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Abstract

The proportional hazards (PH) model is commonly used in epidemiology despite the stringent 

assumption of proportionality of hazards over time. We previously showed, using detailed 

simulation data, that the impact of a modest risk factor cannot be estimated reliably using the PH 

model in the presence of confounding by a strong, time-dependent risk factor. Here, we examine 

the same and related issues using a real dataset. Among 97,303 women in the prospective Nurses’ 

Health Study cohort from 1994 through 2010, we used PH regression to investigate how effect 

estimates for cigarette smoking are affected by increasingly detailed specification of time-

dependent exposure characteristics. We also examined how effect estimates for a fine particulate 

matter (PM2.5), a modest risk factor, are affected by finer control for time-dependent confounding 

by smoking. The objective of this analysis is not to present a credible estimate of the impact of 

PM2.5 on lung cancer risk, but to show that estimates based on the PH model are inherently 

unreliable. The best-fitting model for cigarette smoking and lung cancer included pack-years, 

duration, time since cessation, and an age-by-pack-years interaction, indicating that the hazard 

ratio (HR) for pack-years was significantly modified by age. In the fully adjusted best-fitting 

model for smoking including pack-years, the HR per 10-μg/m3 increase in PM2.5 was 1.06 (95% 

confidence interval (CI): 0.90, 1.25); the HR for PM2.5 in the full cohort ranged between 1.02 and 

1.10 in models with other smoking adjustments, indicating a residual confounding effect of 

smoking. The HR for PM2.5 was statistically significant only among former smokers when 

adjusting for smoking pack-years (HR = 1.35, 95% CI = 1.00, 1.82 in the best-fitting smoking 

model), but not in models adjusting for smoking duration and average packs (pack-years divided 

by duration). The association between cumulative smoking and lung cancer is modified by age, 

and improved model fit is obtained by including multiple time-varying components of smoking 

history. The association with PM2.5 is residually confounded by smoking and modified by 

smoking status. These findings underscore limitations of the PH model and emphasize the 

advantages of directly estimating hazard functions to characterize time-varying exposure and risk. 

The hazard function, not the relative hazard, is the fundamental measure of risk in a population. As 

a consequence, the use of time-dependent PH models does not address crucial issues introduced by 

temporal factors in epidemiological data.
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Introduction

The Cox proportional hazards (PH) regression model (Cox 1972) is commonly used in 

epidemiology for the analysis of observational cohort studies. The main assumption of the 

original PH model is that the hazard ratio is constant over the time scale. However, this 

assumption may not hold in the context of epidemiological studies with diverse and time-

varying exposures, numerous potential confounders, and long-term follow-up.

We recently conducted a simulation study in which we investigated how hazard ratio (HR) 

estimates using the PH model are biased when the HR is strongly modified by time and 

depends on temporal exposure characteristics, such as duration and time since cessation 

(Moolgavkar et al. 2018). In that study, we also evaluated how inadequate control of a strong 

time-dependent confounder affected HR estimates for a weaker risk factor. We found that in 

the presence of residual confounding by a strong, time-dependent risk factor, such as 

smoking, use of the PH model can result in biased estimates of association with a modest 

risk factor.

A limitation of our prior study is that it relied on simulated data, even though the cohort had 

realistic life histories generated by the U.S. National Cancer Institute’s well-validated 

Smoking History Generator (Moolgavkar et al. 2012, Holford et al. 2014a, Holford et al. 

2014b, National Cancer Institute). Accordingly, we sought to evaluate the issues of time-

dependent confounding and effect modification using the PH model using a real dataset with 

detailed individual-level information on smoking habits over time. An ideal dataset for this 

purpose is the Nurses’ Health Study (NHS) cohort, which is distinguished by its repeated 

collection of exposure and health information from a large number of subjects over decades 

of follow-up. Moreover, the NHS has information on air pollution, in the form of particulate 

matter (PM) of various sizes (< 2.5 μm, < 10 μm, or 2.5–10 μm in aerodynamic diameter), a 

weak risk factor for lung cancer (Puett et al. 2014) with which to test the impact of 

inadequate control for confounding by smoking. Therefore, we used the NHS cohort to 

investigate how the association between smoking and lung cancer changes with increasingly 

detailed specification of exposure, and how the association between PM and lung cancer is 

affected by the way in which smoking exposure is modeled. The purpose of this 

investigation is to explore the inherent unreliability of estimates based on the PH model in 

the presence of confounding by a strong, time-dependent risk factor, which may often exist 

in long-term epidemiological datasets.

Materials and Methods

Study population

The NHS is an ongoing prospective cohort of 121,700 female nurses who were enrolled in 

1976 when they were between 30 and 55 years of age. Data from the NHS are available to 

research collaborators through an application process (https://www.nurseshealthstudy.org/

researchers).

Participants were initially recruited from 11 states, but have resided in each of the 50 U.S. 

states since the mid-1990s. Information on potential risk factors and self-reported new 
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diagnoses of health outcomes is provided by nurses through mailed biennial questionnaires, 

for which response rates are > 90%. Vital status is ascertained through next of kin and the 

National Death Index (http://www.cdc.gov/nchs/ndi.htm), both of which have identified an 

estimated 98% of deaths in the cohort.

We used nearly the same analytic cohort as Puett et al. (2014) in their analysis of air 

pollution and lung cancer incidence in the NHS. Eligible women were those who were alive 

and did not have a prior diagnosis of cancer (except for non-melanoma skin cancer) as of 

1994–1996, responded to the questionnaire in 1994–1996 or a later follow-up cycle, and had 

complete information on PM throughout follow-up. Unlike Puett et al. (2014), we also 

required that eligible women have non-missing information on smoking status. This cohort 

comprised 97,303 women with 1,402,829 person-years of follow-up. (By comparison, the 

cohort analyzed by Puett et al. (2014) included 103,650 women with 1,510,027 person-years 

of follow-up.)

This study was approved by the Institutional Review Board of Brigham and Women’s 

Hospital. Informed consent was implied through return of the questionnaires. In addition, 

this study was approved by the Human Investigations Committee of the Connecticut 

Department of Public Health, from which certain data used in this publication were 

obtained.

Smoking exposure

From the biennial mailed questionnaires, information on cigarette smoking is collected to 

enable time-varying characterization of smoking habits, including duration, pack-years, and 

time since cessation (if applicable), at each follow-up cycle. When current smoking 

information is missing, previously reported smoking information can be carried forward 

from prior questionnaires.

For example, for women who reported never smoking in an earlier questionnaire, never-

smoker status is carried forward into all subsequent follow-up cycles, because of the rarity of 

smoking initiation after the start of follow-up. For women who reported having quit smoking 

more than 10 years ago, former-smoker status is carried forward into all subsequent follow-

up cycles, because of the rarity of smoking re-initiation after having quit for more than 10 

years. For women who reported currently smoking or having quit fewer than 10 years ago, 

current-smoker or former-smoking status, respectively, is carried forward for only one 

additional cycle, after which smoking status is considered missing if subsequent 

questionnaires are not completed. Number of cigarettes smoked per day is carried forward 

for current smokers if it is not reported. Overall, 1.6% of women had one or more follow-up 

cycles skipped due to missing smoking status.

Air pollution exposure

The assessment of air pollution exposure based on residential address in the NHS cohort is 

described in detail by Puett et al. (2014). Briefly, residential addresses are updated through 

the biennial questionnaires, and all available addresses have been geocoded to latitude and 

longitude coordinates. Using previously validated spatiotemporal models (Yanosky et al. 

2008, Yanosky et al. 2009, Weuve et al. 2012, Yanosky et al. 2014), predictions of PM2.5 and 
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PM10 were generated by NHS investigators for all months between January 1988 and 

December 2007 for the continental U.S.

These models used monthly average PM2.5 and/or PM10 data from the U.S. Environmental 

Protection Agency’s (EPA) Air Quality System (U.S. EPA 2018), the IMPROVE network 

(IMPROVE 2019), and various other sources (Spengler et al. 1996, Suh et al. 1997). 

Generalized additive mixed models with monthly penalized spline smooth spatial terms, 

penalized spline smooth terms of geospatial predictors (i.e., distance to nearest A1–A4 

roads, percent urban land use within 1 km, elevation, point sources of PM, county 

population density, census tract population density (only for PM10), and meteorological 

predictors), and terms for time were used to create separate PM prediction surfaces for each 

month and each PM size fraction (Yanosky et al. 2009). PM2.5 levels prior to 1999 were 

modeled by NHS investigators using data on PM10 (Yanosky et al. 2009); PM2.5–10 was 

derived by subtracting monthly PM2.5 from monthly PM10 estimates. Cross-validation R2 

values were 0.59 for PM10, 0.76 for pre-1999 PM2.5, and 0.77 for post-1999 PM2.5. For the 

primary analysis, we used 72-month cumulative average PM2.5 levels, as did Puett et al. 

(2014), who reported finding no substantive differences in their results based on 24-, 48-, 

96-, or 120-month cumulative average PM2.5 levels. Following the same approach as Puett et 

al. (2014), we did not institute a lag for PM2.5 exposure (or any confounders), even though a 

latency period of decades would be anticipated to intervene between exposure to a 

carcinogen and the onset of lung cancer (Boffetta et al. 2015).

Lung cancer incidence

Lung cancers in the NHS cohort were identified initially through self-report by participants 

or their next of kin, or from death certificates; these reports were subsequently confirmed by 

physician review of medical records, with blinding to exposure status. Medical records were 

obtained for 83% of reported lung cancer cases; of these, 87% had primary lung cancer 

confirmed by pathology reports. Because of the high validity of self-reported lung cancer, 

we included all primary reports that were reconfirmed by the participant where pathological 

reports were not available.

Statistical approach

Like Puett et al. (2014), we used time-varying Cox PH models, stratified by biennial time 

period and age in months (except when evaluating age interactions, in which case age was 

entered as a covariate). These models were used to estimate HRs with corresponding 95% 

confidence intervals (CIs) for the associations of incident lung cancer with cigarette smoking 

and exposure to PM2.5 (per 10-ug/m3 increase in concentration). Person-months were 

calculated from 1994–1996 until the end of follow-up in June 2010, diagnosis of lung 

cancer, death from another cause, or loss to follow-up, whichever occurred first.

Puett et al. (2014) adjusted for cigarette smoking based on time-varying covariates for 

smoking status (never, former, or current), pack-years (continuous), and months since 

quitting for former smokers (continuous), with indicator variables for missing data. For our 

analysis, we used the Akaike information criterion (AIC) (Akaike 1974) to compare models 
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with various levels of detail in smoking characterization, including the following time-

varying covariates:

• Smoking status only

• Smoking status and pack-years

• Smoking status, pack-years, and duration (years)

• Smoking status, average packs (calculated as total pack-years divided by 

smoking duration in years), and duration (years)

• Smoking status, pack-years, duration (years), and time since cessation (months)

• Smoking status, average packs, duration (years), and time since cessation 

(months)

• Smoking pack-years, duration (years), and time since cessation (months)

• Smoking average packs, duration (years), and time since cessation (months)

• Smoking pack-years, duration (years), time since cessation (months), and 

age*pack-year interactions, including age only, age and age squared, or age, age 

squared, and age cubed

• Smoking average packs, duration (years), time since cessation (months), and 

age*average-pack interactions, including age only, age and age squared, or age, 

age squared, and age cubed.

Models were adjusted for the same covariates as in Puett et al. (2014), i.e., age, time period, 

and geographic region (Northeast, South, Midwest, or West) in minimally adjusted models. 

Fully adjusted models additionally included time-varying body mass index (continuous kg/

m2), alcohol consumption (none or > 0 g/day), physical activity (< 3, 3 to < 18, or ≥ 18 

metabolic equivalent hours per week), overall diet quality (continuous Alternative Healthy 

Eating index (Chiuve et al. 2012)), and census tract median home value (continuous) and 

median income (continuous), as well as non-time-varying secondhand smoke exposure at 

home, at work, and during childhood as reported in 1982. Covariates included in the final 

models were selected by Puett et al. (2014) based on a priori consideration of factors 

previously associated with lung cancer or PM exposure in the NHS cohort, along with 

observation of a 10% or greater change in the HR estimate for PM2.5 and lung cancer. 

Because the objective of our analysis is not to provide a “valid” estimate of the association 

between PM2.5 and lung cancer, but rather to evaluate the reliability of the PH model, we did 

not explore alternative covariate adjustments. In any case, there is no a priori guidance to 

inform the selection of covariates on biological grounds. Puett et al. (2014) found that HR 

estimates for PM2.5 were not substantially affected by multivariable adjustment in the full 

cohort or among never smokers, but HRs were augmented (farther above 1.0) by 

multivariable adjustment among never and former smokers, and attenuated (from below 1.0) 

by adjustment among current smokers.

Like Puett et al. (2014), in models stratified by smoking status, we combined current 

smokers with former smokers who quit fewer than 10 years ago, and we analyzed former 

smokers who quit at least 10 years ago separately or combined with never smokers. Women 

Chang et al. Page 5

Crit Rev Toxicol. Author manuscript; available in PMC 2021 March 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



could contribute to multiple smoking-status categories throughout follow-up, with one status 

per biennial cycle. We used the same coding as Puett et al. (2014) for all variables, including 

smoking and PM.

We conducted secondary analyses using different PM2.5 averaging times (24 and 48 months 

instead of 72 months, using only shorter averaging times to evaluate more granular 

characterization of PM2.5 levels), different levels of baseline stratification by age group (1 

year, 5 years, and 10 years instead of months to create larger, more robust baseline strata), 

and different PM size fractions (PM10 and PM2.5–10 instead of PM2.5).

P-values < 0.05 were considered statistically significant. All analyses were performed with 

SAS version 9 (SAS Institute Inc., Cary, NC).

Results

During follow-up, 0.1% of initial never smokers began smoking, 4% of former smokers took 

up smoking again, and 57% of current smokers quit smoking at least temporarily. Of those 

who quit smoking, 28% stopped for at least 10 years. Table 1 shows average smoking 

characteristics and average estimated ambient PM levels at study baseline in 1994 and over 

the duration of follow-up into 2010, stratified by baseline smoking status. In the total cohort, 

72-month average ambient PM2.5 at baseline was 15.1 μg/m3 (standard deviation (SD) = 

3.2), and 72-month average ambient PM10 was 25.5 μg/m3 (SD = 6.5). Average ambient PM 

levels declined over the course of follow-up, with overall 72-month means of 13.2 μg/m3 

(SD = 2.7) for PM2.5 and 21.7 μg/m3 (SD = 5.4) for PM10 between 1994 and 2010. During 

follow-up, 1,992 incident cases of lung cancer were identified.

Characterization of smoking association

Table 2 shows estimated HRs for lung cancer risk and AICs from models of PM2.5 and 

various characterizations of smoking history based on cumulative pack-years in the overall 

cohort. Results are shown for minimally adjusted models accounting for time period, age, 

and geographic region, and fully adjusted models accounting for all covariates identified as 

potential confounders. Detailed results are provided in Appendix 1 (minimally adjusted 

models) and Appendix 2 (fully adjusted models). In the overall cohort, with or without 

adjustment for other covariates, model fit based on AIC generally improved with the 

inclusion of more characteristics of smoking history (i.e., duration and time since cessation, 

without smoking status) and an interaction between cumulative pack-years and linear age 

(Table 2). As expected, the HRs for each smoking variable generally decreased with the 

inclusion of additional smoking characteristics, due to the smaller proportion of variance 

explained by each variable. Additional interactions between cumulative pack-years and age 

squared or with both age squared and age cubed did not further improve model fit. For 

models including cumulative pack-years, the best-fitting model also included smoking 

duration, time since cessation, and an age*pack-years interaction (minimally adjusted model 

AIC = 18,509.50; fully adjusted model AIC = 18,491.76).

Table 3 shows the corresponding HRs for lung cancer risk and AICs from minimally and 

fully adjusted models of PM2.5 and various characterizations of smoking history based on 
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average packs in the overall cohort. Detailed results are provided in Appendix 1 and 

Appendix 2.

Again, model fit based on AIC generally improved with the inclusion of more characteristics 

of smoking history, but no significant interactions were detected between average packs and 

linear age, age squared, or age cubed in nested models (Table 3). Adding interactions with 

age rendered the estimates for average packs statistically unstable. For models including 

average packs, the best-fitting model also included smoking duration and time since 

cessation (minimally adjusted model AIC = 18,866.94; fully adjusted model AIC = 

18,854.06).

Results stratified by smoking status are shown in Table 4, with detailed results in Appendix 

1 and Appendix 2. The best-fitting models for cumulative pack-years or average packs in the 

overall cohort also were the best-fitting models among former smokers and current smokers. 

That is, after stratification by smoking status, the AIC among models for cumulative pack-

years was lowest when including smoking duration, time since cessation, and an age*pack-

years interaction, and the AIC among models for average packs was lowest when including 

smoking duration and time since cessation (other models shown in Appendix 1 and 

Appendix 2). Comparing these two models based on AIC, the fit was better with pack-years 

than average packs in the overall cohort, among former smokers, and among current 

smokers.

The improvement of model fit with an interaction between cumulative pack-years and age, 

as well as the statistical significance of the linear age interaction term (p < 0.05 in minimally 

and fully adjusted models for the full cohort, former smokers, and current smokers), 

demonstrates effect modification of the smoking-lung cancer association by age. This age-

related effect modification is illustrated in Figures 1A (full cohort), 1B (former smokers), 

and 1C (current smokers) with full covariate adjustment; figures with minimal adjustment 

are provided in Appendix 1. These figures are based on models including interactions 

between cumulative pack-years and age, age squared, and age cubed, but results do not 

differ substantively from models including linear age only. For the full cohort, the figures 

show an increase in the HR with advancing age up to around 50–55 years, followed by a 

steady decline (Figure 1A). The HR is slightly later for former smokers (Figure 1B) and 

earlier for current smokers (Figure 1C). Results are unstable above age 85 years.

Effect modification and confounding of PM2.5 association by smoking

Most models, including all models of the total cohort, never smokers, and current smokers, 

showed no significant association between PM2.5 and lung cancer risk (Tables 2–4, 

Appendix 1 and Appendix 2). Statistically significant positive associations between PM2.5 

and lung cancer risk were detected only in certain models adjusting for smoking pack-years 

(but not average packs) among former smokers who quit at least 10 years ago. In the fully 

adjusted best-fitting model including smoking pack-years, smoking duration, time since 

cessation, and an age*pack-years interaction, the HR per 10-μg/m3 increase in PM2.5 was 

1.06 (95% CI: 0.90, 1.25) in the overall cohort and 1.35 (95% CI = 1.00, 1.82) among 

former smokers. In the fully adjusted best-fitting model including average packs, smoking 
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duration, and time since cessation, the HR per 10-μg/m3 increase in PM2.5 was 1.02 (95% 

CI: 0.87, 1.20) in the overall cohort and 1.27 (95% CI = 0.95, 1.71) among former smokers.

In fully adjusted models including pack-years, the HR per 10-mg/m3 increase in PM2.5 

ranged between 1.05 and 1.10 in the total cohort, a doubling of the parameter estimate from 

5% to 10% (Table 2 and Appendix 2). Among former smokers, the HR ranged between 1.31 

and 1.38 in these models. In fully adjusted models including average packs, the HR for 

PM2.5 ranged between 1.02 and 1.07 (more than tripling the parameter estimate of 2%) in 

the total cohort, while it ranged between 1.26 and 1.27 among former smokers (Table 3 and 

Appendices 1 and 2).

For comparison, when contrasting results for the total cohort using the same models with 

minimal or full covariate adjustment, the HRs for PM2.5 differed less than they did across 

various levels of smoking adjustment, except in models for PM2.5 alone (Table 2 and Table 

3). That is, confounding by all other covariates was less than residual confounding by 

varying adjustment for smoking.

Secondary analyses

As shown in Appendix 3 the results of secondary analyses of 24- and 48-month averaged 

PM2.5 and baseline stratification by 1-year, 5-year, or 10-year age group were substantively 

similar to the primary analysis based on 72-month averaged PM2.5 with baseline 

stratification by age in months. PM10 and PM2.5–10 were not significantly associated with 

lung cancer risk in any models, including among former smokers.

Discussion

Our results based on real-world data from the NHS cohort largely confirm the findings from 

our analysis of a simulated cohort with realistic smoking-history data (Moolgavkar et al. 

2018). In the simulated dataset, we found that relative risk of mortality from smoking was 

strongly modified by age, and that including time-dependent cumulative packs smoked, 

smoking duration, and time since cessation improved model fit. We also found that even 

after detailed control for time-dependent smoking history, residual confounding created a 

spurious modest association with a covariate that was correlated with smoking but not 

independently associated with the outcome.

Likewise, in the present study, we found strong evidence of effect modification of the 

association between cumulative smoking and lung cancer risk, and the best-fitting model for 

smoking, given the available data, included time-dependent smoking pack-years, smoking 

duration, time since smoking cessation, and an interaction between age and pack-years. An 

alternative model including average packs instead of pack-years also fit the data well, but did 

not exhibit significant effect modification by age. In the simulated cohort we found that 

interactions between cumulative smoking and age, age squared, and age cubed all were 

highly statistically significant (Moolgavkar et al. 2018), whereas in the NHS cohort we 

found a significant interaction only between cumulative smoking and linear age. 

Nevertheless, the age-specific pattern of lung cancer risk associated with smoking was 

similar to that in the simulated cohort as well as in the American Cancer Society Cancer 
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Prevention Study I cohort (Burns et al. 1997) (illustrated in Moolgavkar et al. 2018). In all 

cohorts, the age-specific relative risk due to smoking peaked between ages 50 and 60 years, 

followed by a continuous decline with older age. This pattern is unlikely to be detected by 

statistical tests for monotonic departures from proportionality of hazards.

Taken together, these results demonstrate that age-related effect modification needs to be 

addressed in any cohort analysis of smoking, that cumulative exposure alone is inadequate to 

capture the effect of smoking, and that the traditional Cox PH approach has fundamental 

limitations for addressing these temporal issues. The inability of a single exposure metric to 

characterize the impact of smoking, and the importance of characterizing exposure history 

over time, has been discussed previously (Knoke et al. 2004, Hazelton et al. 2005, Lubin et 

al. 2007, Tammemagi et al. 2011, Moolgavkar et al. 2012, Peto 2012, Thomas 2014, 

Vlaanderen et al. 2014).

These discussions underscore the inflexibility of estimating hazard ratios using the Cox PH 

model, as opposed to directly estimating hazard functions to allow explicit parameterization 

of temporal changes in exposure and resultant risk. Parametric models of cancer hazard 

functions, based on biological concepts of multistage carcinogenesis, have long provided a 

remedy to this problem (Peto 1977, Day and Brown 1980, Brown and Chu 1983, Thomas 

1988, Knoke et al. 2004, Hazelton et al. 2005, Richardson 2009, Thomas 2009, Moolgavkar 

et al. 2012, Moolgavkar and Luebeck in press, Moolgavkar et al. 2015). Indeed, in the NHS 

cohort (combined with the Health Professionals Follow-Up Study), Meza et al. (2008) used 

multistage carcinogenesis models to demonstrate the strong dependence of lung cancer risk 

on temporal aspects of smoking, including a modifying effect of smoking duration on the 

association with smoking intensity, and decline in the smoking-related relative risk with 

increasing time since cessation.

The other main finding from the present analysis relates to the impact of effect modification 

and residual confounding by smoking on the observed association with PM2.5 exposure. We 

found that improved control of confounding by smoking, through inclusion of additional 

time-dependent covariates in the multivariate model, had varying effects on the HR estimate 

for PM2.5, sometimes moving it toward the null and sometimes away from the null. In the 

best-fitting model for pack-years, the HR estimate was attenuated relative to estimates in 

models that did not control for smoking, or that controlled for smoking status and pack-

years, but it was comparable to the estimate in a model that controlled only for smoking 

status. In the best-fitting model for average packs, the HR estimate was also attenuated 

relative to estimates in models that did not control for smoking, or that controlled for 

smoking status alone, but it was comparable to estimates in other models that controlled for 

average packs and duration, with or without age interactions. PM2.5 estimates were 

consistently weaker in models that controlled for average packs (and duration) than those 

that controlled for pack-years.

The magnitude of residual confounding by smoking was larger than the magnitude of 

confounding by all other covariates, including body mass index, alcohol consumption, 

physical activity, diet quality, area-level socioeconomic status, and secondhand smoke 

exposure. This contrast highlights the relevance of focusing on residual confounding by 
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smoking as one of the strongest risk factors for lung cancer and, accordingly, a major 

potential confounder of virtually any other estimated association with lung cancer risk.

Moreover, the NHS represents in many ways a best-case scenario for control of the time-

dependent effects of smoking, because the investigators collected detailed information on 

smoking exposure repeatedly in biennial questionnaires. In nearly all other prominent 

cohorts for air pollution epidemiology, such as the American Cancer Society Cancer 

Prevention Study II cohort (Pope et al. 2002, Pope et al. 2009), the Harvard Six Cities cohort 

(Dockery et al. 1993, Laden et al. 2006), and the European Study of Cohorts for Air 

Pollution Effects (Beelen et al. 2014), smoking information was collected only once at study 

entry. In some cohorts, such as the Medicare Cohort Air Pollution Study (Zeger et al. 2008), 

no individual-level smoking information is available. Thus, the potential for residual 

confounding due to insufficient control for time-dependent smoking is greater in nearly all 

other cohort studies.

Besides acting as an important confounder of the PM2.5 association, smoking also was a key 

effect modifier in the NHS cohort. Like Puett et al. (2014), we detected a statistically 

significant positive association with PM2.5 in the combined group of never smokers and 

former smokers who quit at least 10 years ago. When we further distinguished between 

never and former smokers (an analysis not reported by Puett et al. (2014)), we found that the 

association was restricted to former smokers. This finding is not readily explained by the 

known toxicological effects of PM2.5 (IARC 2016). For instance, if smoking increases 

susceptibility to ambient outdoor PM2.5 through cellular injury and inflammation of the 

respiratory epithelium, then one might expect current smokers to exhibit a stronger positive 

association with PM2.5 than former smokers. Conversely, if deposition of ambient outdoor 

PM2.5 in the respiratory tract is more efficient in the absence of interference from smoking-

related particles, then one might expect never smokers to exhibit a stronger association with 

PM2.5 than former smokers. Thus, the observed pattern of smoking-related effect 

modification in the NHS cohort is puzzling, and may be due to chance.

Whether recent exposure to ambient PM2.5 can plausibly contribute to the development of 

lung cancer, which has a latency of many years or even decades, is also questionable 

(Boffetta et al. 2015). In the absence of data on distant past PM2.5 levels, reliance on recent 

levels (with no exposure lag) could result in considerable misclassification of the 

etiologically relevant exposure, with unpredictable bias in effect estimates. If current 

exposure levels are strongly correlated with past levels, then use of recent exposure data may 

be better justified, but will result in overestimated relative risks due to the declining air 

pollution levels in most industrialized countries.

By using real-world observational data, this study overcomes the reliance on a simulated 

dataset in our prior analysis (Moolgavkar et al. 2018), and it illustrates the extent of potential 

residual confounding in an actual scenario that probably involves multivariate confounding 

and complex relationships between covariates. We did not explicitly consider how more 

detailed classification of other potential confounders, such as socioeconomic status, might 

further affect the residual confounding effect of smoking, nor did we evaluate possible non-
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linear associations with smoking. We also did not compare the results of the Cox PH 

analysis directly with results from multistage carcinogenesis models.

This paper raises important ancillary issues regarding the choice of statistical models, the 

testing of null hypotheses, and the limits of standard methods for the analysis of 

epidemiological data. Many statistical approaches to model selection and model averaging 

are available. Here, we use the AIC as our statistical tool for model choice without meaning 

to suggest that it is the only or the best option. Other approaches to model selection would 

probably lead to similar conclusions about the suitability of the PH model overall. We 

caution, moreover, that the common but misguided practice of choosing statistical models to 

maximize effect estimates can lead to substantial bias when the effect estimates are small 

(Lumley and Sheppard 2000).

One of the critical problems with current standard approaches to the statistical analysis of 

epidemiological data is that whereas the hazard function, i.e., the rate at which a disease 

occurs in a previously disease-free population, would appear to be the fundamental measure 

of risk, current methods focus on estimating the relative hazard. When the PH model was 

introduced by D. R. Cox (1972), it was hailed as a major landmark in biostatistics, which 

indeed it was for analysis of clinical trials data, which are typically characterized by limited 

follow-up time and time-invariant covariates. The PH model was soon extended and 

generalized for analyses of epidemiological data with much longer follow-up times and with 

time-dependent covariates (e.g., Kalbfleisch and Prentice 2002). An unfortunate legacy of 

the great success of the PH model for analyses of clinical trials and observational 

epidemiology data is the virtual abandonment of parametric models for survival analysis. 

Because the PH model is semi-parametric, it was considered to be vastly superior to 

parametric models, which require making assumptions regarding the underlying hazard 

functions. However, the PH model makes assumptions of dubious biological validity, as we 

have noted here.

In particular, for epidemiological data, the assumption of constant proportionality of hazards 

over age and across populations is often biologically implausible. Why should the HR for a 

given exposure remain constant with age or across populations with different background 

hazards? Yet these are assumptions that are commonly made. Statistical tests can assess 

departures from constancy of the HR, where such constancy is treated as the statistical null 

hypothesis. It seems clear, however, that non-constancy of the HR should instead be the 

biologically expected null hypothesis. Similarly, biologically one would expect temporal 

factors such as ages at the start and end of exposure, duration of exposure, and time-varying 

intensities of exposure to be important determinants of the HR, yet the standard statistical 

null hypothesis is the constancy of the HR with respect to these factors.

In conclusion, this study builds on our prior findings (Moolgavkar et al. 2018) by using 

actual observational data from the uniquely suited NHS to illuminate some of the 

shortcomings of the Cox PH model for analyzing the time-dependent relationships of 

smoking and PM2.5 with each other and with lung cancer risk. The PH model is currently the 

mainstay for epidemiological analyses of cohort and, by extension, case-control data, yet 

violation of its basic assumptions can yield biased results (Hernán 2010). Estimates of 
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human health risk obtained by application of this model have been used to set national and 

state ambient air quality standards, and to estimate the public health benefits that would 

accrue from decreases in air pollution levels (U.S. EPA 2017). Because of the issues 

discussed here, these quantitative estimates cannot be considered to be reliable. The problem 

of unreliable estimates is compounded by the fact that several important datasets on which 

critical regulatory decisions are based are not made available to stakeholders for independent 

evaluation. Therefore, our results have regulatory and public-health implications and provide 

further impetus for the development of parametric alternatives to the PH model that 

explicitly estimate hazard functions to address the impact of time-varying exposure patterns 

on risk.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Declaration of interest

SHM and ETC have provided expert testimony and ECL has provided consulting support in litigation related to air 
pollution. All authors are employees of Exponent, Inc., an international science and engineering consulting 
company.

The Nurses’ Health Study is funded by the National Cancer Institute (https://www.cancer.gov/) of the National 
Institutes of Health (grant UM1CA186107). We thank the participants and the researchers of the Nurses’ Health 
Study.

The analysis described in this article was funded by the American Petroleum Institute (https://www.api.org/) 
through a contract with Exponent, Inc. The analytical approach, conduct of the analyses, interpretation of the 
results, and conclusions drawn are exclusively the professional work product of the authors and are not necessarily 
those of the organizations that funded the research. The funders had no role in study design, data collection and 
analysis, decision to publish, or preparation of the manuscript, and did not review this article prior to its submission, 
although staff at the American Petroleum Institute reviewed a written report that described provisional findings.

References

Akaike H A new look at the statistical model identification. IEEE Transactions on Automatic Control 
1974;19(6):716–723.

Beelen R, Raaschou-Nielsen O, Stafoggia M, et al. Effects of long-term exposure to air pollution on 
natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project. 
Lancet 2014;383(9919):785–795. [PubMed: 24332274] 

Boffetta P, La Vecchia C, Moolgavkar S. Chronic Effects of Air Pollution are Probably Overestimated. 
Risk Anal 2015;35(5):766–769. [PubMed: 25676287] 

Brown CC, Chu KC. Implications of the multistage theory of carcinogenesis applied to occupational 
arsenic exposure. J Natl Cancer Inst 1983;70(3):455–463. [PubMed: 6572736] 

Burns DM, Shanks TG, Choi W, Thun MJ, Heath CW Jr., Garfinkel L, 1997 Chapter 3. The American 
Cancer Society Cancer Prevention Study I: 12-year followup of 1 million men and women in: Burns 
DM, Garfinkel L, Samet JM (Eds.), Monograph 8: Changes in Cigarette-Related Disease Risks and 
Their Implications for Prevention and Control. U.S. Department of Health and Human Services, 
Public Health Service, National Institutes of Health, Bethesda, MD, p. 602.

Chiuve SE, Fung TT, Rimm EB, et al. Alternative dietary indices both strongly predict risk of chronic 
disease. J Nutr 2012;142(6):1009–1018. [PubMed: 22513989] 

Cox DR. Regression models and life-tables. J Roy Stat Soc Ser B 1972;34(2):187–220.

Day NE, Brown CC. Multistage models and primary prevention of cancer. J Natl Cancer Inst 
1980;64(4):977–989. [PubMed: 6929006] 

Chang et al. Page 12

Crit Rev Toxicol. Author manuscript; available in PMC 2021 March 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.cancer.gov/
https://www.api.org/


Dockery DW, Pope CA 3rd, Xu X, et al. An association between air pollution and mortality in six U.S. 
cities. N Engl J Med 1993;329(24):1753–1759. [PubMed: 8179653] 

Hazelton WD, Clements MS, Moolgavkar SH. Multistage carcinogenesis and lung cancer mortality in 
three cohorts. Cancer Epidemiol Biomarkers Prev 2005;14(5):1171–1181. [PubMed: 15894668] 

Hernán MA. The hazards of hazard ratios. Epidemiology 2010;21(1):13–15. [PubMed: 20010207] 

Holford TR, Levy DT, McKay LA, et al. Patterns of birth cohort-specific smoking histories, 1965–
2009. Am J Prev Med 2014b;46(2):e31–37. [PubMed: 24439359] 

Holford TR, Meza R, Warner KE, et al. Tobacco control and the reduction in smoking-related 
premature deaths in the United States, 1964–2012. JAMA 2014a;311(2):164–171. [PubMed: 
24399555] 

IARC. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Volume 109: Outdoor 
Air Pollution. International Agency for Research on Cancer (IARC), Lyon, France, 2016.

IMPROVE. Interagency Monitoring of Protected Visual Environments. Available: http://
vista.cira.colostate.edu/Improve/. Accessed: 29 January 2020 2019.

Kalbfleisch JD, Prentice RL. The Statistical Analysis of Failure Time Data 2nd Edition, in: Shewhart 
WA, Wilks SS (Eds.), Wiley Series in Probability and Statistics. John Wiley & Sons, Inc., 
Hoboken, New Jersey, 2002.

Knoke JD, Shanks TG, Vaughn JW, Thun MJ, Burns DM. Lung cancer mortality is related to age in 
addition to duration and intensity of cigarette smoking: an analysis of CPS-I data. Cancer 
Epidemiol Biomarkers Prev 2004;13(6):949–957. [PubMed: 15184251] 

Laden F, Schwartz J, Speizer FE, Dockery DW. Reduction in fine particulate air pollution and 
mortality: Extended follow-up of the Harvard Six Cities study. Am J Respir Crit Care Med 
2006;173(6):667–672. [PubMed: 16424447] 

Lubin JH, Caporaso N, Wichmann HE, Schaffrath-Rosario A, Alavanja MC. Cigarette smoking and 
lung cancer: modeling effect modification of total exposure and intensity. Epidemiology 
2007;18(5):639–648. [PubMed: 17700253] 

Lumley T, Sheppard L. Assessing seasonal confounding and model selection bias in air pollution 
epidemiology using positive and negative control analyses. Environmetrics 2000;11(6):705–717.

Meza R, Hazelton WD, Colditz GA, Moolgavkar SH. Analysis of lung cancer incidence in the Nurses’ 
Health and the Health Professionals’ Follow-Up Studies using a multistage carcinogenesis model. 
Cancer Causes Control 2008;19(3):317–328. [PubMed: 18058248] 

Moolgavkar S, Luebeck G. In press Multistage carcinogenesis: a unified framework for cancer data 
analysis In: Almudevar AL, Hall WJ, Oakes D, editors. Statistical Modeling for Biological 
Systems. Basel, Switzerland: Springer International Publishing, 115–133.

Moolgavkar SH, Chang ET, Luebeck G, et al. Diesel engine exhaust and lung cancer mortality: time-
related factors in exposure and risk. Risk Anal 2015;35(4):663–675. [PubMed: 25683254] 

Moolgavkar SH, Chang ET, Watson HN, Lau EC. An Assessment of the Cox Proportional Hazards 
Regression Model for Epidemiologic Studies. Risk Anal 2018;38(4):777–794. [PubMed: 
29168991] 

Moolgavkar SH, Holford TR, Levy DT, et al. Impact of reduced tobacco smoking on lung cancer 
mortality in the United States during 1975–2000. J Natl Cancer Inst 2012;104(7):541–548. 
[PubMed: 22423009] 

National Cancer Institute. CISNET Publication Support and Modeling Resources. https://
resources.cisnet.cancer.gov/projects/. Accessed 29 January 2020 2018.

Peto J That the effects of smoking should be measured in pack-years: misconceptions 4. Br J Cancer 
2012;107(3):406–407. [PubMed: 22828655] 

Peto R, 1977 Epidemiology, multistage models, and short-term mutagenicity tests, in: Hiatt HH, 
Watson JD, Winsten JA (Eds.), Origins of Human Cancer. Book C: Human Risk Assessment. Cold 
Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 1403–1428.

Pope CA 3rd, Burnett RT, Krewski D, et al. Cardiovascular mortality and exposure to airborne fine 
particulate matter and cigarette smoke: shape of the exposure-response relationship. Circulation 
2009;120(11):941–948. [PubMed: 19720932] 

Pope CA 3rd, Burnett RT, Thun MJ, et al. Lung cancer, cardiopulmonary mortality, and long-term 
exposure to fine particulate air pollution. JAMA 2002;287(9):1132–1141. [PubMed: 11879110] 

Chang et al. Page 13

Crit Rev Toxicol. Author manuscript; available in PMC 2021 March 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://vista.cira.colostate.edu/Improve/
http://vista.cira.colostate.edu/Improve/
https://resources.cisnet.cancer.gov/projects/
https://resources.cisnet.cancer.gov/projects/


Puett RC, Hart JE, Yanosky JD, et al. Particulate matter air pollution exposure, distance to road, and 
incident lung cancer in the Nurses’ Health Study cohort. Environ Health Perspect 
2014;122(9):926–932. [PubMed: 24911062] 

Richardson DB. Lung cancer in chrysotile asbestos workers: analyses based on the two-stage clonal 
expansion model. Cancer Causes Control 2009;20(6):917–923. [PubMed: 19184474] 

Spengler JD, Koutrakis P, Dockery DW, Raizenne M, Speizer FE. Health effects of acid aerosols on 
North American children: air pollution exposures. Environ Health Perspect 1996;104(5):492–499. 
[PubMed: 8743436] 

Suh HH, Nishioka Y, Allen GA, Koutrakis P, Burton RM. The metropolitan acid aerosol 
characterization study: results from the summer 1994 Washington, D.C. field study. Environ 
Health Perspect 1997;105(8):826–834. [PubMed: 9347898] 

Tammemagi CM, Pinsky PF, Caporaso NE, et al. Lung cancer risk prediction: Prostate, Lung, 
Colorectal And Ovarian Cancer Screening Trial models and validation. J Natl Cancer Inst 
2011;103(13):1058–1068. [PubMed: 21606442] 

Thomas DC. Models for exposure-time-response relationships with applications to cancer 
epidemiology. Annu Rev Public Health 1988;9(451–482. [PubMed: 3288239] 

Thomas DC, 2009 Statistical Models in Environmental Epidemiology. Oxford University Press, 
Oxford, UK.

Thomas DC. Invited commentary: is it time to retire the “pack-years” variable? Maybe not! Am J 
Epidemiol 2014;179(3):299–302. [PubMed: 24355333] 

U.S. EPA. Reviewing National Ambient Air Quality Standards (NAAQS): Scientific and Technical 
Information. Available: https://www.epa.gov/naaqs. Last updated: 16 October 2017 2017.

U.S. EPA. Air Quality System (AQS). Available: https://www.epa.gov/aqs. Last updated: 2018 
November 2 2018.

Vlaanderen J, Portengen L, Schuz J, et al. Effect Modification of the Association of Cumulative 
Exposure and Cancer Risk by Intensity of Exposure and Time Since Exposure Cessation: A 
Flexible Method Applied to Cigarette Smoking and Lung Cancer in the SYNERGY Study. Am J 
Epidemiol 2014;179(3):290–298. [PubMed: 24355332] 

Weuve J, Puett RC, Schwartz J, Yanosky JD, Laden F, Grodstein F. Exposure to particulate air 
pollution and cognitive decline in older women. Arch Intern Med 2012;172(3):219–227. [PubMed: 
22332151] 

Yanosky JD, Paciorek CJ, Laden F, et al. Spatio-temporal modeling of particulate air pollution in the 
conterminous United States using geographic and meteorological predictors. Environ Health 
2014;13(63. [PubMed: 25097007] 

Yanosky JD, Paciorek CJ, Schwartz J, Laden F, Puett R, Suh HH. Spatio-temporal modeling of chronic 
PM10 exposure for the Nurses’ Health Study. Atmos Environ (1994) 2008;42(18):4047–4062. 
[PubMed: 19584946] 

Yanosky JD, Paciorek CJ, Suh HH. Predicting chronic fine and coarse particulate exposures using 
spatiotemporal models for the Northeastern and Midwestern United States. Environ Health 
Perspect 2009;117(4):522–529. [PubMed: 19440489] 

Zeger SL, Dominici F, McDermott A, Samet JM. Mortality in the Medicare population and chronic 
exposure to fine particulate air pollution in urban centers (2000–2005). Environ Health Perspect 
2008;116(12):1614–1619. [PubMed: 19079710] 

Chang et al. Page 14

Crit Rev Toxicol. Author manuscript; available in PMC 2021 March 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.epa.gov/naaqs
https://www.epa.gov/aqs


Chang et al. Page 15

Crit Rev Toxicol. Author manuscript; available in PMC 2021 March 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Chang et al. Page 16

Crit Rev Toxicol. Author manuscript; available in PMC 2021 March 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figures 1A–C. 
Age-related modification of cumulative pack-years in (A) the full cohort, (B) former 

smokers, and (C) current smokers, using fully adjusted models. Lines illustrate the hazard 

ratio per 10 pack-years of smoking, and shading illustrates 95% confidence intervals around 

the hazard ratio. Red denotes models including PM2.5 and cumulative pack-years only (with 

age interactions), and blue denotes models including PM2.5, cumulative pack-years (with 

age interactions), years of smoking, and months since cessation.
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