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Assessing the accuracy of automatic speech recognition for
psychotherapy
Adam S. Miner 1,2,3,10✉, Albert Haque 4,10, Jason A. Fries3, Scott L. Fleming5, Denise E. Wilfley6, G. Terence Wilson7,
Arnold Milstein 8, Dan Jurafsky4,9, Bruce A. Arnow1, W. Stewart Agras1, Li Fei-Fei4 and Nigam H. Shah3

Accurate transcription of audio recordings in psychotherapy would improve therapy effectiveness, clinician training, and safety
monitoring. Although automatic speech recognition software is commercially available, its accuracy in mental health settings has
not been well described. It is unclear which metrics and thresholds are appropriate for different clinical use cases, which may range
from population descriptions to individual safety monitoring. Here we show that automatic speech recognition is feasible in
psychotherapy, but further improvements in accuracy are needed before widespread use. Our HIPAA-compliant automatic speech
recognition system demonstrated a transcription word error rate of 25%. For depression-related utterances, sensitivity was 80% and
positive predictive value was 83%. For clinician-identified harm-related sentences, the word error rate was 34%. These results
suggest that automatic speech recognition may support understanding of language patterns and subgroup variation in existing
treatments but may not be ready for individual-level safety surveillance.
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INTRODUCTION
Although psychotherapy has proven effective at treating a range
of mental health disorders, we have limited insight into the
relationship between the structure and linguistic content of
therapy sessions and patient outcomes1–6. This gap in knowledge
limits insights into causal mechanisms of patient improvement,
the evaluation and refinement of treatments, and the training of
future clinicians7. Many patient and therapist factors have been
assessed in psychotherapy (e.g., patient diagnosis, therapist
experience, and theoretical orientation). However, there is little
consensus as to which specific therapist behaviors contribute to
patients’ symptom improvement or deterioration2.
Understanding what patients and therapists say during

therapy, in conjunction with pre- and post-symptom assessment,
may surface markers of good psychotherapy. Psychotherapy
transcripts have long been used to search for objective,
reproducible characteristics of effective therapists8. Also, analysis
of psychotherapy transcripts has been used to generate theories
and test hypotheses of specific mechanisms of action, but has
been limited in part by technological capacity9–11. Discourse
analysis is not common in controlled trials or effectiveness
studies, and psychotherapy is rarely recorded outside of training
settings or clinical trials. When it is recorded, a transcription is
typically completed by a person, after which qualitative or
quantitative analyses are undertaken. Manual transcription is
expensive and time consuming12, leaving most psychotherapy
unscrutinized3.
Automatic speech recognition (ASR) is being explored to

augment clinical documentation and clinician interventions3,13.
Evaluations of medical ASR systems often focus on individual
dictation rather than modeling conversational discourse14, which

is far more complex15,16. Prior literature estimates the word error
rate of conversational medical ASR systems between 18 and
63%17,18. Although patient language analysis can inform diag-
nosis19, and clinician language use can inform treatment
evaluation12,20, few approaches exist for transcribing clinical
therapy sessions en masse. Although potentially useful, the need
to audit emerging machine-learning systems has been high-
lighted by research showing that many ASR systems have worse
performance for ethnic minorities21. Given existing health
disparities in mental health treatment, there is a need to redress,
rather than intensify equitable treatment across diverse
groups22,23. Thus, methods to assess the performance of ASR
systems in the mental health domain are needed.
In this work, we present an assessment of ASR performance in

psychotherapy discourse. Using a sample of patient-therapist
audio recordings collected as part of a US-based clinical trial24, we
compare transcriptions generated by humans, which we consider
the reference standard, to transcriptions generated by a
commercial, cloud-based ASR service (Google Cloud Speech-to-
Text)25. We quantify errors using three approaches. First, we
analyze ASR performance using standard, domain-agnostic
evaluation metrics such as word error rate. Second, we analyze
patient symptom-focused language using a metric derived from a
common depression symptom reporting tool, the Patient Health
Questionnaire (PHQ-9)26. Third, we identify individual crisis
moments related to self-harm and harm to others, and evaluate
ASR’s performance in identifying these moments. Our evaluation,
which uses a scalable HIPAA-compliant workflow for analyzing
patient recordings, lays the foundation for future work using
computational methods to analyze psychotherapy.
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RESULTS
The study used a total of 100 therapy sessions between April 2013
and December 2016 containing 100 unique patients and 78
unique therapists. Among 100 patients for whom age was
available (91%), the average age was 23 years (median 21; range,
18–52; SD, 5). A total of 87% of patients were female (Table 1). The
average therapy session was 45 min (median, 47; range, 13–69; SD,
11) in length. During a session, the therapist spoke an average of
2909 words (median, 2,886; range, 547–6,213; SD, 1,128) over
20min (median, 19; range, 4–41; SD, 8). The patient spoke an
average of 3,665 words (median, 3,555; range, 277–7,043; SD,
1,550) over 25min (median, 25; range 2–46; SD, 9). To characterize
ASR in psychotherapy, a three-pronged evaluation framework is
used: domain agnostic performance, depression symptom-specific
performance, and harm-related performance.

Domain agnostic performance
The first prong of our evaluation is domain agnostic, which uses
word error rate and semantic distance to determine errors. The
average word error rate of the speech recognition system was
25% (median, 24%; range, 8–74%; SD, 12%) (Table 2). Semantic
distance is a proxy for the similarity of meaning between two
sentences, based on computing a vector representation for the
words in each sentence and looking at the distance between
these vectors in Euclidean space27. The average semantic distance
between human-transcribed and ASR-transcribed sentences was

1.2 points (median, 1.1; range, 0.5–2.4; SD, 0.3). For reference, the
semantic distance between random words, random sentences,
and human-selected paraphrases is 4.14, 2.97, and 1.14, respec-
tively (Supplementary Tables 1 and 2).
Transcription of patients’ speech was not significantly different

from therapists’ speech (25% vs 26% error rate, two-tailed
Mann–Whitney U-test, p= 0.21) (Fig. 1). In addition, transcription
of male speech was not significantly different from female speech
(24% vs 25% error rate, two-tailed Welch’s t-test, p= 0.69).

Depression symptom specific performance
The second prong of our evaluation is depression-specific. Across
medical terms from the Patient Health Questionnaire26, the
average sensitivity (i.e., recall) was 80% and positive predictive
value (i.e., precision) was 83% (Table 3). The PHQ category with the
highest sensitivity was category 2 (depression) with a sensitivity of
85%. The categories with the highest positive predictive value
were categories 5 (overeating) and 7 (mindfulness) with a positive
predictive value of 100%. Results are presented for each medical
term in Supplementary Table 3.

Harm-related performance
The third prong of our evaluation centers on harm-related
performance. A total of 97 clinician-identified harm-related
sentences were identified. Half of the manually annotated sessions
(50%; 10 of 20) had at least one harm-related utterance. These
sentences demonstrated an average error rate of 34% (median,
16%; range 0–100%; SD, 37%) and average semantic distance of
0.61 (median, 0.30; range 0–2.62; SD, 0.75). Compared with
performance across all therapy sentences, harm-related sentences
demonstrated a higher word error rate (34% vs 25% error rate,
two-tailed Mann–Whitney U-test, p= 0.07) but a significantly
lower semantic distance (0.61 vs 1.20, two-tailed Mann–Whitney
U-test, p < 0.001).
For the 45 harm-related sentences spoken by the therapist, the

average error rate was 36% (median, 20%; range, 0–100%; SD,
39%). For the 52 harm-related sentences spoken by the patient,
the average error rate was 32% (median, 13%; range 0–100%; SD,
35%). Sentences spoken by the patient were not significantly
different from sentences spoken by the therapist in terms of word
error rate (32% vs 36%, two-tailed Mann–Whitney U-test, p= 0.60)
and semantic distance (0.62 vs 0.58, two-tailed Mann–Whitney U-
test, p= 0.59). Table 4 illustrates the importance of semantic
distance, in the context of transcription errors. Several sentences
are categorized by the type of their transcription error, thus
demonstrating the clinical relevance of surface differences in
words, or phonetics, versus deeper semantic errors.

Table 1. Patient demographics and therapy session information.

Patient
demographics

Average Standard
deviation

Median Min Max

Number of patients 100 – – – –

Female (%) 87 – – – –

Age (years) 23 5 21 18 52

Session information

Length

Minutes 45 11 47 13 69

Number of words 6574 2102 6387 824 11,310

Time talking per session (min)

Patient 25 9 26 2 46

Therapist 20 8 19 4 41

Words spoken per session (n)

Patient 3665 1550 3555 277 7043

Therapist 2909 1128 2886 547 6213

Table 2. Similarity between the human-transcribed reference standard and ASR-transcribed sentences.

Word overlap Semantic similarity

Group n Error Rate, % Shapiro–Wilk p value Semantic distance, pts Shapiro–Wilk p value

Aggregate

Total 100 25% ± 12% 0.93 <0.001 1.20 ± 0.31 0.97 0.03

Speaker

Patient 100 25% ± 12% 0.86 <0.001 1.19 ± 0.33 0.94 <0.001

Therapist 100 26% ± 11% 0.88 <0.001 1.20 ± 0.29 0.99 0.57

Patient gender

Male 13 24% ± 9% 0.95 0.55 1.17 ± 0.30 0.95 0.55

Female 87 25% ± 13% 0.84 <0.001 1.19 ± 0.33 0.94 <0.001

Plus/minus values denote standard deviation. Lower error rate is better. Lower semantic distance is better. Shapiro–Wilk tests were conducted to test the
normality assumption (Supplementary Fig. 2). Low p values indicate the data are not normally distributed.
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Fig. 1 Automatic speech recognition performance, overall and by subgroup. Evaluation of ASR transcription performance compared to the
human-generated reference transcription. Each box denotes the 25th and 75th percentile. Box center-lines denote the median. Whiskers
denote the minimum and maximum values, excluding any outliers. Outliers, denoted by diamonds, are defined as any point further than 1.5×
the interquartile range from the 25th or 75th percentile. Sample sizes are listed in Table 2. NS not significant means the difference is not
statistically significant. a Comparison of word overlap (i.e., word error rate). Lower word error rate is better. b Comparison of semantic
similarity (i.e., semantic distance). Lower semantic distance is better.

Table 3. Performance on clinically-relevant utterances by patients.

PHQ Keywordsa Number of
positives

True
positives

False
negatives

False
positives

Sensitivity Positive predictive value

1 Interest, interested, interesting,
interests, pleasure

169 127 42 38 75% 77%

2 Depressed, depressing, feeling down,
hopeless, miserable

74 63 11 12 85% 84%

3 Asleep, drowsy, sleepiness,
sleeping, sleepy

114 85 29 19 75% 82%

4 Energy, tired 143 115 28 22 80% 84%

5 Overeat, overeating 5 3 2 0 60% 100%

6 Bad, badly, poorly 405 336 69 56 83% 86%

7 Mindfulness 11 9 2 0 82% 100%

8 Fidget, fidgety, restless, slow,
slowing, slowly

39 28 11 13 72% 68%

9 Dead, death, depression, died, suicide 103 86 17 18 83% 83%

Weighted average 1063 852 211 178 80% 83%

aFor each question of the Patient Health Questionnaire (PHQ-9), relevant keywords were identified by querying the Unified Medical Language System using
each PHQ question to generate search terms. Each table row denotes a different question from the PHQ-9. Number of occurrences refer to how often the
keywords appear in our transcribed therapy sessions. True positives refer to a correct transcription by the automatic speech recognition system. False
negatives and false positives denote incorrect transcriptions. Sample size is denoted by the number of positives.
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DISCUSSION
We proposed the use of semantic distance, clinical terminology,
and clinician-labeled utterances to better quantify ASR perfor-
mance in psychotherapy. This is more comprehensive than word
error metrics alone, which treat all errors (e.g., word substitutions,
additions) as equal. Our evaluation found a general error rate of
25%, which varied by use case (e.g., symptom detection vs harm-
related utterances). When evaluated using semantic similarity and
not error rate, the ASR system was significantly better at
transcribing clinician-labeled sentences related to harm than
other sentences spoken during the session. This suggests that
acceptable performance may vary depending on clinical use case
and choice of evaluation framework.
Given these findings, using ASR to passively collect symptom

information may be possible, as currently only 20% of mental
health practitioners use measurement-based care28. Creating
transcripts is important because their inspectability offers a
benefit for clinician training and supervision compared to using
black-box deep learning models29,30, which may have predictive
validity, but are challenging to interpret31. However, critical words
used to diagnose depression had different rates of performance
(Table 3), ranging from 60 to 100%. More research is warranted in
symptom-focused accuracy, as culturally sensitive diagnostic
accuracy will be crucial if ASR is to aid in clinical documentation.
Special attention to algorithmic performance is especially crucial
in healthcare settings to ensure equitable performance across
patient and provider subgroups (e.g. age, race, ethnicity, gender,
diagnosis)32–34. Although ASR is unlikely to be first used to detect
harm-related utterances in clinical settings, assessing risk of harm
to self or others is a cornerstone of clinician duty. Thus,
recognizing harm-related phrases is crucial to any downstream
processes and merits special attention.
A known bottleneck in psychotherapy research is that

psychotherapy sessions are rarely examined in their entirety,
which impedes analysis of practice patterns35. Despite assump-
tions of provider uniformity in randomized clinical trials and
naturalistic investigations36,37, therapist effects–that some thera-
pists consistently achieve better results than others–is well
documented38,39. Accurate transcriptions would facilitate more
rigorous quality assessment than is currently feasible6,40. ASR
provides a potential avenue to study such effects using
computational approaches.
Although ASR is not perfect, it may enable better therapist

training. For instance, ASR may quickly surface illustrations of
patient idioms of distress41, or effective examples of appropriate
and inappropriate clinician responses. Similarly, ASR-generated
transcripts could aid in linking speech acts to theoretically
important phenomenon such as therapeutic alliance, the most
consistent predictor of psychotherapeutic outcome42. Although
these applications may seem distant, a more proximal application
of this technology could be to facilitate the supervision of trainees,

in which licensed clinicians review trainees’ transcripts. ASR can
accelerate this process, however, integrating ASR into clinical
practice will require thoughtful design and implementation6.
Additional use cases of ASR in medicine extend to patient
symptom documentation13,18, exploring communication-based
ethnic disparities in treatment40,43,44, assessing dissemination
efforts of evidence-based practices45,46, pooling, and standardiz-
ing transcripts from psychotherapy studies40, and monitoring
harmful or illegal clinician behavior47.
Our work has limitations. First, we analyzed ASR performance on

outpatient psychotherapy sessions between therapists and
college-aged participants. These results may not generalize to
other patient or provider populations48. Second, our evaluation
uses transcriptionist-generated timestamps for each spoken
phrase. These transcriptionists may provide inaccurate timestamps
due to delayed reaction times or other human errors. Third, to
maximize reproducibility, we limit our analysis to words directly
from the PHQ-9 and Unified Medical Language System (Table 3)49.
These lists are not meant to be exhaustive, and future research
should seek to expand this list to additional clinically-relevant
terminology50–56. Fourth, while our evaluation method analyzed
ASR performance broken down by the role of patient versus
therapist, such role annotations were only available in the human-
annotated transcriptions. It is unknown how well ASR performs
role assignment (i.e., speaker diarization). Fifth, it is possible that
the human-generated transcripts had inaccuracies. As a result, our
estimates are likely conservative. Sixth, we note that while we did
choose a state-of-the-art tool for automatic transcription, other
ASR systems may perform differently21. Assessing transcription
accuracy across tools and clinical settings is a crucial next step21.
Seventh, we use one method for computing word embeddings
(Word2Vec27) and sentence embeddings (earth mover distance57)
to establish this baseline, however other appropriate options exist
and should be assessed in future work (e.g., BioBERT, GloVe)58–60.
However, by establishing a three-pronged evaluation framework,
we enable a more nuanced comparison of ASR systems than
currently allowed by word error rate-based approaches.
ASR will likely be useful before it is perfect. Thus, it is crucial to

design evaluations that differentiate between the types of errors,
assess clinical impact, and detail performance for legally
mandated situations such as self-harm61,62. ASR holds promise
to convert psychotherapy sessions into computable data at scale;
and with enough data, characteristics of effective therapy may be
uncovered via supervised machine learning and discourse
analysis. However, claims regarding the potential of artificial
intelligence should be tempered in the context of real perfor-
mance metrics, and challenges in fairness, maintaining privacy,
and trust63–66. ASR may offer a cost-effective and reproducible
way to transcribe sensitive conversations, but collecting and
analyzing intimate data at unprecedented scales demands

Table 4. Transcription errors made by the automatic speech recognition system.

Meaning (semantics)

Similar to reference standard Different from reference standard

Form (Words or
Phonetics)

Similar to reference
standard

1. Tuesday, I had found out about that my
grandmother had died is dying.
2. Came back and ate eat some more.

1. I have still been feeling depressed the
preston.
2. Do you have any plans to hurt dirt yourself?

Different from reference
standard

1. Depends on like what I eat or what I’ve been
eating have been made.
2. Comfortable to expressing his these negative
emotions.

1. It still stings. It doesn’t hurt as much as it did
wasn’t hers do you still feel like.
2. I’m going to try to appeal kill the schools.

Each numbered sentence is a different sentence containing both the reference standard and ASR transcription. Strikethrough denotes the human-generated
reference standard. Underline denotes the speech recognition system’s erroneous output. Black text denotes agreement.
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improved governance around limiting unintended use and
tracking provenance of the conclusions drawn67–75.
The National Institute of Mental Health has called for computa-

tional approaches to understand trajectories of mental illness and
to create standardized data elements76. With improved accuracy
and the development of agreed-upon thresholds for acceptable
performance, mechanisms of action in psychotherapy would be
easier to uncover. Our work, which uses a scalable, HIPAA-
compliant workflow for analyzing patient recordings, lays the
foundation for future work using computational methods to
analyze psychotherapy. By facilitating better descriptions of
psychotherapeutic encounters associated with good outcomes,
ASR can help illuminate precise interventions that improve
psychotherapy effectiveness and allow us to revisit long-held
ideas of psychotherapy with more objective, inspectable, and
scalable analyses.
In conclusion, we outlined a three-pronged evaluation frame-

work spanning domain agnostic performance, clinical terminol-
ogy, and clinician-identified phrases to characterize ASR
performance in psychotherapy. Compared to human-generated
transcripts, ASR software demonstrated a word error rate of 25%
and a mean semantic distance of 1.2, which is likely sufficient to
enable research aimed at understanding existing treatments and
to augment clinician training. However, accuracy, in terms of word
error rate and semantic distance, varied for depression-related
words and for harm-related phrases, suggesting a need for both
improved accuracy and the development of agreed-upon thresh-
olds for use in safety monitoring. ASR can potentially enable
psychotherapy effectiveness research but requires further
improvement before use in safety monitoring. Our work lays the
foundation for using computational methods to analyze psy-
chotherapy at scale.

METHODS
Study design
This study is a secondary analysis of audio recordings of 100 therapy
sessions from a cluster randomized trial. Audio recordings of college
counseling psychotherapy were gathered per protocol during the trial,
which had a primary aim of studying two clinician training strategies24.
Written consent was obtained per protocol in the original trial from both
patients and therapists. The primary objective of the current study is to
quantify the accuracy of automatic speech recognition software via a
comparison with the human-generated transcripts on overall accuracy,
depression-specific language, and harm-related conversations.
This study was conceptualized and executed after the design and launch

of the original study. All research procedures for this study were reviewed
and approved by the Institutional Review Board at Stanford University.
During the original trial, all therapists were consented by Washington
University in St. Louis, and all patients involved in the study were
consented by their local institutions. The Stanford University Institutional
Review Board approved all consent procedures. Although approaches will
vary between organizations, we describe our process for establishing a
HIPAA-compliant ASR process in Supplementary Note 1.

Clinical setting and data collection
This study assessed audio recordings of 100 therapy sessions from 100
unique patient-therapist dyads. The sessions took place between April
2013 and December 2016 at 23 different college counseling sites across
the United States. Audio recordings were collected in the original study for
humans to review and assess therapist quality.

Corpus creation
In order to compare the ASR to human-generated transcripts, two
transcriptions were done: one using industry-standard manual transcrip-
tion services, and the other using a commercially-available ASR software25.
A third-party transcription company was paid to create the transcriptions
by listening to the original audio. Scribes transcribed all words including
“filler words” (e.g., -huh-, -mm-hm-). The protocol for manual transcription

is provided in Supplementary Note 2. Each utterance was “diarized” (i.e.,
ascribed to a speaker: therapist, patient, or unknown) and each change of
speaker was timestamped in minutes and seconds. The human-generated
transcripts were used as the reference standard for all comparisons. Data
storage, transmission, and access were assessed and approved by the
Stanford University Information Security Office and the Stanford University
Institutional Review Board.

Measures of automatic speech recognition performance
There are currently no standard approaches to assessing ASR quality in
psychotherapy. We propose three approaches: (1) a general, commonly
used domain agnostic evaluation; (2) examining symptom-specific
language; and (3) examining crucial phrases related to self-harm or harm
to others.
Domain agnostic evaluation measures: The standard evaluation metric for

speech recognition systems is word error rate (WER)77,78, defined as the
total number of word substitutions (S), deletions (D), and insertions (I) in
the transcribed sentences, divided by the total number of words (N) in the
reference sentence (i.e., human-transcription). That is, WER= (S+ D+ I)/N.
The word error rate requires an exact word match to be considered correct.
Homophones (i.e., words that sound the same but have different meanings
like “buy” and “bye”) were measured as inaccuracies.
One shortcoming of word error rate is how it assigns equal importance

to all words. Transcribing the word “death” into “dead” will be registered as
an error. However, such an error may not significantly change the meaning
of the sentence and in fact may be sufficiently correct for clinical use. This
can be partly mitigated by using relative word importance to re-weight the
final metric accordingly79,80. However, this still measures word-level
equivalence rather than sentence-level resemblance81.
To address these shortcomings, we propose measuring semantic

distance between each ASR-generated transcription and human-
generated transcript. While subjective measures of semantic similarity for
machine translation and paraphrase detection exist82–85, large-scale
manual review by humans is generally infeasible. Therefore, we used
word2vec embeddings27 to extract word-level embeddings followed by
mean-pooling to compute a sentence-level embedding86. The sentence
embeddings of the human-generated transcripts were compared to the
ASR-generated embeddings using earth mover distance57. A comparison
of earth mover and cosine distance is shown in Supplementary Fig. 1. A
smaller value of semantic distance indicates higher similarity, with zero
semantic distance indicating perfect similarity.
Depression-specific evaluation: Assessing domain-specific vocabulary in

health contexts has been called for by researchers from the Centers for
Disease Control and Prevention and the U.S. Food and Drug Administra-
tion87. To evaluate depression-specific vocabulary, we selected clinically-
relevant words directly from a commonly used depression screen, the
Patient Health Questionnaire (PHQ-9)26. Keywords from the PHQ-9 (e.g.,
sleep, mood, suicide) were extended to a larger list using the Unified
Medical Language System, a medical terminology system maintained by
the U.S. National Library of Medicine88. This is similar to previous
approaches used to search for medical subdomain language89. While
there are methods to expand the vocabulary to synonyms and informal
phrases90, in this work, our goal was to provide a baseline that allows for
simplicity and reproducibility87. Our approach using the Unified Medical
Language System was selected to prioritize false negatives (Type II errors)
over false positives (Type I errors) for symptom detection. This approach
may differ across use cases.
Once the list of clinically-relevant words was determined, sensitivity and

positive predictive values were computed from the perspective of binary
classification. Clinically-relevant words were treated as positive examples
and all other words were treated as negative examples. For each clinical
word, transcription performance was measured across all therapy sessions.
For each word (positive example), the number of negative examples is
large, consisting of the set of every other word in the English language,
thus leading to very high specificity rates (i.e., above 99.9%). Because it
would not meaningfully differentiate performance, we do not report
specificity.
Harm-related evaluation: A licensed clinical psychologist (Author: A.S.M.)

randomly sampled and retrospectively read 20 transcripts from the dataset
and annotated any harm-related phrases spoken by the patient or
therapist (e.g., “I want to hurt myself”). The harm-related sentences are a
subset of the full dataset in Table 1. We then assessed the accuracy of ASR
on this subset. This assessment was of historical data, and thus no safety
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concerns were shared with law enforcement or other mandated reporting
agencies.

Statistical analyses
Before testing for a difference of means, subgroups were tested against
the normality assumption and their variance was assessed. To test the
normality assumption, the Shapiro–Wilk test was used (Supplementary Fig.
2). To test for equal subgroup variance, the Levene test was used.
Depending on the Shapiro–Wilk and Levene test results, one of the
following difference tests were used: two-tailed Welch’s t-test or two-tailed
Mann–Whitney U-test. The significance threshold was p= 0.01. All
statistical analyses were implemented in Python (version 3.7; Python
Software Foundation) with the SciPy software library91. Covariates were the
word error rate and semantic distance.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The dataset is not publicly available due to patient privacy restrictions, but may be
available from the corresponding author on reasonable request.
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