure 9D, E). Effector CD4 T cells (cluster 6) lacking naïve marker gene 

expression were found in both normal and tumor tissue (Supplementary Figure 9D, E). They 

had significantly higher expression of GZMA, GZMB, CXCL13, BATF, HLA genes 

(Supplementary Figure 9E). These cells are likely to represent follicular helper-like CD4 

cells that express CXCL13 and are associated with tertiary lymphoid structures (29,30).

Three subclasses of NK cells were detected in PBMCs (cluster 2) and both tumor and 

normal tissue (clusters 13, 14) (Supplementary Figure 10A). They were derived prominently 

from P5866, P5931 and P6207 (Supplementary Table 12) and also contained a mix of rare 

populations of invariant NK and innate lymphoid cells (Supplementary Figure 10B) (31). 

Cells in tumor and normal sites clustered together indicating transcriptional similarity. 

Tumor-site cells expressed cytotoxic molecules such as GZMA, XCL2, CCL5, PRF1, CCL3, 

CCL4 indicating potential for an anti-tumor response (Supplementary Figure 10C). Cells 

also expressed several inhibitory and co-stimulatory molecules including TNFRSF18 
(GITR), CD96 and KIR2DL4 expression representing targets for modulating their function.

B Cells from gastric TME and normal sites clustered together indicating transcriptional 

similarity (Supplementary Figure 10D). However, plasma cell clusters showed significant 

differences in the expression of genes encoding immunoglobulin isotypes with increased 

IgA encoding genes in normal tissue and IgG in TME (Supplementary Figure 10E, F).

Identification of jointly regulated genes of lymphocyte cell states

Next, we analyzed the regulatory genes or regulons that control these lymphocyte sub-

populations (6) (Supplementary Table S14). The CXCL13-high tumor-TEx cells had 

significant enrichment of FOXO1 activity that is required for post-antigen expansion of CD8 

Sathe et al. Page 10

Clin Cancer Res. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



T cells (32). In CXCL13-high CD4 T cells, the BATF gene network activity was 

prominently high validating their similarity to recently described CXCL13-producing helper 

T cells (33). We successfully identified FOXP3 and BATF gene network enrichment in Tregs 

confirming the accuracy of this approach. We discovered additional transcriptional 

regulators of TME Treg fate including KDM5B, MAF, IKZF2, SOX4, BCL3, etc. These 

regulons are of potential translational value given the interest in targeting epigenetics for 

immunotherapy (34).

TME reprogramming of the fibroblasts, pericytes and endothelial stroma

We discovered transcriptional reprogramming of stromal cells in the tumor compared to 

normal that allows the generation of a tumor-specific extracellular matrix (ECM). Our 

analysis of the stromal cells across all samples identified fibroblasts (THY1, DCN, 

COL4A1, FAP), endothelial cells (PECAM, ENG, VWF, SELE), and pericytes (RSG5, 

PDGFRB) (Figure 5A, 5C). The observed heterogeneity among fibroblasts is likely to be 

driven by patient-specific factors (Supplementary Figure 11A, Supplementary Table 15). 

Endothelial clusters additionally differed in the expression of genes encoding secretory 

factors (ESM1, ANGPT2), tip cell markers (COL4A1, COL4A2, DLL4, MARCKSL1) and 

stalk cell markers (ACKR1, CD36, SELP, VWF) (35) and were mainly represented in 

P5866, P6342, P6592 and P6709 (Supplementary Figure 11B, 11C, Supplementary Table 

15).

All three cell types were enriched in tumor tissue compared to normal (Figure 5B,5D). 

Stromal cells are responsible for the production and maintenance of ECM that provides 

mechanical support to cells and also influences their growth. Genes encoding for 

components or regulators of the ECM have previously been identified as the ‘matrisome’ 

(36,37). This gene group consists of core factors (collagens, proteoglycans and ECM 

glycoproteins) that make up the ECM and an associated program (ECM regulators, secretory 

factors and ECM-affiliated proteins). To determine the phenotypical differences of stromal 

cells in normal or tumor tissue, we compared their DE genes to the matrisome gene 

expression program. Tumor-specific fibroblasts, pericytes and endothelial cells expressed 

diverse ECM core and associated components (Figure 5E, Supplementary Table S16). 

Additionally, fibroblasts in tumors had significant overexpression of ACTA2 compared to 

normal tissue, indicative of their contractile ability (Supplementary Figure 11D).

Stromal cells at tumor or normal sites had significantly different regulatory genes or 

regulons (Supplementary Table S17). For example, tumor-specific endothelial cells had 

greater activity of SOX18 and SOX7 which are known regulators of a variety of endothelial 

cell processes (38). Tumor-specific fibroblasts had high activity of the EGR2 gene that can 

influence fibrosis (39). Tumor-specific pericytes were enriched for FOXF2 activity that is 

known to regulate pericyte differentiation (40). Hence, our approach distinguished 

differences in both the gene expression program and its regulators between tumor and 

normal stromal cells.
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TME specific cellular communication has the potential to influence cell states

We discovered a TME-specific intercellular communications network that can potentially 

affect cellular behavior. First, we identified significant receptor-ligand interactions between 

different cell types using CellPhoneDB (8). Then, we compared these networks between 

tumor and normal tissue to generate a TME-specific interactome (Figure 6A, Supplementary 

Table 18).

Stromal cells were among the most prolific interactors. Prominent communication between 

them and epithelial cells occurred through various integrin receptor interactions with 

collagen, fibronectin and THBS1 ligands (Figure 6B). Bidirectional interactions between 

ephrin receptor family and ligands were detected in epithelial and endothelial cells. Among 

growth factor signaling that can promote cancer cell proliferation, we detected EGFR and 

MET receptors on epithelial cells together with respective ligands on stromal cells. We also 

detected significant EGFR interactions in fibroblasts.

Fibroblasts were a prominent source of Wnt ligands with expression of corresponding 

receptors on tumor epithelium, endothelial cells, fibroblasts and pericytes. This included a 

LGR4 – RSPO3 interaction that has the potential to regulate stemness (Figure 6C), 

validating our previous discovery of fibroblast-derived RSPO3 in an organoid model of 

gastric cancer (41).

Autocrine and paracrine Notch signaling, a known regulator of angiogenesis (42), was 

evident in endothelial cells. Interactions promoting Notch signaling were also significant in 

fibroblasts (Figure 6D). Angiogenic receptors KDR, FLT1, FLT4, PDGFB, TEK on 

endothelial cells and pericytes had significant autocrine and paracrine interactions with their 

respective ligands (Figure 6E). Among the interactome were 19 cytokines including 

chemokines, interleukins, tumor necrosis factors (TNFs) and their corresponding receptors 

that can influence immune cell fates.

DISCUSSION

For this study, we leveraged paired distal normal tissue and PBMCs to analyze the cellular 

dysregulation and biological changes in the GC TME. With single-cell gene expression 

analysis, we demonstrated that GC TME leads to a series of dramatic cellular changes 

compared to matched normal stomach mucosa. Specifically, we noted increases in cell 

numbers of stromal cells and Tregs in the TME. We also identified transcriptional cell states 

unique to the TME including in DCs and two subclasses of exhausted CTLs. Among our 

novel findings, we discovered that gene expression profiles for GC TME macrophages are 

heterogenous and not confined to a binary M1/M2 designation. We demonstrated that TME 

stromal cells encode for a specific ECM composition not found in normal tissue. We 

identified novel gene regulatory networks and TME-specific intercellular communication.

We validated previously described changes in normal, metaplastic and tumor epithelial cells 

(13,43) and were additionally able to elucidate intra-tumor heterogeneity by examining the 

activity of various cancer-promoting mechanisms within the tumor cells. The diversity in 
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activation profiles suggests that targeting multiple clones with different combination 

strategies may be necessary to eradicate them completely.

Immune cell lineages were detected across all patients. However, a limitation of our analysis 

is that the majority of cells were derived from two patients (P5866 and P5931) with two 

sequencing replicates (Figure 1F, Supplementary table 1). Immunosuppression in GC TME 

was evident by the increased proportion of Tregs compared to normal tissue. We identified 

several checkpoint and costimulatory molecules on these cells, and their transcriptional 

regulators. These regulators can be investigated to understand Treg biology and to derive 

therapeutic targets. Indeed, recent evidence indicates that anti-CTLA4 activity is a 

consequence of Treg depletion in the TME (44). We detected expression of multiple immune 

checkpoints on cytotoxic T cells similar to other studies (23,45). These checkpoints were 

also detected on helper T and Treg subsets. Thus, it is important to understand the effects of 

immune checkpoint blockade on distinct T cell subpopulations that express the same target. 

Our analysis revealed transcriptional regulators responsible for these states. Plasma cells in 

tumor tissue expressed IgGs rather than IgAs that were detected in paired normal tissue that 

have been associated with a pro-cancer role by influencing myeloid cell Fc-receptors (46).

Increased immune cell signaling has previously been associated with EBV molecular 

subtype of GC (3). Meanwhile, MSI subtype cancers have been demonstrated to have higher 

responses to immune checkpoint blockade owing to the favorable immune milieu generated 

by higher neoantigen burden (47). In our study, immune cell subtypes did not cluster clearly 

according to the MSI/MSS status of samples. This resembles findings from recent studies in 

GC where molecular subtypes could be differentiated by gene signatures based on a 

combination of immune suppression, immune activation and stromal activation processes 

rather than the leucocyte fractions within the TME (48,49). This raises the possibility that a 

combination of transcriptional states in stromal and immune cells, genomic alterations in 

tumor cells, and their resultant interactions determines the final composition and 

transcriptional cell states of the TME in each molecular subtype. Utilizing scRNA-seq on a 

larger cohort of GC has the potential to address the mechanisms by which tumor genomics 

influences the TME composition and possibly responses to immunotherapy.

It has been demonstrated that neoadjuvant chemotherapy leads to increased expression of 

CD4, CD8, PD1, PD-L1 and TIM-3 proteins in GC TME (50). We observed presence of 

TEx cells in all patients that received neoadjuvant chemotherapy. Increasing the cohort size 

will also help to address the influence of neoadjuvant treatment on the TME transcriptional 

cell states that we have observed in this study.

Interactome analysis demonstrated pro-tumor effects of TME components and also the 

influence of cancer cells on the TME. Tumor-specific interactome represents potential 

treatment targets to inhibit cancer proliferation, overcome the immunosuppressive 

microenvironment and restore the cancer immunity cycle. Additionally, while some targets 

such as Wnt inhibition have previously been regarded only in the context of tumor epithelial 

cells, our analysis demonstrates that this might have implications for the TME.
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Our study did not consider spatial context and might be affected by the dissociation process. 

The use of dual single-cell proteomics and transcriptomics is likely to provide a more 

refined analysis of immune cell sub-types (51).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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STATEMENT OF TRANSLATIONAL RELEVANCE

We leveraged the power of single-cell genomics to characterize the heterogenous cell 

types and states in the tumor microenvironment (TME). By profiling thousands of single 

cells from surgical resections of gastric cancer together with paired normal mucosa and 

peripheral blood mononuclear cells (PBMCs), we determined the deviations in the TME 

from physiological conditions. Our analysis revealed a cellular reprogramming of the 

TME compared to normal mucosa in immune and stromal lineages. We detected 

transcriptional heterogeneity within macrophages and a TME-specific gene expression 

program in dendritic cells. Cytotoxic T cells in the TME had heterogenous profiles of 

exhaustion and expression of multiple immune checkpoint and costimulatory molecules. 

We constructed a receptor-ligand based inter-cellular communications network that was 

exclusive to tumor tissue. These discoveries provide information at a highly granular 

cellular resolution enabling advances in cancer biology, biomarker discovery and 

identification of treatment targets such as for immunotherapy.
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Figure 1: 
(A) Schematic representation of experimental design and analytical methods used in this 

study. (B) Representative images of hematoxylin and eosin staining of FFPE tissue from 

P6342. Scale bar indicates 50 μm. (C-F) Example of clustering analysis in tumor sample of 

P6342. (C) UMAP representation of dimensionally reduced data following graph-based 

clustering with marker-based cell type assignments. (D) Dot plot depicting expression levels 

of specific lineage-based marker genes together with the percentage of cells expressing the 

marker. (E) UMAP representation of dimensionally reduced data following graph-based 
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clustering with computational doublet identification. (F) Heatmap depicting number of cells 

identified in aggregated analysis for each lineage per patient.
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Figure 2: 
(A) UMAP representation of epithelial cells following graph-based clustering colored by 

sample origin. (B) Heatmap depicting number of cells per defined epithelial class according 

the sample origin. (C-D) UMAP representation of epithelial cells following graph-based 

clustering colored by (C) class (D) predicted class according to scPred. (E) Heatmap 

representation of statistically significant copy number changes for depicted chromosomes 

for epithelial cells from P6207 as a representative example. ‘amp’ denotes amplification, 

‘del’ denotes deletion. (F-G) Heatmaps depicting average gene set activity of top MSigDB 
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oncogenic c6 gene signatures following GSVA (ANOVA FDR p value < 0.05) across tumor 

epithelial clusters for (F) all patients and (G) all clusters for P6207.
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Figure 3: 
(A) UMAP representation of macrophage cells following graph-based clustering with 

arbitrary cluster numbers. (B) UMAP representation colored according to the sample origin. 

(C) Dot plot depicting expression levels of specific genes across clusters with marker-based 

lineage assignments. (D) Heatmap depicting number of cells identified for each cluster 

according the sample origin. (E) Box plots depicting proportion of macrophages from total 

cells derived from tumor or normal site with p value derived from two proportions z-test. (F) 

Heatmap depicting expression of M1/M2 genes from each macrophage cluster. (G) Heatmap 
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depicting top 5 highest significantly expressed genes detected from each macrophage cluster. 

(H) Trajectory plots of macrophages in normal and tumor tissue with monocytes from 

PBMCs with cells colored by identified trajectories (left) and sample origin (right).
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Figure 4: 
(A) Heatmap depicting number of cytotoxic T cells identified for each cluster according the 

sample origin. (B) Heatmap depicting expression of respective genes from each cytotoxic T 

cell cluster. (C) Heatmap representing average GSVA enrichment score for respective 

exhaustion signature for each cluster. (D) Representative images of fluorescence staining for 

respective markers and merged image for respective patients. Scale bar indicates 100 μm
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Figure 5: 
(A) UMAP representation of stromal cells following graph-based clustering with arbitrary 

cluster numbers and (B) colored according to the sample origin. (C) Dot plot depicting 

expression levels of specific genes across clusters with marker-based lineage assignments. 

(D) Box plots depicting proportion of fibroblasts, pericytes or endothelial cells from total 

cells derived from tumor, normal or metaplastic site with p value derived from two 

proportions z-test. (E) Comparison of differentially expressed genes in tumor or normal 
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fibroblasts to the genes of the matrisome program. Size of gene level circles is proportional 

to the logFC.
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Figure 6: 
(A) Network depicting interactions between various cell types in tumors. Each node is a cell 

type and scaled edges represent the number of statistically significant detected interactions. 

Scale: fibroblast and endothelial edge = 102 interactions (B) Heatmap and (C-E) dot plots 

depicting the expression of respective genes in specific cell types.
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