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Abstract

The proportional hazards (PH) model is commonly used in epidemiology despite the stringent
assumption of proportionality of hazards over time. We previously showed, using detailed
simulation data, that the impact of a modest risk factor cannot be estimated reliably using the PH
model in the presence of confounding by a strong, time-dependent risk factor. Here, we examine
the same and related issues using a real dataset. Among 97,303 women in the prospective Nurses’
Health Study cohort from 1994 through 2010, we used PH regression to investigate how effect
estimates for cigarette smoking are affected by increasingly detailed specification of time-
dependent exposure characteristics. We also examined how effect estimates for a fine particulate
matter (PM> 5), a modest risk factor, are affected by finer control for time-dependent confounding
by smoking. The objective of this analysis is not to present a credible estimate of the impact of
PM, 5 on lung cancer risk, but to show that estimates based on the PH model are inherently
unreliable. The best-fitting model for cigarette smoking and lung cancer included pack-years,
duration, time since cessation, and an age-by-pack-years interaction, indicating that the hazard
ratio (HR) for pack-years was significantly modified by age. In the fully adjusted best-fitting
model for smoking including pack-years, the HR per 10-pg/m?3 increase in PM, 5 was 1.06 (95%
confidence interval (Cl): 0.90, 1.25); the HR for PM, 5 in the full cohort ranged between 1.02 and
1.10 in models with other smoking adjustments, indicating a residual confounding effect of
smoking. The HR for PM, 5 was statistically significant only among former smokers when
adjusting for smoking pack-years (HR = 1.35, 95% CI = 1.00, 1.82 in the best-fitting smoking
model), but not in models adjusting for smoking duration and average packs (pack-years divided
by duration). The association between cumulative smoking and lung cancer is modified by age,
and improved model fit is obtained by including multiple time-varying components of smoking
history. The association with PM,, s is residually confounded by smoking and modified by
smoking status. These findings underscore limitations of the PH model and emphasize the
advantages of directly estimating hazard functions to characterize time-varying exposure and risk.
The hazard function, not the relative hazard, is the fundamental measure of risk in a population. As
a consequence, the use of time-dependent PH models does not address crucial issues introduced by
temporal factors in epidemiological data.
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Introduction

The Cox proportional hazards (PH) regression model (Cox 1972) is commonly used in
epidemiology for the analysis of observational cohort studies. The main assumption of the
original PH model is that the hazard ratio is constant over the time scale. However, this
assumption may not hold in the context of epidemiological studies with diverse and time-
varying exposures, numerous potential confounders, and long-term follow-up.

We recently conducted a simulation study in which we investigated how hazard ratio (HR)
estimates using the PH model are biased when the HR is strongly modified by time and
depends on temporal exposure characteristics, such as duration and time since cessation
(Moolgavkar et al. 2018). In that study, we also evaluated how inadequate control of a strong
time-dependent confounder affected HR estimates for a weaker risk factor. We found that in
the presence of residual confounding by a strong, time-dependent risk factor, such as
smoking, use of the PH model can result in biased estimates of association with a modest
risk factor.

A limitation of our prior study is that it relied on simulated data, even though the cohort had
realistic life histories generated by the U.S. National Cancer Institute’s well-validated
Smoking History Generator (Moolgavkar et al. 2012, Holford et al. 2014a, Holford et al.
2014b, National Cancer Institute). Accordingly, we sought to evaluate the issues of time-
dependent confounding and effect modification using the PH model using a real dataset with
detailed individual-level information on smoking habits over time. An ideal dataset for this
purpose is the Nurses’ Health Study (NHS) cohort, which is distinguished by its repeated
collection of exposure and health information from a large number of subjects over decades
of follow-up. Moreover, the NHS has information on air pollution, in the form of particulate
matter (PM) of various sizes (< 2.5 pm, < 10 pm, or 2.5-10 um in aerodynamic diameter), a
weak risk factor for lung cancer (Puett et al. 2014) with which to test the impact of
inadequate control for confounding by smoking. Therefore, we used the NHS cohort to
investigate how the association between smoking and lung cancer changes with increasingly
detailed specification of exposure, and how the association between PM and lung cancer is
affected by the way in which smoking exposure is modeled. The purpose of this
investigation is to explore the inherent unreliability of estimates based on the PH model in
the presence of confounding by a strong, time-dependent risk factor, which may often exist
in long-term epidemiological datasets.

Materials and Methods

Study population

The NHS is an ongoing prospective cohort of 121,700 female nurses who were enrolled in
1976 when they were between 30 and 55 years of age. Data from the NHS are available to
research collaborators through an application process (https://www.nurseshealthstudy.org/
researchers).

Participants were initially recruited from 11 states, but have resided in each of the 50 U.S.
states since the mid-1990s. Information on potential risk factors and self-reported new
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diagnoses of health outcomes is provided by nurses through mailed biennial questionnaires,
for which response rates are > 90%. Vital status is ascertained through next of kin and the
National Death Index (http://www.cdc.gov/nchs/ndi.htm), both of which have identified an
estimated 98% of deaths in the cohort.

We used nearly the same analytic cohort as Puett et al. (2014) in their analysis of air
pollution and lung cancer incidence in the NHS. Eligible women were those who were alive
and did not have a prior diagnosis of cancer (except for non-melanoma skin cancer) as of
1994-1996, responded to the questionnaire in 1994-1996 or a later follow-up cycle, and had
complete information on PM throughout follow-up. Unlike Puett et al. (2014), we also
required that eligible women have non-missing information on smoking status. This cohort
comprised 97,303 women with 1,402,829 person-years of follow-up. (By comparison, the
cohort analyzed by Puett et al. (2014) included 103,650 women with 1,510,027 person-years
of follow-up.)

This study was approved by the Institutional Review Board of Brigham and Women’s
Hospital. Informed consent was implied through return of the questionnaires. In addition,
this study was approved by the Human Investigations Committee of the Connecticut
Department of Public Health, from which certain data used in this publication were
obtained.

Smoking exposure

From the biennial mailed questionnaires, information on cigarette smoking is collected to
enable time-varying characterization of smoking habits, including duration, pack-years, and
time since cessation (if applicable), at each follow-up cycle. When current smoking
information is missing, previously reported smoking information can be carried forward
from prior questionnaires.

For example, for women who reported never smoking in an earlier questionnaire, never-
smoker status is carried forward into all subsequent follow-up cycles, because of the rarity of
smoking initiation after the start of follow-up. For women who reported having quit smoking
more than 10 years ago, former-smoker status is carried forward into all subsequent follow-
up cycles, because of the rarity of smoking re-initiation after having quit for more than 10
years. For women who reported currently smoking or having quit fewer than 10 years ago,
current-smoker or former-smoking status, respectively, is carried forward for only one
additional cycle, after which smoking status is considered missing if subsequent
questionnaires are not completed. Number of cigarettes smoked per day is carried forward
for current smokers if it is not reported. Overall, 1.6% of women had one or more follow-up
cycles skipped due to missing smoking status.

Air pollution exposure

The assessment of air pollution exposure based on residential address in the NHS cohort is
described in detail by Puett et al. (2014). Briefly, residential addresses are updated through
the biennial questionnaires, and all available addresses have been geocoded to latitude and
longitude coordinates. Using previously validated spatiotemporal models (Yanosky et al.
2008, Yanosky et al. 2009, Weuve et al. 2012, Yanosky et al. 2014), predictions of PM, 5 and
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PM1q were generated by NHS investigators for all months between January 1988 and
December 2007 for the continental U.S.

These models used monthly average PM> 5 and/or PM1 data from the U.S. Environmental
Protection Agency’s (EPA) Air Quality System (U.S. EPA 2018), the IMPROVE network
(IMPROVE 2019), and various other sources (Spengler et al. 1996, Suh et al. 1997).
Generalized additive mixed models with monthly penalized spline smooth spatial terms,
penalized spline smooth terms of geospatial predictors (i.e., distance to nearest A1-A4
roads, percent urban land use within 1 km, elevation, point sources of PM, county
population density, census tract population density (only for PM1;), and meteorological
predictors), and terms for time were used to create separate PM prediction surfaces for each
month and each PM size fraction (Yanosky et al. 2009). PM, 5 levels prior to 1999 were
modeled by NHS investigators using data on PMq (Yanosky et al. 2009); PM> 5_1 was
derived by subtracting monthly PM, 5 from monthly PM; estimates. Cross-validation /2
values were 0.59 for PM1q, 0.76 for pre-1999 PM> 5, and 0.77 for post-1999 PM 5. For the
primary analysis, we used 72-month cumulative average PM, 5 levels, as did Puett et al.
(2014), who reported finding no substantive differences in their results based on 24-, 48-,
96-, or 120-month cumulative average PM> 5 levels. Following the same approach as Puett et
al. (2014), we did not institute a lag for PM, 5 exposure (or any confounders), even though a
latency period of decades would be anticipated to intervene between exposure to a
carcinogen and the onset of lung cancer (Boffetta et al. 2015).

Lung cancer incidence

Lung cancers in the NHS cohort were identified initially through self-report by participants
or their next of kin, or from death certificates; these reports were subsequently confirmed by
physician review of medical records, with blinding to exposure status. Medical records were
obtained for 83% of reported lung cancer cases; of these, 87% had primary lung cancer
confirmed by pathology reports. Because of the high validity of self-reported lung cancer,
we included all primary reports that were reconfirmed by the participant where pathological
reports were not available.

Statistical approach

Like Puett et al. (2014), we used time-varying Cox PH models, stratified by biennial time
period and age in months (except when evaluating age interactions, in which case age was
entered as a covariate). These models were used to estimate HRs with corresponding 95%
confidence intervals (CIs) for the associations of incident lung cancer with cigarette smoking
and exposure to PM 5 (per 10-ug/m? increase in concentration). Person-months were
calculated from 1994-1996 until the end of follow-up in June 2010, diagnosis of lung
cancer, death from another cause, or loss to follow-up, whichever occurred first.

Puett et al. (2014) adjusted for cigarette smoking based on time-varying covariates for
smoking status (never, former, or current), pack-years (continuous), and months since
quitting for former smokers (continuous), with indicator variables for missing data. For our
analysis, we used the Akaike information criterion (AIC) (Akaike 1974) to compare models
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with various levels of detail in smoking characterization, including the following time-
varying covariates:

. Smoking status only

. Smoking status and pack-years

. Smoking status, pack-years, and duration (years)

. Smoking status, average packs (calculated as total pack-years divided by

smoking duration in years), and duration (years)

. Smoking status, pack-years, duration (years), and time since cessation (months)

. Smoking status, average packs, duration (years), and time since cessation
(months)

. Smoking pack-years, duration (years), and time since cessation (months)

. Smoking average packs, duration (years), and time since cessation (months)

. Smoking pack-years, duration (years), time since cessation (months), and

age*pack-year interactions, including age only, age and age squared, or age, age
squared, and age cubed

. Smoking average packs, duration (years), time since cessation (months), and
age*average-pack interactions, including age only, age and age squared, or age,
age squared, and age cubed.

Models were adjusted for the same covariates as in Puett et al. (2014), i.e., age, time period,
and geographic region (Northeast, South, Midwest, or West) in minimally adjusted models.
Fully adjusted models additionally included time-varying body mass index (continuous kg/
m?2), alcohol consumption (none or > 0 g/day), physical activity (< 3, 3 to < 18, or > 18
metabolic equivalent hours per week), overall diet quality (continuous Alternative Healthy
Eating index (Chiuve et al. 2012)), and census tract median home value (continuous) and
median income (continuous), as well as non-time-varying secondhand smoke exposure at
home, at work, and during childhood as reported in 1982. Covariates included in the final
models were selected by Puett et al. (2014) based on a priori consideration of factors
previously associated with lung cancer or PM exposure in the NHS cohort, along with
observation of a 10% or greater change in the HR estimate for PM, 5 and lung cancer.
Because the objective of our analysis is not to provide a “valid” estimate of the association
between PM5 5 and lung cancer, but rather to evaluate the reliability of the PH model, we did
not explore alternative covariate adjustments. In any case, there is no a priori guidance to
inform the selection of covariates on biological grounds. Puett et al. (2014) found that HR
estimates for PM 5 were not substantially affected by multivariable adjustment in the full
cohort or among never smokers, but HRs were augmented (farther above 1.0) by
multivariable adjustment among never and former smokers, and attenuated (from below 1.0)
by adjustment among current smokers.

Like Puett et al. (2014), in models stratified by smoking status, we combined current
smokers with former smokers who quit fewer than 10 years ago, and we analyzed former
smokers who quit at least 10 years ago separately or combined with never smokers. Women
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could contribute to multiple smoking-status categories throughout follow-up, with one status
per biennial cycle. We used the same coding as Puett et al. (2014) for all variables, including
smoking and PM.

We conducted secondary analyses using different PM, 5 averaging times (24 and 48 months
instead of 72 months, using only shorter averaging times to evaluate more granular
characterization of PM 5 levels), different levels of baseline stratification by age group (1
year, 5 years, and 10 years instead of months to create larger, more robust baseline strata),
and different PM size fractions (PM1g and PMy 5_1¢ instead of PMy 5).

P-values < 0.05 were considered statistically significant. All analyses were performed with
SAS version 9 (SAS Institute Inc., Cary, NC).

During follow-up, 0.1% of initial never smokers began smoking, 4% of former smokers took
up smoking again, and 57% of current smokers quit smoking at least temporarily. Of those
who quit smoking, 28% stopped for at least 10 years. Table 1 shows average smoking
characteristics and average estimated ambient PM levels at study baseline in 1994 and over
the duration of follow-up into 2010, stratified by baseline smoking status. In the total cohort,
72-month average ambient PMj s at baseline was 15.1 pg/m?3 (standard deviation (SD) =
3.2), and 72-month average ambient PM;q was 25.5 pug/m3 (SD = 6.5). Average ambient PM
levels declined over the course of follow-up, with overall 72-month means of 13.2 ug/m?3
(SD = 2.7) for PM 5 and 21.7 pg/m3 (SD = 5.4) for PM1q between 1994 and 2010. During
follow-up, 1,992 incident cases of lung cancer were identified.

Characterization of smoking association

Table 2 shows estimated HRs for lung cancer risk and AlCs from models of PM5 5 and
various characterizations of smoking history based on cumulative pack-years in the overall
cohort. Results are shown for minimally adjusted models accounting for time period, age,
and geographic region, and fully adjusted models accounting for all covariates identified as
potential confounders. Detailed results are provided in Appendix 1 (minimally adjusted
models) and Appendix 2 (fully adjusted models). In the overall cohort, with or without
adjustment for other covariates, model fit based on AIC generally improved with the
inclusion of more characteristics of smoking history (i.e., duration and time since cessation,
without smoking status) and an interaction between cumulative pack-years and linear age
(Table 2). As expected, the HRs for each smoking variable generally decreased with the
inclusion of additional smoking characteristics, due to the smaller proportion of variance
explained by each variable. Additional interactions between cumulative pack-years and age
squared or with both age squared and age cubed did not further improve model fit. For
models including cumulative pack-years, the best-fitting model also included smoking
duration, time since cessation, and an age*pack-years interaction (minimally adjusted model
AIC =18,509.50; fully adjusted model AIC = 18,491.76).

Table 3 shows the corresponding HRs for lung cancer risk and AICs from minimally and
fully adjusted models of PM, 5 and various characterizations of smoking history based on
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average packs in the overall cohort. Detailed results are provided in Appendix 1 and
Appendix 2.

Again, model fit based on AIC generally improved with the inclusion of more characteristics
of smoking history, but no significant interactions were detected between average packs and
linear age, age squared, or age cubed in nested models (Table 3). Adding interactions with
age rendered the estimates for average packs statistically unstable. For models including
average packs, the best-fitting model also included smoking duration and time since
cessation (minimally adjusted model AIC = 18,866.94; fully adjusted model AIC =
18,854.06).

Results stratified by smoking status are shown in Table 4, with detailed results in Appendix
1 and Appendix 2. The best-fitting models for cumulative pack-years or average packs in the
overall cohort also were the best-fitting models among former smokers and current smokers.
That is, after stratification by smoking status, the AIC among models for cumulative pack-
years was lowest when including smoking duration, time since cessation, and an age*pack-
years interaction, and the AIC among models for average packs was lowest when including
smoking duration and time since cessation (other models shown in Appendix 1 and
Appendix 2). Comparing these two models based on AIC, the fit was better with pack-years
than average packs in the overall cohort, among former smokers, and among current
smokers.

The improvement of model fit with an interaction between cumulative pack-years and age,
as well as the statistical significance of the linear age interaction term (p < 0.05 in minimally
and fully adjusted models for the full cohort, former smokers, and current smokers),
demonstrates effect modification of the smoking-lung cancer association by age. This age-
related effect modification is illustrated in Figures 1A (full cohort), 1B (former smokers),
and 1C (current smokers) with full covariate adjustment; figures with minimal adjustment
are provided in Appendix 1. These figures are based on models including interactions
between cumulative pack-years and age, age squared, and age cubed, but results do not
differ substantively from models including linear age only. For the full cohort, the figures
show an increase in the HR with advancing age up to around 50-55 years, followed by a
steady decline (Figure 1A). The HR is slightly later for former smokers (Figure 1B) and
earlier for current smokers (Figure 1C). Results are unstable above age 85 years.

Effect modification and confounding of PM, 5 association by smoking

Most models, including all models of the total cohort, never smokers, and current smokers,
showed no significant association between PM, 5 and lung cancer risk (Tables 2—4,
Appendix 1 and Appendix 2). Statistically significant positive associations between PM> 5
and lung cancer risk were detected only in certain models adjusting for smoking pack-years
(but not average packs) among former smokers who quit at least 10 years ago. In the fully
adjusted best-fitting model including smoking pack-years, smoking duration, time since
cessation, and an age*pack-years interaction, the HR per 10-pg/m3 increase in PM, 5 was
1.06 (95% CI: 0.90, 1.25) in the overall cohort and 1.35 (95% CI = 1.00, 1.82) among
former smokers. In the fully adjusted best-fitting model including average packs, smoking
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duration, and time since cessation, the HR per 10-pug/m3 increase in PM, 5 was 1.02 (95%
Cl: 0.87, 1.20) in the overall cohort and 1.27 (95% CI = 0.95, 1.71) among former smokers.

In fully adjusted models including pack-years, the HR per 10-mg/m3 increase in PM5 5
ranged between 1.05 and 1.10 in the total cohort, a doubling of the parameter estimate from
5% to 10% (Table 2 and Appendix 2). Among former smokers, the HR ranged between 1.31
and 1.38 in these models. In fully adjusted models including average packs, the HR for
PM, 5 ranged between 1.02 and 1.07 (more than tripling the parameter estimate of 2%) in
the total cohort, while it ranged between 1.26 and 1.27 among former smokers (Table 3 and
Appendices 1 and 2).

For comparison, when contrasting results for the total cohort using the same models with
minimal or full covariate adjustment, the HRs for PM, 5 differed less than they did across
various levels of smoking adjustment, except in models for PM5 5 alone (Table 2 and Table
3). That is, confounding by all other covariates was less than residual confounding by
varying adjustment for smoking.

Secondary analyses

As shown in Appendix 3 the results of secondary analyses of 24- and 48-month averaged
PM, 5 and baseline stratification by 1-year, 5-year, or 10-year age group were substantively
similar to the primary analysis based on 72-month averaged PM> 5 with baseline
stratification by age in months. PM1y and PM5 5_19 were not significantly associated with
lung cancer risk in any models, including among former smokers.

Discussion

Our results based on real-world data from the NHS cohort largely confirm the findings from
our analysis of a simulated cohort with realistic smoking-history data (Moolgavkar et al.
2018). In the simulated dataset, we found that relative risk of mortality from smoking was
strongly modified by age, and that including time-dependent cumulative packs smoked,
smoking duration, and time since cessation improved model fit. We also found that even
after detailed control for time-dependent smoking history, residual confounding created a
spurious modest association with a covariate that was correlated with smoking but not
independently associated with the outcome.

Likewise, in the present study, we found strong evidence of effect modification of the
association between cumulative smoking and lung cancer risk, and the best-fitting model for
smoking, given the available data, included time-dependent smoking pack-years, smoking
duration, time since smoking cessation, and an interaction between age and pack-years. An
alternative model including average packs instead of pack-years also fit the data well, but did
not exhibit significant effect modification by age. In the simulated cohort we found that
interactions between cumulative smoking and age, age squared, and age cubed all were
highly statistically significant (Moolgavkar et al. 2018), whereas in the NHS cohort we
found a significant interaction only between cumulative smoking and linear age.
Nevertheless, the age-specific pattern of lung cancer risk associated with smoking was
similar to that in the simulated cohort as well as in the American Cancer Society Cancer
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Prevention Study | cohort (Burns et al. 1997) (illustrated in Moolgavkar et al. 2018). In all
cohorts, the age-specific relative risk due to smoking peaked between ages 50 and 60 years,
followed by a continuous decline with older age. This pattern is unlikely to be detected by
statistical tests for monotonic departures from proportionality of hazards.

Taken together, these results demonstrate that age-related effect modification needs to be
addressed in any cohort analysis of smoking, that cumulative exposure alone is inadequate to
capture the effect of smoking, and that the traditional Cox PH approach has fundamental
limitations for addressing these temporal issues. The inability of a single exposure metric to
characterize the impact of smoking, and the importance of characterizing exposure history
over time, has been discussed previously (Knoke et al. 2004, Hazelton et al. 2005, Lubin et
al. 2007, Tammemagi et al. 2011, Moolgavkar et al. 2012, Peto 2012, Thomas 2014,
Vlaanderen et al. 2014).

These discussions underscore the inflexibility of estimating hazard ratios using the Cox PH
model, as opposed to directly estimating hazard functions to allow explicit parameterization
of temporal changes in exposure and resultant risk. Parametric models of cancer hazard
functions, based on biological concepts of multistage carcinogenesis, have long provided a
remedy to this problem (Peto 1977, Day and Brown 1980, Brown and Chu 1983, Thomas
1988, Knoke et al. 2004, Hazelton et al. 2005, Richardson 2009, Thomas 2009, Moolgavkar
et al. 2012, Moolgavkar and Luebeck in press, Moolgavkar et al. 2015). Indeed, in the NHS
cohort (combined with the Health Professionals Follow-Up Study), Meza et al. (2008) used
multistage carcinogenesis models to demonstrate the strong dependence of lung cancer risk
on temporal aspects of smoking, including a modifying effect of smoking duration on the
association with smoking intensity, and decline in the smoking-related relative risk with
increasing time since cessation.

The other main finding from the present analysis relates to the impact of effect modification
and residual confounding by smoking on the observed association with PM, 5 exposure. We
found that improved control of confounding by smoking, through inclusion of additional
time-dependent covariates in the multivariate model, had varying effects on the HR estimate
for PM> 5, sometimes moving it toward the null and sometimes away from the null. In the
best-fitting model for pack-years, the HR estimate was attenuated relative to estimates in
models that did not control for smoking, or that controlled for smoking status and pack-
years, but it was comparable to the estimate in a model that controlled only for smoking
status. In the best-fitting model for average packs, the HR estimate was also attenuated
relative to estimates in models that did not control for smoking, or that controlled for
smoking status alone, but it was comparable to estimates in other models that controlled for
average packs and duration, with or without age interactions. PM, 5 estimates were
consistently weaker in models that controlled for average packs (and duration) than those
that controlled for pack-years.

The magnitude of residual confounding by smoking was larger than the magnitude of
confounding by all other covariates, including body mass index, alcohol consumption,
physical activity, diet quality, area-level socioeconomic status, and secondhand smoke
exposure. This contrast highlights the relevance of focusing on residual confounding by
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smoking as one of the strongest risk factors for lung cancer and, accordingly, a major
potential confounder of virtually any other estimated association with lung cancer risk.

Moreover, the NHS represents in many ways a best-case scenario for control of the time-
dependent effects of smoking, because the investigators collected detailed information on
smoking exposure repeatedly in biennial questionnaires. In nearly all other prominent
cohorts for air pollution epidemiology, such as the American Cancer Society Cancer
Prevention Study Il cohort (Pope et al. 2002, Pope et al. 2009), the Harvard Six Cities cohort
(Dockery et al. 1993, Laden et al. 2006), and the European Study of Cohorts for Air
Pollution Effects (Beelen et al. 2014), smoking information was collected only once at study
entry. In some cohorts, such as the Medicare Cohort Air Pollution Study (Zeger et al. 2008),
no individual-level smoking information is available. Thus, the potential for residual
confounding due to insufficient control for time-dependent smoking is greater in nearly all
other cohort studies.

Besides acting as an important confounder of the PM 5 association, smoking also was a key
effect modifier in the NHS cohort. Like Puett et al. (2014), we detected a statistically
significant positive association with PM5 5 in the combined group of never smokers and
former smokers who quit at least 10 years ago. When we further distinguished between
never and former smokers (an analysis not reported by Puett et al. (2014)), we found that the
association was restricted to former smokers. This finding is not readily explained by the
known toxicological effects of PM, 5 (IARC 2016). For instance, if smoking increases
susceptibility to ambient outdoor PM> 5 through cellular injury and inflammation of the
respiratory epithelium, then one might expect current smokers to exhibit a stronger positive
association with PM 5 than former smokers. Conversely, if deposition of ambient outdoor
PM, 5 in the respiratory tract is more efficient in the absence of interference from smoking-
related particles, then one might expect never smokers to exhibit a stronger association with
PM, 5 than former smokers. Thus, the observed pattern of smoking-related effect
modification in the NHS cohort is puzzling, and may be due to chance.

Whether recent exposure to ambient PM> 5 can plausibly contribute to the development of
lung cancer, which has a latency of many years or even decades, is also questionable
(Boffetta et al. 2015). In the absence of data on distant past PM5 5 levels, reliance on recent
levels (with no exposure lag) could result in considerable misclassification of the
etiologically relevant exposure, with unpredictable bias in effect estimates. If current
exposure levels are strongly correlated with past levels, then use of recent exposure data may
be better justified, but will result in overestimated relative risks due to the declining air
pollution levels in most industrialized countries.

By using real-world observational data, this study overcomes the reliance on a simulated
dataset in our prior analysis (Moolgavkar et al. 2018), and it illustrates the extent of potential
residual confounding in an actual scenario that probably involves multivariate confounding
and complex relationships between covariates. We did not explicitly consider how more
detailed classification of other potential confounders, such as socioeconomic status, might
further affect the residual confounding effect of smoking, nor did we evaluate possible non-
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linear associations with smoking. We also did not compare the results of the Cox PH
analysis directly with results from multistage carcinogenesis models.

This paper raises important ancillary issues regarding the choice of statistical models, the
testing of null hypotheses, and the limits of standard methods for the analysis of
epidemiological data. Many statistical approaches to model selection and model averaging
are available. Here, we use the AIC as our statistical tool for model choice without meaning
to suggest that it is the only or the best option. Other approaches to model selection would
probably lead to similar conclusions about the suitability of the PH model overall. We
caution, moreover, that the common but misguided practice of choosing statistical models to
maximize effect estimates can lead to substantial bias when the effect estimates are small
(Lumley and Sheppard 2000).

One of the critical problems with current standard approaches to the statistical analysis of
epidemiological data is that whereas the hazard function, i.e., the rate at which a disease
occurs in a previously disease-free population, would appear to be the fundamental measure
of risk, current methods focus on estimating the relative hazard. When the PH model was
introduced by D. R. Cox (1972), it was hailed as a major landmark in biostatistics, which
indeed it was for analysis of clinical trials data, which are typically characterized by limited
follow-up time and time-invariant covariates. The PH model was soon extended and
generalized for analyses of epidemiological data with much longer follow-up times and with
time-dependent covariates (e.g., Kalbfleisch and Prentice 2002). An unfortunate legacy of
the great success of the PH model for analyses of clinical trials and observational
epidemiology data is the virtual abandonment of parametric models for survival analysis.
Because the PH model is semi-parametric, it was considered to be vastly superior to
parametric models, which require making assumptions regarding the underlying hazard
functions. However, the PH model makes assumptions of dubious biological validity, as we
have noted here.

In particular, for epidemiological data, the assumption of constant proportionality of hazards
over age and across populations is often biologically implausible. Why should the HR for a
given exposure remain constant with age or across populations with different background
hazards? Yet these are assumptions that are commonly made. Statistical tests can assess
departures from constancy of the HR, where such constancy is treated as the statistical null
hypothesis. It seems clear, however, that non-constancy of the HR should instead be the
biologically expected null hypothesis. Similarly, biologically one would expect temporal
factors such as ages at the start and end of exposure, duration of exposure, and time-varying
intensities of exposure to be important determinants of the HR, yet the standard statistical
null hypothesis is the constancy of the HR with respect to these factors.

In conclusion, this study builds on our prior findings (Moolgavkar et al. 2018) by using
actual observational data from the uniquely suited NHS to illuminate some of the
shortcomings of the Cox PH model for analyzing the time-dependent relationships of
smoking and PM,, 5 with each other and with lung cancer risk. The PH model is currently the
mainstay for epidemiological analyses of cohort and, by extension, case-control data, yet
violation of its basic assumptions can yield biased results (Hernan 2010). Estimates of
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human health risk obtained by application of this model have been used to set national and
state ambient air quality standards, and to estimate the public health benefits that would
accrue from decreases in air pollution levels (U.S. EPA 2017). Because of the issues
discussed here, these quantitative estimates cannot be considered to be reliable. The problem
of unreliable estimates is compounded by the fact that several important datasets on which
critical regulatory decisions are based are not made available to stakeholders for independent
evaluation. Therefore, our results have regulatory and public-health implications and provide
further impetus for the development of parametric alternatives to the PH model that
explicitly estimate hazard functions to address the impact of time-varying exposure patterns
on risk.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figures 1A-C.
Age-related modification of cumulative pack-years in (A) the full cohort, (B) former

smokers, and (C) current smokers, using fully adjusted models. Lines illustrate the hazard
ratio per 10 pack-years of smoking, and shading illustrates 95% confidence intervals around
the hazard ratio. Red denotes models including PM, 5 and cumulative pack-years only (with
age interactions), and blue denotes models including PM, s, cumulative pack-years (with
age interactions), years of smoking, and months since cessation.
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