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Spin-phonon relaxation from a universal ab initio
density-matrix approach
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Designing new quantum materials with long-lived electron spin states urgently requires a

general theoretical formalism and computational technique to reliably predict intrinsic spin

relaxation times. We present a new, accurate and universal first-principles methodology

based on Lindbladian dynamics of density matrices to calculate spin-phonon relaxation time

of solids with arbitrary spin mixing and crystal symmetry. This method describes contribu-

tions of Elliott-Yafet and D’yakonov-Perel’ mechanisms to spin relaxation for systems with

and without inversion symmetry on an equal footing. We show that intrinsic spin and

momentum relaxation times both decrease with increasing temperature; however, for the

D’yakonov-Perel’ mechanism, spin relaxation time varies inversely with extrinsic scattering

time. We predict large anisotropy of spin lifetime in transition metal dichalcogenides. The

excellent agreement with experiments for a broad range of materials underscores the pre-

dictive capability of our method for properties critical to quantum information science.
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The manipulation of electron spins is of increasing interest
in a wide-range of emerging technologies. The rapidly
growing field of spintronics seeks to control spin as the unit

of information instead of charge in devices such as spin transis-
tors1. Quantum information technologies seek to utilize localized
spin states in materials both as single-photon emitters2–4 and as
spin-qubits for future integrated quantum computers5. Both
spintronics and quantum information applications therefore
demand a quantitative understanding of spin dynamics and
transport in metals and semiconductors. Recent advances in cir-
cularly polarized pump-probe spectroscopy6, spin injection, and
detection techniques7 have enabled increasingly detailed experi-
mental measurement of spin dynamics in solid-state systems8,9.
However, a universal first-principles theoretical approach to
predict spin dynamics, quantitatively interpret these experiments
and design new materials has remained out of reach.

A key metric of useful spin dynamics is the spin relaxation time
τs1. For example, spin-based quantum information applications
require τs exceeding milliseconds for reliable qubit operation.
Consequently, accurate prediction of τs in general materials is an
important milestone for first-principles design of quantum
materials. Spin–spin10, spin–phonon11, and spin-impurity scat-
terings, all contribute to spin relaxation, but spin–phonon scat-
tering sets the intrinsic material limitation and is typically the
dominant mechanism at room temperature1. Further,
spin–phonon relaxation arises from a combination of spin–orbit
coupling (SOC) and electron–phonon scattering, and is tradi-
tionally described by two mechanisms. First, the Elliott–Yafet
(EY) mechanism involves spin–flip transitions between pairs of
Kramers-degenerate states due to SOC-based spin-mixing of
these states12,13. Second, the D’yakonov–Perel’ (DP) mechanism
in systems with broken inversion symmetry involves electron
spins precessing between scattering events due to the SOC-
induced internal effective magnetic field14.

Previous theoretical approaches have extensively investigated
these two distinct mechanisms of intrinsic spin–phonon relaxa-
tion using model Hamiltonians in various materials15. These
methods require parametrization for each specific material, which
needs extensive prior information about the material and spe-
cialized computational techniques, and often only studies one
mechanism at a time. Furthermore, most of these approaches
require the use of simplified formulae12,14 and make approx-
imations to the electronic structure (e.g. low spin-mixing) or
electron–phonon matrix elements15. This limits the generality
and reliability of these approaches for complex materials, parti-
cularly for the DP mechanism, where various empirical relations
are widely employed to estimate τs1. Sophisticated methods based
on spin susceptibility16 and time evolution of density matrix17

also rely on suitably chosen model Hamiltonians with empirical
scattering matrix elements. Therefore, while these methods pro-
vide some mechanistic insight, they do not serve as predictive
tools of spin relaxation time for the design of new materials.

A general first-principles technique to predict spin–phonon
relaxation in arbitrary materials is therefore urgently needed.
Previous first-principles studies have addressed the EY mechan-
ism in centrosymmetric semiconductors18,19 and metals20. These
methods18,20 rely on defining a pseudospin that allows the use of
Fermi’s golden rule (FGR) with only spin–flip transitions13.
However, this is only well-defined for cases with weak spin-
mixing such that eigenstates within each Kramers-degenerate pair
can be chosen to have small spin-minority components, pre-
cluding the study of spin relaxation of states with strong spin-
mixing, e.g. holes in silicon and noble metals. First-principles
calculations have not yet addressed systems with such complex
degeneracy structures, where the simple picture of spin–flip
matrix elements in a FGR breaks down, or systems without

inversion symmetry that do not exhibit Kramers degeneracy.
Therefore, a more general first-principles technique without the
material-specific simplifying assumptions of these previous
approaches is now necessary.

In this work, we establish a new, accurate and unified first-
principles technique for predicting spin relaxation time based on
perturbative treatment of the Lindbladian dynamics of density
matrices21. Importantly, by covering previously disparate
mechanisms (e.g. EY and DP) in a unified framework, this
technique is applicable to all materials regardless of dimension-
ality, symmetry (especially inversion) and strength of spin-mix-
ing, which is critical for new material design. All SOC effects are
included self-consistently (and non-perturbatively) in the
ground-state eigensystem at the density functional theory (DFT)
level, and we predict τs through a universal rate expression
without the need to invoke real-time dynamics. In this article, we
first introduce our theoretical framework based on first-principles
density-matrix dynamics, and then show prototypical examples of
τs for the broad range of systems, including three with inversion
symmetry—silicon, iron, and graphene, and three without
inversion symmetry—monolayer MoS2, monolayer MoSe2, and
bulk GaN, in excellent agreement with available experimental
data. By doing so, we establish the foundation for quantum
dynamics of open systems from first-principles to facilitate the
design of quantum materials.

Results
Theory. The key to treating arbitrary state degeneracy and spin-
mixing for spin relaxation is to switch to an ab initio density-
matrix formalism, which goes beyond specific cases such as
Kramers degeneracy or Rashba-split model Hamiltonians. Spe-
cifically, we seek to work with density matrices of electrons alone,
treating its interactions with an environment consisting of a
thermal bath of phonons. In general, tracing out the environ-
mental degrees of freedom in a full quantum Liouville equation of
the density-matrix results in a quantum Lindblad equation.
Specifically, for electron–phonon coupling21 based on the stan-
dard Born–Markov approximation22 that neglects memory effects
in the environment, the Lindbladian dynamics in interaction
picture reduces to
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where α is a combined index labeling electron wavevector k and
band index n, λ is mode index and ± corresponds to
q ¼ � k� k0ð Þ. n ±

qλ � nqλ þ 0:5 ± 0:5 and nqλ is phonon occupa-

tion. Gqλ±
αα0 ¼ gqλ±αα0 δ

1=2ðεα � ε0α ±ωqλÞ is the electron–phonon
matrix element including energy conservation, where ωqλ is the
phonon frequency.

This specific form of the Lindbladian dynamics preserves
positive definiteness of the density matrix which is critical for
numerical stability21. In addition, the energy-conserving δ-
function above is regularized by a Gaussian with a width γ,
which corresponds physically to the collision time. In some cases,
the results depend on γ and γ→ 0 is not the relevant limit23.
Here, the Lindblad master equation with finite smearing
parameters corresponding to the collision time can be regarded
as the best Markovian approximation to the exact dynamics23. In
the case of spin relaxation, this is particularly important for
systems that exhibit the DP mechanism, as we show below.
Consequently, we consistently determine the smearing para-
meters from ab initio electron–phonon linewidth calculations
throughout24,25.
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The density-matrix formalism allows the computation of any
observable such as number and spin density of carriers, and the
inclusion of different relaxation mechanisms at time scales
spanning femtoseconds to microseconds, which forms the
foundation of the general relaxation time approach we discuss
below. Given an exponentially relaxing measured quantity
O ¼ TrðoρÞ, where o and ρ are the observable operator and the
density matrix, respectively, we can define the relaxation rate Γo
and relaxation time τo ¼ Γ�1

o of quantity O as

∂ O� Oeqð Þ
∂t

¼ �ΓoðO� OeqÞ; ð2Þ

where eq corresponds to the final equilibrium state. We note that
even when the observables have additional cosðωtÞ oscillation
factors, such as due to spin precession with periodicity of ω, the
above equation remains an appropriate definition of the overall
relaxation rate. For example, for a precessing and relaxing spin
system with SðtÞ ¼ S0 expð�t=τÞ cosðωtÞ, the initial relaxation
rate is _Sð0Þ ¼ �S0=τ, which is exactly the same as that of a pure
exponential relaxation.

The equilibrium density matrix in band space is
ðρeqÞknn0 ¼ f knδnn0 , where fkn are the Fermi occupation factors of
electrons in equilibrium. Writing the initial density matrix ρ=
ρeq+ δρ, assuming a small perturbation ∣∣δρ∣∣ ≪ ∣∣ρeq∣∣ and k-
diagonal o and δρ, the Lindblad dynamics expression (Eq. (1))
and the definition (Eq. (2)) yield
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Here, the G is exactly as defined above in Eq. (1), but separating
the wavevector indices (k, k0) and writing it as a matrix in the
space of band indices (n, n0) alone. Similarly, o and δρ are also
matrices in the band space, Trn and †n are trace and Hermitian
conjugate in band space, and ½o;G�kk0 � okGkk0 � Gkk0ok0 , written
using matrices in band space.

Given an initial perturbation δρ and an observable o, Eq. (3)
can now compute the relaxation of expectation value O from its
initial value. Even for a specific observable like spin, several
choices are possible for the initial perturbation corresponding
directly to the experimental measurement scheme. Specifically for
spin relaxation rate Γs,i, the observable is the spin matrix Si labeled
by Cartesian directions i= x, y, z, and the initial perturbed state
should contain a deviation of spin expectation value from
equilibrium. The most general (experiment-agnostic) choice for
preparing a spin polarization is to assume that all other degrees of
freedom are in thermal equilibrium, which can be implemented
using a test magnetic field Bi as a Lagrange multiplier for
implementing a spin polarization constraint. With a correspond-
ing initial perturbation Hamiltonian of H1=−2μBBiSi/ℏ, where
μB is the Bohr magneton, perturbation theory yields

δρk;mn ¼ � 2μBBi

_

f km � f kn
ϵkm � ϵkn

Si;k;mn: ð4Þ

In some cases, Si,k,mn ≈ 0 when ϵkm ≠ ϵkn. For these cases,
δρ � �ð2μBBi=_Þð∂f =∂ϵÞSdegi , where ðSdegi Þknn0 � Sið Þknn0δεknεkn0 is
the degenerate-subspace projection of Si. In such cases, we can

further simplify Eq. (3) to the Fermi Golden rule-like expression,
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2π
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where χs;i ¼ Trn½Sið�∂f =∂ϵÞSdegi �=Nk. Note that the test field Bi
etc. drops out of the final expression and only serves to select the
direction of the perturbation in the high-dimensional space of
density matrices.

Without SOC, Sdegi ¼ Si commutes with g, leading to Γs,i= 0 as
expected. If Sdegi is diagonal, ½Sdegi ; gqλ��knk0n0 reduces to

Δsi;knk0n0g
qλ�
knk0n0 , where Δsi;knk0n0 � si;kn � si;k0n0 is the change in

(diagonal) spin expectation value for a pair of states. Therefore, in
this limit, Eq. (5) reduces to transitions between pairs of states, each
contributing proportionally to the square of the corresponding spin
change.

See Supplementary Note 1 and 2 for detailed derivations of the
above equations. As we show in Supplementary Note 1 and 2, the
above equations can be reduced to previous formulae with
spin–flip matrix elements in Kramers-degenerate subspaces for
systems with inversion symmetry and weak spin-mixing, such as
conduction electron spin relaxation in bulk Si, similar to ref. 18.
However, Eq. (3) is much more general, applicable for systems
with arbitrary degeneracy and crystal symmetry, and we therefore
use it throughout for all results presented below. In addition, the
overall framework can also be extended to other observables and
can be made to correspond to specific measurement techniques
that prepare a different initial density matrix e.g. a circularly
polarized pump pulse.

Finally, note that in our first-principles method, all SOC-
induced effects (such as the Rashba/Dresselhaus effects) are self-
consistently included in the ground-state eigensystem or the
unperturbed Hamiltonian H0. This is essential to allow us to
simulate τs by a single rate calculation when there is broken
inversion symmetry. On the other hand, if SOC does not enter
into H0, as in previous work with model Hamiltonians, it must be
treated as a separate term that provides an internal effective
magnetic field. Consequently, those approaches require a
coherent part of the time evolution to describe the fast spin
precession induced by this effective magnetic field, which require
explicit real-time dynamics simulations even to capture spin
relaxation, going beyond a simple exponential decay as in Eq. (2).
Using fully self-consistent SOC in a first-principles method is
therefore critical to avoid this system-specific complexity and
arrive at the universal approach outlined above.

Systems with inversion symmetry: Si and Fe. We first present
results for systems with inversion symmetry traditionally descri-
bed by a Elliot–Yafet spin–flip mechanism. Figure 1a shows that
our predictions of electron spin relaxation time (τs) of Si as a
function of temperature are in excellent agreement with experi-
mental measurements26,27. Note that previous first-principles
calculations18 approximated spin–flip electron–phonon matrix
elements from pseudospin wavefunction overlap and spin-
conserving electron–phonon matrix element, effectively assum-
ing that the scattering potential varies slowly on the scale of a unit
cell; we make no such approximation in our direct first-principles
approach. Importantly, this allows us to go beyond the doubly
degenerate Kramers-degenerate case of conduction electrons in Si.
In contrast, holes in Si exhibit strong spin-mixing with spin-2/3
character and spin expectation values no longer close to ℏ/2.
Figure 1b shows our predictions for the hole–spin relaxation time,
which is much shorter than the electron case as a result of the
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strong mixing (450 fs for holes compared to 7 ns for electrons at
300 K) and is much closer to the momentum relaxation time. In
addition, Fig. 1d shows that the change in spin expectation values
(Δs) per scattering event (evaluated using Eq. (5)) has a broad
distribution for holes in Si, indicating that they cannot be
described purely by spin–flip transitions, while conduction elec-
trons in Si predominantly exhibit spin–flip transitions with Δs= 1.

We next consider an example of a ferromagnetic metal, iron,
which exhibits a complex band structure not amenable for
model Hamiltonian approaches. Previous first-principles calcu-
lations for ferromagnets employ empirical Elliott relation28 or
FGR formulae with spin–flip matrix elements specifically
developed for metals or ferromagnets20. Here, we apply exactly
the same technique used for the silicon calculations above and
predict spin relaxation times in iron in good agreement with
experimental measurements (Fig. 1c)29–31. Our Wannier inter-
polation also enables systematic and efficient Brillouin zone
convergence of these predictions which were not possible
previously. Similar to holes in Si, the Δs of Fe also exhibits a
broad distribution extending from 0 to ℏ in the contribution to
the total spin relaxation rate (Fig. 1d). Therefore, spin
relaxation in transition metals are not purely spin–flip
transitions, and we expect this effect to be even more
pronounced in 4d and 5d metals with stronger SOC than the
3d magnetic metal considered here. Finally, Fig. 1a–c shows
that τs is approximately proportional to momentum relaxation

time τm for both Si and bcc Fe, which is expected for spin
relaxation in systems with EY mechanisms1.

Systems with inversion symmetry: graphene. Graphene is of
significant interest for spin-based technologies, and significant
recent work with model Hamiltonians seeks to identify the fun-
damental limits of spin coherence in graphene32. Estimates vary
widely from theoretical estimates on the order of microseconds to
experiments ranging from picoseconds to nanoseconds33–36, with
the discrepancies hypothesized to arise from faster extrinsic
relaxation in experiments. However, previous model Hamiltonian
studies required parametrization of approximate matrix elements,
and focus on specific phonon modes (e.g. flexural modes) for
spin–phonon relaxation. Here we predict intrinsic
electron–phonon spin relaxation time for free-standing graphene
to firmly establish the intrinsic spin–phonon relaxation limit free
of specific model choices or parameters.

Figure 2 shows the predicted spin–phonon relaxation times as a
function of temperature and Fermi level position. At room
temperature, our calculated lifetimes are of the same magnitude
(in microseconds) as previous predictions33 indicating that faster
relaxation is likely extrinsic in experiments. However, in addition to
the flexural phonon mode33,35, in-plane acoustic (A) phonon
modes have a strong and non-negligible contribution, while optical
modes (O) have an overall smaller effect (Fig. 2b). We also find that
the ratio between in-plane and out-of-plane spin relaxation times
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Fig. 1 Relaxation time predictions for two systems with inversion symmetry. Spin (τs) and momentum (τm) relaxation times are shown for: a electrons in
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range from 0.5 to 0.7 (Fig. 2a, c), consistent with experimental
measurements34. As evident from Fig. 2c, longer spin relaxation
time of up to microseconds is achievable at low temperatures in
pristine and free-standing graphene. However, at low temperatures,
competing effects from substrates and disorder can make overall
measured spin relaxation faster than theoretical predictions35.

Finally note that while the ratio between in-plane and out-of-
plane spin relaxation times is nearly 1/2, which is often
considered to be a signature of the DP mechanism, free-
standing graphene is inversion symmetric and does not exhibit
the DP mechanism. Figure 2d shows that the spin relaxation time
is mostly insensitive to the extrinsic scattering rates, instead of the
linear relation (inverse relation with scattering time) expected for
the DP mechanism, as discussed below in further detail. The spin
relaxation of graphene may be switched to the DP regime by
adding substrates or external electric fields to break inversion
symmetry36,37, which will be investigated in detail using this
theoretical framework in future work.

Systems without inversion symmetry: out-of-plane τs of MoS2
and MoSe2. The two-dimensional transition metal dichalcogen-
ides (TMDs) exhibit extremely long-lived spin/valley polarization
(over nanoseconds)38, with long valley-state persistence attributed
to spin-valley locking effects. A fundamental understanding of
spin/valley relaxation mechanisms is now required to utilize this
degree of freedom for valleytronic computing39. Next we investi-
gate spin relaxation τs of systems without inversion symmetry
from first-principles, starting with two TMD systems—monolayer

MoS2 and MoSe2 as prototypical examples. (Unless specified, τs
represents out-of-plane spin relaxation time τs,zz for TMDs.)

In both systems, valence and conduction band edges at K and
K′ valleys exhibit relatively large SOC band splitting, with nearly
perfect out-of-plane spin polarization. Time-reversal symmetry
further enforces opposite spin directions for the band-edge states
at K and K′. Previous studies using model Hamiltonians consider
the DP mechanism to dominate spin relaxation in these
materials17, but in our first-principles approach, we do not need
to a priori restrict our calculations to EY or DP limits.

In Fig. 3, we show the out-of-plane spin (τs) and momentum
(τm) relaxation time of conduction electrons in two monolayer
TMDs as a function of temperature, along with their intervalley/
intravalley contributions and experimental values. First, the
overall agreement between our calculations and previous
experiments by ultrafast pump-probe spectroscopy is excel-
lent38,40,41. Note that ultrafast measurements of TMDs obtain
coupled dynamics of spin and valley polarizations according to
the selection rules with circularly polarized light, necessitating
additional analysis to extract τs, e.g., a phenomenological model
fit to experimental curves in ref. 38. On the other hand, our first-
principles method simulates τs directly without model or input
parameters. This provides additional confidence in the experi-
mental procedures of extracting τs, and lends further insights into
different scattering contributions in the dynamical processes as
we show below. Moreover, special care is necessary when
comparing with certain low temperature measurements with
lightly doped samples, which access spin relaxation of excitons
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rather than individual free carriers, as discussed in refs. 42,43; we
focus here on spin relaxation of free carriers.

Next, comparing the relative contributions of intervalley and
intravalley scattering for spin relaxation time, we find that the
intravalley process dominates spin relaxation of conduction
electrons in both TMDs: the intravalley only spin relaxation time
(black squares) in Fig. 3 is nearly identical with the net spin
relaxation time (red circles), while the intervalley contribution
alone (blue triangles) is consistently more than an order of
magnitude higher in relaxation time (lower in rate). Furthermore,
with decreasing temperature, the relative contribution of the
intervalley process decreases because the minimum phonon
energies for wave vectors connecting the two valleys exceed
20 meV, and the corresponding phonon occupations become
negligible at temperatures far below 300 K.

Previous theoretical studies of MoS2 with model Hamiltonians17

obtained (out-of-plane) τs two orders of magnitude higher than our
predictions, which agree with experimental data38. Such significant
deviations are possibly because of the approximate treatments of
electronic structure and electron–phonon coupling in their
theoretical model. In addition, our first-principle calculations treat
all phonon modes on an equal footing. Table 1 shows that the
relative contributions of each phonon mode to τs varies strongly
with temperature. Full electron and phonon band structure is
therefore vital to correctly describe spin–phonon relaxation with
varying temperature, while model Hamiltonians that select specific
phonon modes have limited range of validity17.

Hole–spin relaxation in MoS2 and MoSe2 has not been
previously investigated in detail theoretically. Figure 4 presents

our predictions of hole τs and τm in the two TMDs, indicating
that hole τs is much longer than that for electrons at all
temperatures, exceeding 1 ns below 100 K. In contrast to the
electron case, the intervalley process is relatively much more
important and dominates spin relaxation at low temperature in
MoS2 and at all temperatures in MoSe2. This is because large SOC
splitting at the valence band maximum makes the intravalley
transition between two valence bands nearly impossible based on
energy conservation in the electron–phonon scattering process.
Experimental measurements also observe long spin relaxation
times dominated by intervalley scattering in tungsten dichalco-
genides44, which may facilitate applications in spintronic and
valleytronic devices.

External magnetic fields can serve as tools tuning material
properties45 and are an inherent component of spin dynamics
measurements38,44. Systems with broken inversion symmetry in
particular may strongly respond to magnetic fields. We therefore
investigate the effects of an external field B on τs by introducing a
Zeeman term (gsμB/ℏ)B ⋅ S to the electronic Hamiltonian
interpolated using Wannier functions (approximating gs ≈ 2),
just prior to computing τs with Eq. (3). Figure 5 shows that the
out-of-plane τs of conduction electrons of MoS2 decreases with
increasing in-plane magnetic field Bx, in agreement with
experimental work on MoS238 and in general consistency with
previous theoretical studies of τs for systems with broken
inversion symmetry17,46.

This strong magnetic field response has a simple intuitive
explanation: in TMDs, the spin splitting of bands can be
considered as the result of the internal effective magnetic field

107a b
MoS2 MoSe2Total τs Total τs

Total τm

Intra τs

Inter τs

Inter τm

Intra τs

Inter τs

Inter τm

Total τm

Exp. τs

Yang et al.
Exp. τs

Kumar et al.

Exp. τs

Kim et al.

105
Li

fe
tim

e 
(p

s)

Li
fe

tim
e 

(p
s)

103

101

10–1

0 50 100 150
T (K) T (K)

200 250 300 50 100 150 200 250 300

107

105

103

101

10–1

Fig. 3 Relaxation times of conduction electrons in two systems without inversion symmetry. Predicted spin (τs) and momentum (τm) relaxation times for
a MoS2 and b MoSe2 with carrier concentrations of 5.2 × 1012 cm−2 and 5.0 × 1011 cm−2, respectively (compared to experiments38–41). “Intra” and “inter”
denote intravalley (within K or K′) and intervalley (between K and K′) scattering contributions to the relaxation times; intravalley processes dominate spin
relaxation at and below room temperature.

Table 1 Percentage contributions of selected phonon modes to out-of-plane and in-plane spin relaxation time (τs) of conduction
electrons of MoS2 and MoSe2.

System Direction T (K) Modes and their contributions

MoS2 Out-of-plane 300 ZA (12%), 1st E″ (21%), 2nd E″ (67%)
MoS2 In-plane 300 LA (55%), LO (13%)
MoSe2 Out-of-plane 300 ZA (11%), 1st E″ (36%), 2nd E″ (45%)
MoS2 Out-of-plane 150 ZA (46%), 1st E″ (24%), 2nd E″ (29%)
MoS2 Out-of-plane 50 ZA (99%)

ZA, E″, LA and LO represent out-of-plane acoustic (flexural) mode, two lower-frequency in-plane optical modes, longitudinal acoustic and longitudinal optical phonon modes, respectively. (See phonon
band structures in Supplementary Fig. 4).
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Bsoẑ due to broken inversion symmetry. Applying a finite Bx
perpendicular to Bsoẑ will cause additional spin-mixing and
increase the spin–flip transition probability, thereby reducing the
spin relaxation time. The degree of reduction depends on the
detailed electronic structure of MoS2 and MoSe2 as shown in
Supplementary Figs. 2 and 3: MoSe2 exhibits a larger spin
splitting of conduction bands and a higher internal magnetic
field, and is therefore less affected by external Bx. Similarly,
hole–spin relaxation in both MoS2 and MoSe2 (not shown)
exhibit very weak dependence on Bx because of the large spin
splitting and high internal effective magnetic field Bso for valence
band-edge states compared to those near the conduction band
minimum. This insensitivity of hole τs to magnetic fields is also
consistent with experimental studies of hole τs in WS244 and
WSe247.

Finally, out-of-plane magnetic field Bz has a negligible effect on
spin relaxation for TMDs (not shown), unlike the in-plane
magnetic field Bx or By. This is because electronic states around
band edges are already polarized along the out-of-plane direction
under a strong internal Bsoẑ. High experimental external
magnetic fields ~1 Tesla are relatively weak in contrast and only
slightly change the spin polarization of the states, rather than
introducing a spin-mixing that leads to spin relaxation.

Systems without inversion symmetry: in-plane τs of MoS2. In
all cases, the spin–phonon relaxation time decreases with
increasing temperature, approximately proportional to the
momentum relaxation time τm. This is expected because both
scattering rates, τ�1

s and τ�1
m , are proportional to phonon occu-

pation factors which increase with temperature. The intrinsic in-
plane spin relaxation time (τs,xx) in MoS2 also shows the same
trend with temperature (Fig. 6a), but exhibits a fundamental
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difference from the previous cases when considering additional
extrinsic scattering.

Specifically, Fig. 6b shows the dependence of spin relaxation
times in MoS2 conduction electrons as a function of extrinsic
scattering rates, which enter Eq. (3) through an additional
contribution to the smearing width γ of the energy-conserving
δ-functions (in addition to the intrinsic electron–phonon
contributions computed from first-principles). This additional
smearing physically corresponds to the reduced lifetime and
increased broadening of the electronic states in the material due
to scattering against defects, impurities etc37. Importantly, the in-
plane spin relaxation time τs,xx increases linearly with extrinsic
scattering rate, or inversely with extrinsic scattering time, which is
a hallmark of the DP mechanism of spin relaxation48.

Note that this inverse relation competes with the phonon
occupation factors in determining the overall temperature
dependence of spin relaxation time. At higher temperature,
increased phonon occupation factors lower the intrinsic relaxa-
tion times of both carrier and spin, as stated above. The lowered
intrinsic carrier relaxation time increases the finite smearing
width in Eq. (3), which contributes towards increasing the spin
relaxation time within the DP mechanism (inverse relation).
However, the direct contribution of phonon occupation factors in
the spin relaxation rate in Eq. (3) overwhelms this secondary
change and results in a net decrease of spin relaxation time,
consistent with all calculations above and experiments49,50.

In contrast with the in-plane case, the out-of-plane spin
relaxation τs,zz is mostly insensitive to the extrinsic scattering rate
(and broadening γ), as all previous spin relaxation results in
Kramers-degenerate materials discussed above (e.g. for graphene
in Fig. 2d). Note that τs,xx is also overall much shorter than τs,zz,
because the strong internal magnetic field in TMDs stabilizes
spins in the z direction as discussed above. Large anisotropy in
spin lifetimes due to a similar spin-valley locking effect has been
theoretically predicted51 and experimentally measured52 pre-
viously in graphene–TMD interfaces as well.

Systems without inversion symmetry: GaN. Finally, we show
spin relaxation in GaN as an archetypal example of the DP
mechanism. Fig. 7 shows that both in-plane (τs,xx) and out-of-
plane (τs,zz) spin lifetime of GaN are proportional to extrinsic
scattering rates, or inversely proportional to extrinsic scattering
time. Most importantly, the ratio between τs,zz and τs,xx is exactly
1/2 for this material, which is an additional feature of the con-
ventional DP mechanism1. Note that, in contrast, the 2D TMDs

are more complex due to strong SOC splitting and anisotropy, did
not exhibit this 1/2 ratio, and exhibited the extrinsic scattering
dependence only for in-plane spin relaxation. Overall, these
results indicate that the general density-matrix formalism pre-
sented here elegantly captures the characteristic DP and EY
mechanism limits, as well as complex cases that do not fit these
limits, all on the same footing in a unified framework.

Discussion
In summary, we have demonstrated an accurate and universal
first-principles method for predicting spin relaxation time of
arbitrary materials, regardless of electronic structure, strength of
spin-mixing and crystal symmetry (especially with/without
inversion symmetry). Our work goes far beyond previous first-
principles techniques based on a specialized Fermi’s golden rule
with spin–flip transitions and provides a pathway to an intuitive
understanding of spin relaxation with arbitrary spin-mixing. In
TMD monolayer materials, we clarify the roles of intravalley and
intervalley processes, which are additionally resolved by phonon
modes, in electron and hole–spin relaxation. We predict long-
lived spin polarization from resident carriers of MoS2 and MoSe2
and show their strong sensitivity of electron spin relaxation to in-
plane magnetic fields.

The predictive power of first-principles calculations is crucial
for providing fundamental understanding of spin relaxation in
new materials. The same technique can be applied to predict spin
relaxation in realistic materials with or without defects useful for
quantum technologies, wherever spin relaxation is dominated by
electron–phonon scattering. We have already considered the
general impact of disorder and electron-impurity scattering on
spin–phonon relaxation through carrier broadening, but impu-
rities can contribute an additional channel for spin relaxation,
especially in the Kramers-degenerate case and at lower tem-
peratures18. The extension of this technique to directly predict
electron-impurity scattering for specific defects is relatively
straightforward using supercell calculations, but computationally
more demanding, while predicting the impact of electron–hole
interaction53–55 and electron–electron scattering56,57 is addi-
tionally challenging. Finally, a robust understanding of ultrafast
experiments may require simulation of real-time dynamics to
capture initial state effects, probe wavelength effects and beyond-
single-exponential decay dynamics, which is a natural next step
within the general Lindbladian density-matrix formalism
presented here.

Methods
Computational details. All simulations are performed by the open-source plane-
wave code - JDFTx58 using pseudopotential method, except that the Born
effective charges and dielectric constants are obtained from open-source code
QuantumESPRESSO59. We firstly carry out electron structure, phonon and
electron–phonon matrix element calculations in DFT using
Perdew–Burke–Ernzerhof exchange-correlation functional60 with relatively
coarse k and q meshes. The phonon calculations are done using the supercell
method. We have used supercells of size 7 × 7 × 7, 4 × 4 × 4, 6 × 6 × 1, 6 × 6 × 1,
6 × 6 × 1, 4 × 4 × 4 for silicon, BCC iron, graphene, monolayer MoS2, monolayer
MoSe2 and GaN, respectively, which have shown reasonable convergence for
each system (<20% error bar in the final spin relaxation estimates). SOC is
included through the use of the fully relativistic pseudopotentials61. For
monolayer MoS2 and MoSe2, the Coulomb truncation technique is employed to
accelerate convergence with vacuum sizes62.

We then transform all quantities from plane wave to maximally localized
Wannier function basis63 and interpolate them24,25,64,65 to substantially finer k and
q meshes (with >3 × 105 total points) for lifetime calculations. Statistical errors of
lifetime computed using different random samplings of k-points are found to be
negligible (<1%). This Wannier interpolation approach fully accounts for polar
terms in the electron–phonon matrix elements and phonon dispersion relations
using the approaches of Verdi and Giustino66 and Sohier et al.67 for the 3D and 2D
systems.
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Fig. 7 Dependence of GaN spin relaxation on extrinsic scattering. In-plane
(τs,xx) and out-of-plane (τs,zz) spin lifetime of GaN as a function of extrinsic
scattering rates at 300 K. The experimental τs,zz at 298 K is from ref. 69.
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Code availability
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