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Abstract

Adverse life events can lead to stable changes in brain structure and function and are considered 

primary sources of risk for post-traumatic stress disorder, depression, and other neuropsychiatric 

disorders. However, most individuals do not develop these conditions following exposure to 

traumatic experiences, and research efforts have identified a number of experiential factors 

associated with an individual’s ability to withstand, adapt to, and facilitate recovery from 

adversity. While multiple animal models of stress resilience exist, so that the detailed biological 

mechanisms can be explored, studies have been disproportionately conducted in male subjects 

even though the prevalence and presentation of stress-linked disorders differ between sexes. This 

review focuses on 1) the mechanisms by which experiential factors (behavioral control over a 

stressor, exercise) reduce the impact of adverse events as studied in males; 2) whether other 

manipulations (ketamine) that buffer against stress-induced sequelae engage the same circuit 

features; and 3) whether these processes operate similarly in females. We argue that investigation 

of experiential factors that produce resistance/resilience rather than vulnerability to adversity will 

generate a unique set of biological mechanisms that potentially underlie sex differences in mood 

disorders.
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Women are at a higher risk for certain stress-linked psychiatric disorders and accounting for sex as 

a biological variable in preclinical research is fundamental for developing effective therapies for 

both men and women. We review the neural and behavioral sequelae of stress-buffering factors in 

each of the sexes.
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Introduction

Exposure to adverse events is a risk factor for a variety of negative health outcomes 

including the development of psychiatric disorders such as depression, generalized anxiety, 

and posttraumatic stress disorder. Although polygenic factors certainly play a role, many 

resilience studies have focused on factors that change how an individual experiences trauma 

(e.g., coping strategies, pharmaceuticals, physical health, safety learning). These factors are 

associated with positive mental health outcomes and are modifiable through experience, 

which can be leveraged by interventions designed to inculcate resilience to adversity. 

Unfortunately, treatments for stress-related disorders are not always effective and this is may 

be due to different responses to resilience factors including differences that arise from sex 

(Breslau, 2009). Indeed, many psychiatric disorders that have stress as a contributing factor 

are sex-biased in their prevalence and/or presentation. Women are over twice as likely to 

develop mood and anxiety disorders whereas men are nearly three times as likely to develop 

a substance use disorder (Steel et al., 2014). Due to the limited use of females in preclinical 

research (Beery & Zucker, 2011), it is not understood how the neural circuits underlying 

resilience factors compare between the sexes and whether they produce similar or different 

behavioral outcomes. The purpose of this review is to provide a current summary of the 

neural mechanisms and behavioral phenomena induced by stress-protective factors in each 

of the sexes and to identify future research avenues.
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Psychological variables such as a perceived ability to cope with or control a stressor can 

enhance long term psychosocial health and wellbeing (Kohn et al.,1994; Yi et al., 2005; 

Dijkstra et al., 2016). Similarly, physical health through aerobic exercise pre or post trauma 

can reduce depression ratings and relapse to the same degree as many current 

pharmacotherapies (Blumenthal et al., 2012). Whether these protective factors lead to a 

resilient phenotype that differs between men and women is not fully understood. There is 

evidence that men and women cope with adversity differently, which may be due to the fact 

that certain resilience factors are more effective for one sex than the other (Hamilton & 

Fagot, 1998; Tamres et al., 2002). Current research efforts are directed at identifying the 

shared and sex-specific features, and corresponding neural processes, of experiential 

resilience factors in order to maximize the applicability of preventative and durable 
treatment strategies for stress-linked disorders.

Animal models of stress have allowed us to study possible neural mechanisms driving the 

behavioral sequelae of stress exposure. One approach to studying stress vulnerability/

resistance is to examine natural variation in the stress response. For example, an 

experimental manipulation (e.g. social defeat) will cause a measurable outcome (e.g. social 

interaction) that follows some distribution pattern. A criterion set by the experimenter can 

then be used to separate these groups (stress susceptible vs. stress resilient) in order to 

identify the neural circuit, endocrine, and molecular mediators that underlie the difference in 

response.

For some outcome measures, like freezing in fear conditioning/extinction tasks, male and 

female rodent models have been reported to produce a similar distribution pattern, termed 

sex convergence (Iwasaki-Sekino et al., 2009). However, others report sex divergence in 

which freezing is greater in males than in females (Kudielka et al., 2005; Amat et al., 2006; 

Baratta et al., 2008). Indeed, sex divergence is most commonly seen when the behavioral 

outcome measure involves ambulation, such as in the sidman avoidance, open field, and 

emergence (sheltered to exposed) tasks (Archer, 1975) in which female rodents are more 

active in avoiding threat to a greater degree than males. Higher ambulatory activity in 

females is often interpreted as a blunted fear response, despite the possibility that this is a 

female specific fear behavior (Gruene et al., 2015). Divergence in the opposite direction has 

also been reported. In response to chronic variable stress, females show stress induced 

sequelae in a vast array of behavioral tests in which males do not (Hodes et al., 2015). In 

addition, females exhibit a greater physiological response to footshock and handling. Given 

that male and female responses to stress in rodents do not necessarily parallel the sex 

differences in susceptibility to stress related disorders, future studies would benefit from a 

better understanding of sex specific behavioral responses to stress and the experiential 

factors that influence these responses.

An alternative approach to studying the neural mechanisms underlying resistance/resilience 

to stress is to manipulate experiential factors that are associated with resilience in humans. 

Manipulating the function of neural elements (gene to circuit) during an event known to 

produce resilience has helped to identify resilience mechanisms, with the majority of work 

conducted in males. We are only beginning to understand how stress resilience/resistance 

models work in females and how the underlying elements compare to males. Many 
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experiential factors either occurring before, during, or after stress have been identified as 

stress protective. Here, we will focus on three that have been reported to be protective or 

predict protection from stress outcomes in humans: the use of coping strategies, ketamine 

and physical exercise. In preclinical models these factors are protective, provide enduring 

protection to a diverse set of stressors and engage distinct neural mechanisms.

Coping with stress

In humans, many of the factors associated with the ability to withstand (resistance) or 

facilitate recovery (resilience) from the impact of an adverse life event revolve around 

coping factors. Strategies aimed at eliminating or blunting the cause of the stressor 

(problem-focused coping) or reducing the emotional impact of the stressor (emotion-focused 

coping) are viewed as key processes in exerting actual or perceived control over negative 

circumstances in an individual’s life (Billings & Moos, 1981; Folkman et al., 1984). 

Behavioral control over some aspect of the stressor (Pearlin & Carmi, 1978; Baker & 

Berenbaum, 2007; Diehl & Hay, 2010) represents one of the few aspects of coping that can 

be experimentally manipulated in animals in order to better understand how resilience is 

mediated at a neural level.

Behavioral control has been studied in a variety of species, but the rat has been most 

frequent. Here, rats that receive physically identical stressors are compared, with one group 

having behavioral control over the termination of the stressor, and another group having no 

control. In order to isolate the variable of control, each subject is placed into small boxes 

with a wheel mounted on the front wall. The rat’s tail extends from the back of the box and 

is affixed to electrodes. For one group (ES; escapable stress), subjects receive a series of 

tailshocks each of which is terminated when the rat performs a given instrumental escape 

response (turning the wheel). Thus, ES subjects can exert control over one aspect of the 

stressor - the duration of each of the shocks. Each member of a second group (IS; 

inescapable stress) is paired with one from the escape group and simply receives tailshocks 

of the same duration as determined by its ES partner. For the IS subject, turning the wheel 

has no consequence. A third subject receives no tailshock, and serves as a no stress control 

group. Tailshock is used in rat studies to ensure that subjects with and without control 

receive physically identical shocks (number, intensity, duration, temporal pattern, etc.), a 

necessary requirement for isolating the impact of controllability. It may be the case that 

behavioral control would mitigate the outcome of stressors other than tailshock (e.g. social 

defeat, restraint), but since controllability can’t be readily manipulated in these paradigms its 

potential mitigating role cannot be determined.

Numerous behavioral changes are produced in subjects exposed to IS but do not occur if the 

subject is allowed to exert behavioral control over the stressor (ES). Behavioral changes 

(often termed “learned helplessness effects”) that follow IS, but not ES, include impaired 

shuttle box escape behavior, increased social avoidance, neophobia, potentiated morphine 

conditioned place preference, reduced aggression, resistance to fear extinction, and 

exaggerated shock-elicited freezing when tested in a novel environment 24 hr after stress 

treatment (Weiss, 1968; Maier & Watkins, 1998; Maier & Watkins 2005; Baratta et al., 
2007; Rozeske et al., 2011). It is important to note that behavioral control doesn’t block or 
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reduce all of the neurochemical or behavioral outcomes of IS. For instance, tail shock leads 

to robust changes in autonomic (Thompson et al., 2013), endocrine (Maier et al., 1986; 

Helmreich et al., 1999; Helmreich et al., 2012), brain immune (Frank et al., 2007), neural 

(McDevitt et al., 2009) and behavioral (Woodmansee et al., 1993) endpoints that are 

insensitive to control. Thus, it’s not the case that uncontrollable stress is simply more 

“aversive” or “potent” than controllable stress.

Additionally, the stress-buffering effects of ES extend beyond the stressor being controlled. 

That is, an initial experience with behavioral control buffers against the neural and 

behavioral sequelae of future inescapable stressors occurring much later (enduring) and in a 

different apparatus/environment from the original control experience (transsituational; 

Williams & Maier, 1977; Amat et al., 2006; Baratta et al., 2008; Amat et al., 2010). For 

example, Amat et al. (2006) showed that a previous experience of ES blocked the typical 

neurochemical and behavioral consequences (shuttle box escape interference and 

exaggerated shock-elicited freezing) produced by IS one week later, a process termed 

“behavioral immunization”. Prior exposure to IS had no effect on later IS, suggesting that 

the prior experience of control over shock, rather than shock per se, is the active ingredient 

in the development of resilience. It is doubtful that ES buffers against all future adversity, yet 

the boundary conditions of its protection remain largely unexplored. Of note, the proactive 

effects of ES extend to future uncontrollable stressors that don’t involve shock, namely 

social defeat. Similar to IS, acute social defeat leads to interference with shuttle box escape 

and increases social avoidance. ES occurring 7 days prior to social defeat blocked these 

social defeat-induced behavioral outcomes (Amat et al., 2010).

The initial work investigating the neural mediation of controllability effects focused on the 

mechanisms that produced the behavioral sequelae following uncontrollable stress. This has 

been reviewed in detail elsewhere (Maier & Watkins, 1998) and it involves a neural circuit 

that involves intense activation of serotonergic (5-HT) neurons in the dorsal raphe nucleus 

(DRN) which is critical for the production of IS-induced behavioral effects. The intense 

activation of DRN 5-HT neurons by uncontrollable stressors leads to a persistent 

sensitization of these neurons such that later testing procedures (footshock in the shuttlebox, 

presence of a juvenile, etc.) produce an exaggerated release of 5-HT into DRN projection 

regions that are the proximal mediators of the behaviors (Amat et al., 1998; Grahn et al., 
1999; Bland et al., 2003; Strong et al., 2011). Activation of the DRN is both necessary and 

sufficient for producing many of the behaviors that follow IS.

Not surprisingly, behavioral control over shock does not lead to potent activation of DRN 5-

HT and its exaggerated release in target regions of the DRN (Amat et al., 1998; Maswood et 
al., 1998; Strong et al., 2011). Rather, the experience of control engages the prelimbic (PL) 

region of the mPFC and provides top-down inhibition over DRN 5-HT activity (Amat et al., 
2005), thereby preventing the shock-induced behavioral changes. This inhibition occurs 

because glutamatergic output neurons from the PL preferentially synapse onto GABAergic 

interneurons within the DRN (Jankowski & Sesack, 2004) which provide monosynaptic 

inhibition over 5-HT activity (Challis et al., 2014). Electrical stimulation of the mPFC 

(Hajos et al., 1998; Varga et al., 2001) and pathway-specific photostimulation of DRN-

projecting mPFC neurons (Challis et al., 2014) both lead to DRN 5-HT inhibition through a 

Fallon et al. Page 5

Eur J Neurosci. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



GABAergic mechanism. In contrast, IS does not engage the PL projection to the DRN and 

pharmacological inhibition of the PL has no impact on the neurochemical and behavioral 

outcomes of IS (Amat et al., 2005; Baratta et al., 2009). These findings underscore the view 

that resilience mechanisms are not simply the absence of changes that drive vulnerability; 

rather, it engages a distinct set of neural mechanisms.

Engagement of the PL by behavioral control is also required for its enduring stress-buffering 

effects against future adverse events, a protection that lasts up to two months (Amat et al., 
2006; Kubala et al., 2012). Efforts directed at understanding how an initial experience of 

coping with stress produces resistance to uncontrollable stressors experienced at a much 

later point in time have focused on N-methyl-D-aspartate receptor (NMDAR)-dependent 

processes. Activation of the extracellular signal-regulated kinase (ERK) cascade, an essential 

component of NMDAR signaling, is involved in the encoding and consolidation of an 

experience that leads to long-term behavioral change (Malenka et al., 1993; Thomas & 

Huganir, 2004; Morris, 2013). Interestingly, controllable stress increases phosphorylated 

ERK1 and ERK2 within the PL and blockade of NMDAR and ERK-dependent signaling in 

the PL during the experience of control eliminates behavioral immunization (Christianson et 
al., 2014). Although synaptic plasticity in the PL has never been directly assessed, 

behavioral control induces PL layer 5 pyramidal cell excitability by increasing intrinsic 

membrane excitability (Varela et al., 2012).

The reviewed work above clearly demonstrates that the PL regulates the DRN 5-HT 

response to shock in the presence of control, but is the mPFC also involved in the 

acquisition/detection of the instrumental wheel-turn controlling response? In the appetitive 

domain, there are two distinct instrumental learning systems with largely nonoverlapping 

circuitries mediating the acquisition and performance of instrumental action. One system 

termed “action-outcome” is mediated by a corticostriatal circuit involving the dorsal medial 

striatum (DMS) and the PL. The action-outcome system records the association between the 

action (wheel-turn) and the outcome (stress termination) and is sensitive to contingency (e.g. 

the probability of the outcome given the response integrated with the probability of the 

outcome given no response). The other system termed “habit” is mediated by the 

dorsolateral striatum (DLS) and sensorimotor cortex and records stimulus response 

associations in a contingency-independent manor (Yin et al., 2005; O’Hare et al., 2016). 

Recent data demonstrate that both the acute and long-term protective effects of behavioral 

control require the PL and the DMS (action-outcome circuit), but not the DLS (habit circuit; 

Amat et al., 2014).

These aforementioned data suggest that the PL is important for both the detection of the 

instrumental controlling response and regulation of the DRN, yet whether these processes 

occur through the same or different PL ensembles is unclear. The existing data are sparse, 

but it appears that the PL pyramidal neurons that project to the DMS and the PL neurons that 

project to the DMS are intermixed within layer 5 and are largely non-overlapping (Baratta & 

Maier, 2017). Thus, it appears that embedded within the PL are two separable ensembles 

associated with two distinct features of behavioral control: its ‘detection’ the subsequent 

‘use’ of that information to modulate downstream structures (Figure 1).
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Recent mandates introduced by the National Institutes of Health and the Canadian Institutes 

of Health Research require investigators to examine sex effects in preclincal research in 

order to address health disparities (Clayton & Collins, 2014). The work described above was 

conducted entirely in male rodents, and prior to implementation of these policies, it was 

largely unknown whether behavioral control operates in females as it does in males, and if 

so, whether the same circuit mechanisms are involved. Few studies have manipulated 

controllability in females, and interestingly, control was without an effect (Dalla et al., 

2008). There are a number of published female studies that utilize the term “learned 

helplessness”, however the term is often used in the literature in a way that differs from its 

definition (Maier & Seligman, 1976). Learned helplessness refers to the behavioral and 

neurochemical outcomes of the stressor that depend on the uncontrollability of the stressor. 

That is, to qualify as a learned helplessness effect a behavioral change (e.g., poor escape 

behavior) must follow exposure to IS, but not physically identical ES. This is what 

distinguishes a helplessness effect from a generic stress effect, and without this distinction, 

all effects of a stressor would be labeled as a learned helplessness effect. Indeed, it has been 

shown that not all outcomes that follow an uncontrollable stressor are learned helplessness 

effects. For example, IS produces reduced daily activity in running wheels, but ES produces 

the same reduction (Woodmansee et al., 1993) and so this reduction in activity is not 

produced by learned helplessness but is instead a simple stress effect. Prior female learned 

helplessness studies have not manipulated the controllability of the stressor (e.g., Jenkins et 
al., 2001), and when they have, there has often been no difference between the 

uncontrollable stress group and no stress controls. In either case, the impact of behavioral 

control cannot be determined.

Baratta et al. (2018) investigated the impact of controllability in female rats using the 

identical conditions that produce the differential behavioral consequences observed in male 

rats. In sharp contrast to what has previously been observed in males, the beneficial effects 

of behavioral control were absent in females, that is, both female ES and IS groups show 

identical levels of stress-induced sequelae when compared to no stress controls. ES and IS 

females exhibited greater c-Fos activation in DRN 5-HT expressing neurons, fail to escape 

in a shuttle box, and reduced juvenile social exploration (JSE; Baratta et al., 2018). That is, 

the controllability of the stressor does not determine resilience in females. Furthermore, c-

Fos expression is absent in DRN-projecting PL neurons. Pharmacological activation of the 

PL reverses this phenotype, effectively blocking the effects of tail shock in uncontrollable 

and controllable stress females. These data suggest that mPFC mediated regulation of DRN 

5-HT is not engaged by control in female subjects. It is currently unknown whether the lack 

of protection is due to sex differences in the detection of behavioral control or the use of 

control information to initiate regulation of the DRN.

The failure of control to provide protection in females is striking given that females rapidly 

acquire the wheel-turn controlling response at a rate comparable to males. As mentioned 

above, there are two separable systems involved in the encoding of instrumental responses 

and one untested possibility is that females acquire the escape response with the PL-

independent habit system rather than the corticostriatal action-outcome system. Elevated 

catecholamine levels in the mPFC, such as those that may occur during stress exposure, can 

disrupt prefrontal top-down function (Arnsten, 2009) as well as strengthen habit circuit 
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systems (Fournier et al., 2017). Stress-evoked release of catecholamines have been reported 

to be greater in females (Mitsushima et al., 2006; Staiti et al., 2011) across several brain 

regions. Moreover, stress-induced corticosterone levels, which have been reported to be 

higher in females (Heck & Handa, 2018), can shift the acquisition of instrumental learning 

to the habit system (Schwabe & Wolf, 2011). Thus, one possibility is that stress-evoked 

catecholamine release in the mPFC biases females to acquire the wheel-turn controlling 

response with the habit learning system, evading engagement of the PL and top-down 

regulation of the DRN during tail shock.

The absence of a modulating effect of control in female ES subjects also extends to 

behavioral immunization. Baratta et al. (2019) investigated immunization effects by giving 

male and female rats ES, IS, and no stress home cage (HC) one week prior to an 

uncontrollable stressor. As is typical, ES males were resistant to the behavioral outcomes of 

the later experienced uncontrollable stressor, whereas ES females were not. In addition, 

structural plasticity in the PL-to-DRN pathway following ES and IS differed between the 

sexes. In males, IS lead to non-pathway-specific alterations in spine enlargement, while ES 

elicited spine changes only in DRN-projecting PL neurons. Thus, structural plasticity in the 

PL-to-DRN pathway following ES is consistent with prior work implicating the involvement 

of this pathway in the long-term protective effects of controllable stress (Amat et al., 2006; 

Varela et al., 2012; Christianson et al., 2014). In females, the pattern of spine changes 

differed from males. ES-elicited broad, non-specific spine changes in the mPFC while IS led 

to only minor alterations. Whether these sex-specific patterns of structural plasticity are 

related to the differential behavioral outcomes remains to be determined.

Stressor controllability produces sex-divergent behaviors in rodents; males given a 

controlling instrumental response over stress termination are resistant to the behavioral 

outcomes of that stressor, whereas in corresponding females the controlling response is 

without benefit. Future work dissecting the neural circuit components that respond to coping 

with stress, and how they differ between the sexes, may serve as an important model for 

understanding sex differences in susceptibility to stress-related disorders.

Stress-buffering and restorative effects of subanesthetic ketamine

Depression is estimated to be among the most burdensome disorders worldwide affecting 

more than 300 million people (Friedrich, 2017). Current pharmacotherapies for moderate 

and severe depressive disorders are only partially effective, at best, and treatment-resistant 

individuals require alternative therapeutic approaches with novel mechanisms of action 

(Wiedemann, 2011). Over the last two decades, clinical studies have found that acute 

treatment with a sub-anesthetic dose of the NMDAR antagonist, ketamine, produces rapid 

(i.e. within hours) and sustained (up to two weeks) antidepressant effects in individuals with 

treatment-resistant depression (Berman et al., 2000; Zarate et al., 2006; Price et al., 2009; 

Zarate et al., 2012; Murrough et al., 2013; Lai et al., 2014). The antidepressant effects of 

ketamine are observed similarly in both men and women (Carrier et al., 2013; Saland et al., 
2017; Freeman et al., 2019), though a few report the effects last longer in men (Coyle et al., 
2015; Rybakowski et al., 2017). The mechanisms underlying the antidepressant effects of 
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ketamine appear to go beyond NMDA antagonism (Newport et al., 2015) and preclinical 

studies suggest they are also sex-differentiated.

Although ketamine is the prototype for a new generation of antidepressants for treatment-

resistant depressive patients, ketamine has properties that limit its utility as a therapeutic. 

Ketamine has a potential for abuse and can be accompanied by dissociative and 

psychotomimetic side effects. This has led to efforts directed at testing and developing 

structural analogs of ketamine with a safer profile (Lener et al., 2017) and to understand the 

mechanism(s) by which ketamine is effective. In preclinical studies, which have mostly been 

conducted in males, low dose ketamine in male rats and mice facilitates fear extinction 

(Girgenti et al., 2017) and blunts the behavioral outcomes of stressor exposure (e.g. chronic 

corticosterone administration, inescapable tail shock, chronic mild stress) when administered 

prior to (Maeng et al., 2008; Dolzani et al., 2018) or after stress treatment (Li et al., 2011). 

The effects of ketamine are sufficiently diverse, buffering against and reversing stress-

induced changes in forced swim, tail suspension, juvenile social investigation, shuttle box 

escape, and elevated plus maze (Armario et al., 1991; Maeng et al., 2008; Engin et al., 2009; 

Autry et al., 2011; Dolzani et al., 2018).

Low dose ketamine also provides stress-protection in female rodents, and the effective dose 

and time course of its stress-reducing effects appear to be sex divergent (Carrier & Kabbaj, 

2013; Franceschelli et al., 2015; Dossat et al., 2018). In female rats, systemic administration 

of low dose (2.5 mg/kg) ketamine prior to testing (30 min) reduces time spent immobile in a 

forced swim test and decreases time to feed in a novelty suppressed feeding task. Males 

require at a higher dose (5 mg/kg) for similar effects (Carrier & Kabbaj, 2013). Further, 

ketamine delivered following 10 days of chronic mild stress can ameliorate stressed-induced 

behaviors for up to 24 hrs in females and 7 days for males (Franceschelli et al., 2016). 

Notably, some human studies have also reported that the effects of ketamine last longer in 

males (Coyle & Laws, 2015; Rybakowski et al., 2017). The stress-buffering effects of low 

dose ketamine are diminished in ovariectomized females and restored upon estrogen and 

progesterone supplementation (Carrier & Kabbaj, 2013). This suggests that gonadal 

hormones may play an important role in ketmaine’s mechanism of action in females.

Ketamine has been shown to modulate neurochemical activity in the prefrontal cortex, with 

some effects comparable between the sexes, in both clinical and preclinical studies. 

Ketamine administration in men and women with or without major depressive disorder 

produces an increase in glutamate transmission in the mPFC (Abdallah et al., 2018). 

Similarly, in male rodents, systemic administration of ketamine stimulates the release of 

glutamate resulting from acute, transient inhibition of GABAergic activity (Duman et al., 
2019) and pharmacological inhibition of the mPFC prevents ketamine’s protective effects 

against stress (Amat et al., 2016). Interestingly, intra-mPFC administration of ketamine leads 

to dopamine release (Lorrain et al., 2003) and optogenetic inhibition of dopamine receptor 

1-expressing mPFC neurons eliminates the protective effects of ketamine in both male and 

female mice (Hare et al., 2019). Collectively, these data implicate the induction of 

dopaminergic and glutamatergic signaling in the prefrontal cortex for ketamine’s 

antidepressant effects.
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Behavioral sequelae induced by stress exposure are often associated with changes in 

structural plasticity, such as increased elimination or decreased formation of dendritic 

spines, across numerous brain regions (Moda-Sava et al., 2019). In both male and female 

naive rodents, low-dose ketamine can enhance synaptic plasticity and spine formation 

(Ruddy et al., 2015; Duman et al., 2016; Phoumthipphavong et al., 2016; Pryazhnikov et al., 
2018). At least in males, spine formation and stable maintenance is critical for ketamine’s 

stress-reducing effects. Using a novel photosensitive tool, activated synapse-targeting 

photoactivatable Rac1 (AS-PaRac1), Moda-Sava et al. (2019) demonstrated that spine 

development by ketamine is necessary for its long-lasting buffering effects on stress 

outcome. Synaptic remodeling appears to be a critical feature of ketamine’s ability to reverse 

the impact of stress. The mammalian target of rapamycin (mTOR) pathway, an important 

player in spine formation and maturation, is necessary for ketamine-induced increases in 

spine formation in the mPFC and it’s ability to blunt stress effects on forced swim, 

inescapable stress, and the novelty suppressed feeding test (Li et al., 2010). Interestingly, 

brain-derived neurotrophic factor (BDNF), but not mTOR, signaling is necessary for the 

acute antidepressant effects (Autry et al., 2011). These data suggest mTOR signaling and 

spine formation is most likely important for sustaining the protective effects of ketamine 

whereas other mechanisms may underlie the rapid protective effects.

The impact of ketamine on prefrontal structural plasticity may be sex-divergent (Table 1), 

particularly in the mPFC (Sarkar & Kabbaj, 2016). In males, ketamine increases prefrontal 

spine density and synaptic protein expression, which is not observed in females (Sarkar & 

Kabbaj, 2016). An increase in synaptic plasticity related proteins following ketamine 

administration is observed in males and only in females that are in diestrus 1 and proestrus 

(Dossat et al., 2018). Future work regarding the effects of ketamine on long-term changes in 

neuronal architecture and signaling would benefit from including both sexes and closely 

examining the effect of estrus cycle phase.

Nonetheless, activation of the PL-to-DRN pathway appears to be important for the long-term 

protective effects of ketamine in both males and females (Figure 1). Using an activity-

dependent marking system (robust activity marking system, RAM), Dolzani et al. (2018), 

demonstrated that ketamine administered induces activity in PL ensembles that are later 

reactivated during exposure to uncontrollable stress. In addition, inhibition of the PL-DRN 

pathway using a Cre-inducible inhibitory designer receptor activated by designer drugs 

(DREADDs) elminitates the protective effects of ketamine (Dolzani et al., 2018). These 

results suggest that ketamine alters the PL-to-DRN pathway in such a way that future 

uncontrollable stressors that normally don’t activate the PL-to-DRN pathway, now do so, 

leading to a blunting of the DRN 5-HT and preventing stress-induced behavioral sequelae. 

Whether this process involves stable spine changes, and whether it differs between the sexes, 

is unknown (Figure 1).

Exercise-induced stress resistance

Increasing physical activity, either before or after stressor exposure, is another way to reduce 

stress outcomes. Recent longitudinal studies following large numbers of subjects, for 

example, find strong associations between exercise and mental health (Chekroud et al., 
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2018; Harvey et al., 2018). Both of these studies indicate that outcomes are not influenced 

by exercise intensity, age or sex, and both report similar optimal durations of exercise of an 

hour or less. In fact, Harvey et al. (2018) report that only 60 min of exercise per week is 

associated with lower incidence of new-onset depression. In addition to these protective 

effects of exercise, exercise can reduce symptoms of existing stress-related disorders. 

Exercise, either alone or as an adjunct to conventional treatment strategies, can reduce 

symptoms of depression and anxiety in both males and females (King et al., 1991; 

Bartholomew & Linder 1998; Broocks et al., 1998; Blumenthal et al., 1999; Goodwin, 2003; 

De Moor et al., 2006; Blumenthal et al., 2007; Ströhle et al., 2007; Merom et al., 2008; 

Smits et al., 2008; Asmundson et al., 2013; Wegner et al., 2014). Exercise is also emerging 

as an effective strategy to overcome drug addiction in both males and females (Zhou et al., 
2016; Lynch et al., 2017). Some important themes emerging from these clinical studies are 

that maintaining regular exercise seems to be more effective than exercising at a high 

intensity, and exercise benefits both sexes.

Rodent models provide a useful tool to investigate features of, and mechanisms underlying, 

exercise-induced stress resilience (Greenwood, 2019b). Rats allowed voluntary access to 

running wheels demonstrate resilience against a variety of stressors, such as morphine 

withdrawal (Miladi-Gorji et al., 2012), maternal separation (Masrour et al., 2018), forced 

swimming (Duman et al., 2008), olfactory bulbectomy (Van Hoomissen et al., 2011), 

chronic mild stress (Solberg et al., 1999), and inescapable stress (Dishman et al., 1997c; 

Greenwood et al., 2003; Greenwood et al., 2007a). It is this latter stressor, inescapable stress, 

with which exercise-induced stress resilience has been most well characterized (Greenwood 

& Fleshner, 2008; Greenwood & Fleshner, 2011). Male rats allowed voluntary access to 

running wheels for six weeks prior to exposure to inescapable tail shock are protected from 

the shuttle box escape deficit (Greenwood et al., 2003), exaggerated freezing (Greenwood et 
al., 2003), social avoidance (Greenwood et al., 2012a), circadian disruption (Thompson et 
al., 2016), amnesia (Fleshner et al., 2014), and potentiation of the rewarding effects of 

morphine (Rozeske et al., 2011), typically produced by exposure to inescapable stress in 

sedentary rats. Although forced treadmill training generally fails to produce stress resilience, 

stress resilience can be produced by forced wheel running of a pattern similar to voluntary 

running (Greenwood et al., 2013). In humans, the intensity of exercise is not a key factor in 

maintaining mental health. Similarly in rats, the protective effects of wheel running against 

inescapable stress are seldom related to running distance (Greenwood et al., 2003; 

Greenwood et al., 2013). Rather, it is the duration of wheel access that appears to be a 

critical factor. In male rats, six weeks of wheel running enables stress resilience, but three 

weeks is insufficient (Greenwood et al., 2005a; Greenwood et al., 2005b). Stress resilience 

produced by six weeks of wheel running is not permanent, but does persist about 15 days 

following forced cessation of exercise (Greenwood et al., 2012a).

Although stress resilience produced by exercise has been well characterized, the above 

studies focus on the effects of exercise in male rodents. Much less is known about exercise-

induced stress resilience in females. Wheel running can decrease vulnerability to substance 

use disorders in both sexes (Zlebnik & Carroll, 2015; Lynch et al., 2017), with exercise 

appearing to benefit females more than males (Lynch et al., 2017). Similarly, four weeks of 

wheel running has been reported to reverse anxiety-like behavior following exposure to a 
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complex stressor in female rats (Robinson et al., 2019), but another study reported that 

wheel running reverses depression-like behavior produced by perinatal ethanol exposure in 

males only (Brocardo et al., 2012). These studies provide evidence that the stress-protective 

effects of exercise may be sex divergent.

One component of stress resilience is protection from fear relapse following fear extinction. 

In male rats, an acute bout of wheel running during (Mika et al., 2015) or immediately 

following (Siette et al., 2014; Tanner et al., 2018) fear extinction can enhance fear extinction 

retrieval and reduce relapse. This beneficial effect of exercise appears to be sex dependent. 

An acute bout of wheel running immediately after auditory fear extinction fails to enhance 

extinction retrieval or reduce relapse in female rats (Bouchet et al., 2017). However, many of 

the rats in this experiment were in the proestrus phase of the estrous cycle during fear 

extinction training. Estrogen levels are high during proestrus, and estrogen is known to 

support strong fear extinction memory relative to females in estrous phases with low levels 

of estrogen, such as metestrus (Velasco et al., 2019). In fact, females in the Bouchet et al. 
(2017) study exposed to fear extinction training during estrous phases with high estrogen 

were protected from fear renewal, one form of relapse. It is possible that exercise could not 

further enhance fear extinction in these females already benefiting from high levels of 

estrogen. Similarly, Jones et al. (2016) found that 2 days of wheel running was able to 

attenuate stress-induced corticosterone in ovariectomized female rats only if estrogen was 

replaced. Running actually potentiated corticosterone increases following stress in 

ovariectomized females in the absence of estrogen replacement (Jones et al., 2016). 

Together, these data indicate that the effects of exercise in females could depend on cycling 

ovarian hormones.

Clearly, more work needs to be done characterizing potential sex differences in exercise-

induced stress resilience in animal models. Based on the favorable results of clinical exercise 

studies that include female subjects, we expect that exercise can enable stress resilience in 

female rodents as it can in males. Because exercise-induced stress resilience has been well 

characterized in males using the inescapable stress model, we set out to determine if wheel 

running could prevent the behavioral consequences of inescapable stress in females. We 

found that adult, female Sprague Dawley rats allowed access to running wheels for six 

weeks are indeed protected from both the exaggerated fear and reduction in JSE produced by 

IS (Tanner et al., 2019). Although males were not included in this experiment, the magnitude 

of the protective effect produced by wheel running in females is similar to that of males. 

Exposure to inescapable stress produces a large (between 170 – 250% above control levels) 

increase in shock-elicited freezing in both males and females (Greenwood et al., 2013; 

Baratta et al., 2018; Tanner et al., 2019). In contrast, levels of shock-elicited freezing in male 

and female runners exposed to inescapable stress have been reported to be 97.3 +/− 19.7 % 

(Greenwood et al., 2013) and 94.2 +/− 15.7 % (Tanner et al., 2019) of the freezing levels 

observed in non-stressed male and female runners, respectively (t-test between males and 

females: p > 0.05). Similarly, exposure to inescapable stress reduces exploration during a 3 

min JSE test to approximately 75% of the levels displayed by non-stressed male and female 

rats (Baratta et al., 2018; Greenwood et al., 2012a; Tanner et al., 2019), but exercise 

maintains social exploration after stress to 113.7 +/− 5.6 % (Greenwood et al., 2012a) and 
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92.3 +/− 8.9 % (Tanner et al., 2019) of non-stressed male and female runners, respectively 

(t-test between males and females: p > 0.05).

As in prior work in males, the distance run in females did not influence the strength of the 

stress-protective effect of exercise in females, despite the fact that female rats run about 

twice the nighty distance as males (Tanner et al., 2019). Since the duration of wheel running 

is an important factor in determining exercise-induced stress resilience in males, it is critical 

to determine if similar durations of wheel running are required to enable stress resilience in 

females. In male rats, six weeks of wheel running prevents and reverses the behavioral 

consequences of inescapable stress, while three weeks of running is unable to produce these 

stress resilience effects (Greenwood et al., 2005a; Greenwood et al., 2007a). It is unknown if 

three weeks of wheel running is sufficient to protect females from the negative outcomes of 

inescapable stress. Therefore, we sought to determine the effect of three weeks of prior 

voluntary wheel running on the behavioral outcomes of inescapable stress in females. Adult, 

female Sprague Dawley rats were randomly assigned to either voluntary wheel running 

(“run”) or sedentary conditions. Run rats were given access to unlocked running wheels for 

three weeks, while the wheels in cages of sedentary rats remained locked. Following three 

weeks of running or sedentary conditions, rats were either left undisturbed in their home 

cages (HC) or exposed to IS as in our prior work (Tanner et al., 2019). Twenty-four hours 

after stress, all rats (n = 8/group) were tested for JSE and shock-elicited freezing, as 

previously described (Tanner et al., 2019). Run rats not exposed to stress were not included 

in the study, because we already know that wheel running does not alter social exploration or 

freezing behavior in non-stressed females (Tanner et al., 2019). All experimental procedures 

were approved by the University of Colorado Denver Institutional Animal Care and Use 

Committee and raw data are available upon request.

Results of the experiment are shown in Figure 2. Sedentary (179.6 ± 3.4g) and run (178.5 ± 

3.2g) rats weighed similar amounts prior to the start of wheel running, but run rats gained 

less weight than sedentary rats over the three weeks of exercise (exercise by time interaction: 

F(3, 42) = 8.5; p = 0.0002; data not shown). The average daily running distance increased 

over the 3 weeks (F(7, 20) = 17; p < 0.0001; Figure 2A). A technical malfunction resulted in 

the loss of four video recordings of social exploration, thus reducing group sizes used for 

social exploration. IS reduced social exploration in sedentary females (n = 5), whereas the 

levels of social exploration in IS female runners (n = 7) were indistinguishable from those of 

HC females (n = 8; F(2, 17) = 4; p < 0.05; Figure 2B). Similar results were observed for 

shock-elicited freezing (Figure 2C). Freezing prior to the two foot shocks was minimal and 

did not differ between groups (Figure 2C, “pre”). Freezing behavior increased in all groups 

following the two foot shocks, and then subsequently decreased over the 20-minute scoring 

session (main effect of time: F(9, 189) = 54.3; p < 0.0001). Repeated measures ANOVA 

revealed an interaction between group and time (F(18, 189) = 2.7; p < 0.001), such that 

sedentary IS rats displayed impaired within-session extinction compared to rats in other 

groups (Figure 2C). As in our prior work (Tanner et al., 2019), neither distance run nor 

phase of estrous cycle during stress or testing (shown for JSE in Figure 2B) impacted the 

behavioral outcomes, although the experiment was not adequately powered to determine 

whether the effects of exercise depend on estrous phase. These data indicate that a shorter 

duration of voluntary exercise can enable stress resilience in females than in males. Thus, 
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exercise seems to be a highly effective stress resilience factor in females. These results 

justify more intensive investigations into sex-dependent mechanisms of exercise-induced 

stress resilience.

Exercise impacts a variety of nervous system factors and processes that could contribute to 

stress resilience (Morgan et al., 2015). Based on the observation that exercise elicits stress 

resilience in females faster than in males, it is possible that males and females differentially 

engage stress resilience mechanisms. Supporting the idea that some of the effects of exercise 

may be bigger in females than in males are emerging data suggesting the cognitive benefits 

of exercise are also more powerful in females (Barha et al., 2017a; Barha et al., 2017b; 

Barha & Liu-Ambrose, 2018). However, the majority of mechanistic studies have so far 

focused on males.

In males, exercise impacts monoaminergic systems (Dishman, 1997a; Dishman, 1997b; 

Greenwood & Fleshner, 2011; Nicastro & Greenwood, 2016; Greenwood, 2019a), as well as 

growth factors and other mediators of neural plasticity including BDNF, galanin and mTOR 

(Cotman et al., 2007; Sciolino & Holmes, 2012; Lloyd et al., 2017; El-Sayes et al., 2019). 

Monoaminergic systems appear to be sensitive to exercise in females (Dishman, 1997b), but 

much remains unknown. Exercise increases BDNF (Neeper et al., 1995) and neurogenesis 

(van Praag et al., 1999; Triviño-Paredes et al., 2016; Kim et al., 2019) in both male and 

female rodents; both of which have been implicated in stress resilience (Duman, 2009; 

Levone et al., 2015). In female rats, the increase in BNDF produced by exercise is dependent 

on estrogen (Berchtold et al., 2001). Exercise also attenuates the hypothalamic-pituitary-

adrenal response to acute and chronic stressors in males (Droste et al., 2003; Campeau et al., 
2010; Sasse et al., 2013); an effect that seems to vary with estrous phase in females (Jones et 
al., 2016).

There are multiple mechanisms by which exercise could prevent specifically the behavioral 

consequences of inescapable stress (Christianson & Greenwood, 2014; Nicastro & 

Greenwood, 2016). Neither attenuation of the hypothalamic-pituitary-adrenal axis response 

to inescapable stress, nor hippocampal BDNF (Greenwood et al., 2007b) appear to be 

necessary for the ability of wheel running to prevent inescapable stress-induced behaviors. 

Because of the critical role of DRN 5-HT neurons in mediating the behavioral effects of 

inescapable stress, much research has focused on the effects of exercise on central 

serotonergic systems (Greenwood & Fleshner, 2011). In males, six weeks of wheel running 

attenuates activity of DRN 5-HT neurons as measured with c-Fos and increases mRNA 

coding for the 5-HT1A inhibitory autoreceptor (Greenwood et al., 2003; Greenwood et al., 
2005b; Loughridge et al., 2013), which could enhance 5-HT1A-mediated autoinhibition of 

DRN 5-HT neurons during stress. Consistent with the c-Fos data, six weeks of wheel 

running also prevents the IS-induced potentiation of 5-HT efflux in the dorsal striatum 

(Clark et al., 2015), where exaggerated 5-HT release contributes to the IS-induced shuttle 

box escape deficit (Strong et al., 2011). 5-HT adaptations to exercise are not limited to DRN 

5-HT neurons. Six weeks of wheel running also reduces the expression of 5-HT2C receptors 

in the dorsal striatum and amygdala (Greenwood et al., 2012b). See Figure 1 for a summary 

of the circuit on which exercise-induced plasticity is proposed to produce stress resilience in 

males. If these adaptations are also important for enabling stress resilience in females, then 
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we would expect these exercise adaptations to occur more rapidly in the brains of females. 

Interestingly, and in stark contrast to ketamine and escapable stress which rely on prefrontal 

mechanisms, exercise appears to constrain the DRN 5-HT response to stress through 

mechanisms other than prefrontal cortex inhibition (Greenwood et al., 2013; Christianson & 

Greenwood, 2014). These findings suggest that the circuits contributing to stress resilience 

differ between exercise and other resilience factors, namely ketamine and behavioral control.

Conclusions

The ability of experiential factors such as coping with stress and exercise to protect against 

stress-induced outcomes differs between the sexes. Recent work from stressor controllability 

studies shows that unlike males, the acute and long-term benefits afforded by behavioral 

control is absent in females. These findings suggest that the neural processing of control 

differs in females and the lack of engagement and structural plasticity within the PL-to-DRN 

pathway represents a potential mechanism. Since males and females exhibit different spine 

changes in this pathway following behavioral control, future work should employ novel 

circuit-targeting strategies for labeling and manipulating spines formed in response to an 

experience of control. The emergence of optical tools like AS-PaRAC1, which has been used 

to establish a causal link between ketamine-induced spine changes and stress protection 

(Moda-Sava et al., 2019), will drive future mechanistic studies that explore the causal 

relationship between experiential factors and the stable circuit changes that produce their 

protective effects, and whether or not these changes are shared between factors. Identifying 

common circuit endophenotypes between resilience factors enhances the possibility of 

translating basic research findings into clinical interventions.

Women are more susceptible to stress-related disorders and factors that change how an 

individual experiences stress either before, during, or after the event can be utilized to 

develop strategies to help reduce the incidence of these disorders. Recent preclinical findings 

from ketamine have revealed that experiential resilience factors sexually converge at the 

level of behavioral outcome, yet diverge at a neural circuit level. Not all paths to resilience 

are concordant between the sexes nor do all resilience factors operate equally at a circuit 

level. Identifying these mechanistic differences represents an important step in developing 

sex-specific treatments for stress-linked disorders.
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5-HT serotonin

AS-PaRac1 activated synapse-targeting photoactivatable Rac1

BDNF brain-derived neurotrophic factor

BLA basolateral amygdala
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DLS dorsolateral striatum

DMS dorsomedial striatum

DREADD designer receptors exclusively activated by designer drugs

DRN dorsal raphe nucleus

ERK extracellular signal-regulated kinase

ES escapable stress

HC home cage control

IEG immediate early gene

IS inescapable stress

JSE juvenile social exploration

mPFC medial prefrontal cortex

mTOR mammalian target of rapamycin

NMDAR N-methyl-D-aspartate receptor

PL prelimbic cortex

PTSD posttraumatic stress disorder

RAM robust activity marking system
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Figure 1. 
Simplified illustration of the circuits engaged by controllable stress, ketamine and exercise 

in males and females. (A) Proposed overlapping circuits involved in the two separable 

features of controllable stress in males (blue) and females (pink). ‘Detection’ of the 

instrumental wheel-turn response through the corticostriatal action-outcome system (light 

blue). The ‘use’ pathway (dark blue) showing prelimbic (PL) top-down inhibition over 

dorsal raphe nucleus (DRN). In females, ‘detection’ of the wheel-turn response may be 

acquired by the instrumental habit learning system (light pink), which does not lead to PL-

DRN engagement (dark pink). (B) Schematic of ketamine’s direct engagement of the PL-

DRN pathway in males and females. In both males and females, evidence for ketamine-

induced spine formation specific to the PL-DRN pathway is unknown. (C) Motor structures 

engaged by exercise-induce plasticity in stress-responsive sites. The circuitry underlying the 

stress protective effects of exercise in females is unknown. Amy, amygdala; DS, dorsal 

striatum.
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Figure 2. 
Three weeks of wheel running enables stress resilience in females. (A) Distance run over the 

duration of the 3 week experiment. (B) Time spent interacting with juvenile conspecific 

during a 3 minute juvenile social exploration test. Diamonds represent individual rats in 

metestrous or diestrus at the time of behavioral testing. Triangles represent individual rats in 

proestrus or estrus at the time of behavioral testing. (C) Levels of freezing prior to (pre) or 

following 2 foot shocks. Data represent group means ± SEM. Sed, sedentary; Run, voluntary 
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running; HC, Home cage controls; IS, inescapable stress. * p < 0.05 relative to all other 

groups; ϕ p < 0.05 relative to Sed HC only.
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