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Abstract: Although a previous study suggested that erythropoietin-producing hepatoma (EPH) receptors play im-
portant roles in tumor progression and the overexpression of EPHs in cancer patients is related to poor prognoses, 
high-throughput gene expression profiling of EPH family members in different types and subtypes of cancers has so 
far not been conducted. We herein carried out a series of bioinformatic analyses on expressive profiles of every EPH 
member across 21 different types of clinical cancers versus matched normal tissues gathered from the Oncomine 
platform. We validated these results by protein expression study of all EPHs family members by The Human Protein 
Atlas repository. Our results uncovered the overexpression of most EPH subunits in numerous cancer types, es-
pecially the dramatic overexpression of six EPHs members, namely EPHA1, EPHA2, EPHA3, EPHA4 and EPHB1, 
EPHB2, EPHB3, EPHB4 in bladder, colorectal, esophageal, gastric, and prostate cancers. Furthermore, EPHB2 was 
specifically highly expressed in cervical cancer, EPHA3 in liver cancer, and EPHB1 in uterine cancer. Collectively, 
expressive profiles of these EPHs were confirmed and correlated with different cancer subtypes as potential bio-
markers. This study provides useful information for further studies on cancer development and clinical treatments.

Keywords: Erythropoietin-producing hepatoma (EPH) receptors, ephrins, erythropoietin-producing hepatocellular 
type-A (EPHA) receptor, erythropoietin-producing hepatocellular type-B (EPHB) receptor, medical oncology, bioin-
formatics

Introduction

Erythropoietin-producing hepatoma (EPH) and 
ephrins have recently become a focal point of 
research. Mammalian EPH receptors were doc-
umented to be the dominant group of tyrosine 
kinase receptors that are composed of nine 
A-type EPHs (EPHA1~8, 10), five A-type ephrins 
(ephrins-A1~5), five B-type EPHs (EPHB1~4, 6), 

and three B-type ephrins (ephrin-B1~3). The 
binding complexes of EPHs and ephrins are 
also known to play important roles in cell-cell 
communication, as they regulate the actin cyto-
skeleton, cell structure, and cell motility. Fur- 
thermore, other cellular processes, such as cell 
growth, differentiation, apoptosis, and secre-
tion, are also influenced by these proteins [1, 
2].
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Figure 1. Flow Diagram. Flow chart presenting the identification and collec-
tion of studies for the statistical meta-analysis.

A meta-analysis of mRNA expression profiles of 
EPH family members in clinical cancer and 
matched normal tissues was conducted obey-
ing the PRISMA guidelines (Figure 1) [9]. The 
Oncomine database (www.oncomine.org) was 
used to obtain a systematic analysis of differ-
ent types cancer microarray data [10]. On- 
comine has over 700 independent datasets, 
equivalent to 90,000 microarray experiments. 
This database covers every major cancer type 
and many pathological subtypes. Differential 
expressions of EPHs in cancer versus matched 
normal tissues were determined by the multi-
ple of change-based standard with linear mo- 
del correlation. Screening criteria in this stu- 
dy were as follows: a fold change of >2.0, a p 
value of <0.001, and the percentile ranking of 
genes of <10%. Oncomine default algorithms 
(two-tailed Student’s t-test and multiple test- 
ing corrections) were used to calculate p valu- 
es and significant differences in EPH expres-
sions between cancerous and control sampl- 
es. The false discovery rate (FDR) method  
was used to perform multiple testing correc-
tions. Corrected p values (Q-values) were ca- 
lculated as Q = N ·P/R, where P = p value, N = 
total number of genes, and R is the sorted rank 
of p values. By comparing mRNA expressions  
in 21 cancer types with the corresponding nor-

EPHs are involved in many important human 
physiologic activities such as angiogenesis, pl-
asticity and regenerative capacity of the ner-
vous system, glucose and intestinal homeosta-
sis, immune responses, bone formation pro-
cess, and stem cell flexibility. Besides the phys-
iological activities and effects, the activation 
and inactivation of the EPH/ephrin system are 
also involved in many pathophysiological pro-
cesses such as cancer, diabetes, and Alzh- 
eimer’s disease [3, 4]. Recently, EPHs garnered 
attention as potential therapeutic targets in 
cancer treatment. Numerous studies have 
revealed correlations between EPH/ephrin lev-
els and tumor angiogenesis. In cancer progres-
sion, angiogenesis plays a crucial role in me- 
tastasis and invasion. These processes are 
actualized by the signaling communication 
between cancer cells and tumor-associated 
endothelial cells [5, 6]. Toma et al. showed that 
cancer progression and angiogenesis are cor-
related with EPHB4 expression levels [7]. 
Another study reported that EPHA1 was si- 
gnificantly overexpressed in metastatic renal 
cell carcinoma [8]. Despite these meaning- 
ful findings, no comprehensive screening me- 
thod has been exploited to examine EPH mem-
ber expressions in various types of cancer.  
The advantage of a high-throughput screening 

strategy is the ability to exp- 
lore and collect data from 
numerous studies in an unbi-
ased way. It can help predict 
information about cancer pro- 
gression.

In this study, we addressed the 
expression profiles of EPH 
family members in 21 types  
of cancer from the Oncomine 
database. To our knowledge, 
this is the first comprehensive 
study of gene expression pro- 
filing in tumor samples versus 
corresponding cancer cell li- 
nes for all EPH family mem- 
bers. These data may shed 
new light on novel biomarkers 
for EPHA/B gene family for use 
in cancer research.

Material and methods

Analysis of public clinical 
datasets and gene set enrich-
ment analysis (GSEA)
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mal tissues, genes of the EPH receptor family 
(EPHA1~8 and EPHA10, and EPHB1~4 and 
EPHB6) were studied across the range of  
various cancer types and sorted by their sets  
of origin as we previously described [11,  
12]. Our data encompassed 68 studies and 
10,245 samples in total. In Oncomine, the  
gene summary view mode was displayed dur- 
ing this analysis, and it also presented ex- 
pression rankings, which were illustrated by 
color shading. In particular, a gene’s expression 
color in cancer was related to the gene rank 
percentile, from the above-described threshold 
analysis.

Analysis of the human protein atlas database

EPH protein expressions were further evaluat-
ed using the publicly available Human Protein 
Atlas database which contains images of tis- 
sue microarrays labeled with antibodies against 
11,250 human proteins. These tissue microar-
rays comprise sections from 46 normal human 

tissues and more than 20 types of human can-
cers [13].

Construction of protein-protein interaction 
(PPI) networks and screening of modules

Search Tool for the Retrieval of Interacting 
Genes/Proteins (STRING) database (https://
string-db.org) was used to conduct the prote- 
in-protein interaction network. Briefly, the EPH 
protein symbols were keyed into the search  
box with multiple proteins/identifiers option.  
All default parameters from STRING database 
were selected for this analysis [14]. Subse- 
quently, Cytoscape was used to visualize the 
network with ClueGO and CluePedia [15-17].

Results

EPH/ephrin receptor expressions in cancer

In order to identify expressions of EPH recep-
tors in different cancer subtypes, the web-bas- 
ed high-throughput Oncomine database was 

Figure 2. Expression of erythropoietin-producing hepatoma A/B (EPHA/B) family genes across different cancers. Ex-
pressions of EPHA/B family genes in different types of cancers compared to normal patients. Each gene was found 
in its tissue of origin, and the color gradient correlates with a decreasing gene rank percentile. The search criteria 
threshold was set to p<0.001 with a multiple of change of >2.0 and gene rank percentile of <10% for screening 
high-throughput datasets of cancer versus normal cases.
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utilized [10]. Expression ratios of cancer ver- 
sus normal tissues are presented in Figure  
2, and the stronger intensity of red shows high-
er overexpression of target genes. The number 
in each cell reveals the number of analyses th- 
at conformed to the selection criteria (a multi-
ple of change of >2.0, a p value of <0.001, and 
a percentile ranking of genes of <10%). The 
analyses were classified by the original organ, 
and all cancerous subtypes were included (e.g., 
gastric mixed adenocarcinoma or gastric intes-
tinal-type adenocarcinoma). Our bioinformatics 
data demonstrated that mRNAs of most EPH 
receptors genes increased in diverse types of 
cancers. EPHA1 had high expression in pros-
tate carcinoma and infiltrating bladder urothe-
lial tumor tissues (Figure 2). EPHA2 was over- 
expressed in bladder, colorectal, pancreatic, 
and vulvar cancers, and seminomas. Expres- 
sion of EPHA3 increased in brain tumors, kid-
ney, liver, and pancreatic cancers, and sarco-
mas (Figure 2). Expression of EPHA4 was ele-
vated in bladder, brain, gastric, head and neck, 
and pancreatic cancers. For EPHB family mem-
branes, 16 of 314 analyses conformed to the 
selection threshold for EPHB1, 24 of 346 for 
EPHB2, 15 of 358 for EPHB3, 19 of 364 for 
EPHB4, and eight of 337 for EPHB6.

EPHA family member expressions in cancer

The current data revealed that EPHA1 was 
overexpressed in several types of cancer such 
as bladder, colon, breast, prostate, and renal 
cancers (Figure 2). EPHA1 had multiples of 
increase in bladder cancer tissues of 5.16~ 
12.17, p value changes ranged 2.91E-16~ 
7.24E-24, and EPHA1 ranked in the top 1% in 
either superficial or infiltrating bladder urothe-
lial carcinoma. The multiples of change of EP- 
HA1 significantly increased in all subtypes of 
colon, breast, prostate, and renal cancers with 
gene rankings in the top 9% (Table 1).

The current analysis revealed that EPHA2 was 
overexpressed in pancreas, bladder, colon, and 
vulvar cancers, and seminomas (Figure 2). 
EPHA2 had a significant multiple of change of 
>3.6 and a gene ranking within the top 5%  
in yolk sac tumors. EPHA2 was also overex-
pressed with maximum multiples of increase of 
>2-fold compared to normal tissues, and the 
gene ranked in the top 5% in infiltrating blad- 
der urothelial carcinoma, rectal mucinous ade-

nocarcinomas, and vulvar intraepithelial neo-
plasia (Table 1).

Our data also showed that EPHA3 had high 
expressions in liver, brain, renal, and pancre- 
as cancers and sarcomas, relative to normal 
matched tissue types (Figure 2). Moreover, it 
also had significant multiples of increase (>5-
fold) in hepatocellular carcinoma and cirrhosis, 
with the gene ranked in the top 1%. In brain 
cancer, sarcomas, renal cancer, and pancreas 
cancer, EPHA3 ranked in top 3%~10% of over-
expressed genes with a maximum multiple of 
change of 9.62 in desmoplastic medulloblasto-
mas (Table 1).

The present data revealed that EPHA4 was  
significantly overexpressed in seven types of 
cancers and presented in the top 10% of the 
majority of commonly altered genes (Figure 2). 
In invasive breast carcinoma, EPHA4 was found 
to be significantly overexpressed with a p value 
of 3.93E-15 and was ranked in the top 6%  
relative to normal tissues. For infiltrating blad-
der urothelial carcinoma compared to norm- 
al tissues, EPHA4 had a 4.95-fold-increase  
and was ranked in the top 2%. EPHA4 was  
overexpressed in pancreas cancer and was 
ranked within the top 4%~7%. Compared to  
normal tissues, EPHA4 had gene ranking in  
the top 3%~10% in head and neck squamous  
cell carcinomas and floor of the mouth carci- 
nomas. For brain cancer, gastric cancer, mye- 
lomas, melanomas, and esophageal cancer, 
EPHA4 had multiples of change of up to 6-fold 
with gene ranking in the top 2%~10% (Table 1).

Our results showed that EPHA5 had a 2.06- 
fold increase in diffuse large B-cell lymphomas 
relative to normal tissues (Table 1). We found 
that EPHA7 was overexpressed in kidney can-
cer, B-cell acute lymphoblastic leukemia, sar- 
comas, and parathyroid adenomas (Figure 2). 
EPHA7 had multiples of increase in papillary 
renal cell carcinoma and clear cell sarcomas  
of the kidney of 2.489~5.238 (Table 1). For 
parathyroid adenomas compared to normal tis-
sues, EPHA7 had a 3.173-fold increase with a  
p value of 2.09E-5, and the gene was ranked in 
the top 2% (Table 1). We found that EPHA8  
had a 2.445-fold increase in rectosigmoid ade-
nocarcinomas with a p value of 2.60E-5, and 
the gene was ranked in the top 4% (Figure 2, 
Table 1). We found that EPHA10 not only had 
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Table 1. Expression of EPHA family members in cancer

Gene Cancer Subtype N
(case)

p value
(cancer/normal)

t‑test
(cancer/normal)

Multiple of change 
(cancer/normal) % Gene ranking Database reference

EPHA1  Bladder  Superficial bladder cancer  157 7.24E-24 14.661 12.168 30 (in top 1%) J Clin Oncol [62]

Infiltrating bladder urothelial carcinoma 157 2.91E-16 9.620 5.164 97 (in top 1%) J Clin Oncol [62]

Colorectal Colon adenoma  64 5.32E-14 9.912 2.243 437 (in top 3%) Mol Cancer Res [63]

Rectal adenoma 64 2.07E-5 7.220 2.464 1334 (in top 7%) Mol Cancer Res [63]

Breast Invasive ductal and lobular carcinoma 593 4.01E-9 6.765 2.040 253 (in top 2%)  Nature [64]

Seminoma Yolk sac tumor, NOS 107 8.73E-6 6.916 2.980 750 (in top 5%) Cancer Res [65]

Prostate Prostate carcinoma 34 7.19E-5 4.364 4.740 444 (in top 6%) Cancer Res [66]

Renal Clear cell renal cell carcinoma  67 8.53E-4 3.932 2.602 1746 (in top 9%) BMC Cancer [67]

EPHA2 Bladder Infiltrating bladder urothelial carcinoma 157 6.09E-9 6.196 2.848 592 (in top 5%) J Clin Oncol [62]

Pancreas Pancreatic carcinoma  52 9.50E-8 6.523 4.139 307 (in top 2%) Cancer Cell [68]

Colorectal Rectal mucinous adenocarcinoma  105 1.14E-4 8.193 2.615 618 (in top 4%) Genome Biol [69]

Seminoma Yolk sac tumor, NOS  107 1.29E-5 8.319 3.577 843 (in top 5%) Cancer Res [65]

Teratoma, NOS 107 8.81E-7 7.929 2.915 1200 (in top 7%) Cancer Res [65]

Vulva Vulvar intraepithelial neoplasia 19 2.32E-4 4.353 2.597 869 (in top 5%) Int J Cancer [70]

EPHA3 Liver Hepatocellular carcinoma 115 5.73E-14 9.844 5.891 54 (in top 1%) Mol Med [71]

Cirrhosis 75 4.84E-7 6.863 5.143 82 (in top 1%) Hepatology [72]

Brain Classic medulloblastoma 85 2.15E-8 6.567 9.620 138 (in top 3%) Nature [73]

Desmoplastic medulloblastoma  85 6.28E-4 4.011 8.838 190 (in top 4%) Nature [73]

Sarcoma Dedifferentiated liposarcoma 158 3.78E-9 6.954 3.850 415 (in top 4%) Nat Genet [74]

Round cell liposarcoma  54 9.79E-4 3.809 3.791 709 (in top 6%) Cancer Res [75]

Renal Hereditary clear cell renal cell carcinoma  70 3.04E-9 7.518 2.733 515 (in top 5%) Cancer Res [76]

Non-hereditary clear cell renal cell carcinoma 70 3.27E-7 6.231 2.350 642 (in top 6%) Cancer Res[76]

Clear cell renal cell carcinoma 20 2.39E-4 4.254 5.148 1192(in top 10%) Clin Cancer Res [77]

Pancreas Pancreatic ductal adenocarcinoma  78 2.01E-10 7.208 4.834 681 (in top 4%) Hepatogastroenterology [78]

EPHA4  Breast Invasive breast carcinoma stroma 59 3.93E-15 13.162 3.137 962 (in top 6%) Nat Med [79]

Bladder Infiltrating bladder urothelial carcinoma  157 5.46E-15 9.099 4.959 133 (in top 2%) J Clin Oncol [62]

Pancreas Pancreatic ductal adenocarcinoma 78 1.89E-10 7.196 2.884 674 (in top 4%) Hepatogastroenterology [78]

Pancreatic carcinoma  52 6.24E-6 4.859 2.147 833 (in top 5%) Cancer Cell [68]

Pancreatic adenocarcinoma 27 4.28E-4 6.646 121.141 334 (in top 7%) Cancer Res [80]

Head-Neck Head and neck squamous cell carcinoma 54 5.79E-10 7.635 4.288 359 (in top 3%) Cancer Res [81]

Floor of the mouth carcinoma 84 8.39E-4 4.223 2.557 1934 (in top 10%) Cancer Res [82]

Brain Glioblastoma  101 1.30E-6 7.380 2.781 421 (in top 3%) Cancer Cell [83]

Gastric Gastric mixed adenocarcinoma 69 1.32E-6 7.196 3.984 264 (in top 2%) Eur J Cancer [84]

Myeloma  Monoclonal gammopathy of undetermined significance 78 3.90E-5 4.263 2.034 1885 (in top 10%) Blood [85]

Melanoma Benign melanocytic skin nevus 70 8.41E-5 5.143 6.083 493 (in top 4%) Clin Cancer Res [86]

Esophagus Esophageal adenocarcinoma 48 4.63E-4 3.752 2.481 1137 (in top 8%) Gastroenterology [87]

EPHA5 Lymphoma Diffuse large B-cell lymphoma  102 9.70E-4 3.714 2.064 317 (in top 8%) J Exp Med [88]
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EPHA7  Leukemia B-Cell acute lymphoblastic leukemia  2096 1.07E-24 12.237 2.468 1058 (in top 6%) J Clin Oncol [89]

Renal Papillary renal cell carcinoma 92 3.79E-9 14.352 5.238 571 (in top 5%) Clin Cancer Res [90]

Clear cell sarcoma of the kidney 35 5.92E-4 6.479 2.489 498 (in top 4%) Clin Cancer Res [91]

Parathyroid Parathyroid gland adenoma 61 2.09E-5 4.855 3.173 251 (in top 2%) Am J Pathol [92]

EPHA8 Colorectal Rectosigmoid adenocarcinoma  237 2.60E-5 5.202 2.445 706 (in top 4%) Nature [93]

EPHA10  Breast Invasive breast carcinoma stroma  59 1.95E-15 13.532 2.230 909 (in top 5%) Nat Med [79]

Male breast carcinoma  593 5.94E-8 9.165 3.480 319 (in top 2%) Nature [64]

Mixed lobular and ductal breast carcinoma 593 3.07E-4 5.030 3.417 1229 (in top 7%) Nature [64]

Lung Lung adenocarcinoma  246 5.65E-10 9.846 4.732 1378 (in top 8%) Cancer Res [94]

Esophagus Barrett’s esophagus  48 2.93E-5 4.684 3.784 400 (in top 3%) Gastroenterology [87]

Prostate Prostate carcinoma  122 3.33E-5 4.527 1.970 1068 (in top 6%) Nature [95]

Prostate carcinoma 21 1.26E-4 4.694 1.980 158 (in top 1%) Clin Cancer Res [96]
NOS: not otherwise specified.
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high expression in breast cancer but also in 
lung, esophageal, and prostate cancers (Fi- 
gure 2, Table 1). EPHA10 was overexpressed  
in invasive breast carcinoma, male breast car-
cinoma, and mixed lobular and ductal subtypes 
(Table 1).

EPHB family members expression in cancer

EPHB1 was reported to involve in colorectal 
cancer [18] and overexpression of EPHB1 was 
found in patients with gastric cancers [19]. The 
current data revealed that EPHB1 was overex-
pressed in brain, esophageal, gastric, kidney, 
lung, and prostate cancers, lymphomas, sarco-
mas, and melanomas (Figure 2). EPHB1 was 
overexpressed in oligodendrogliomas and ana-
plastic oligodendrogliomas of the brain, in uter-
us corpus leiomyomas, in diffuse and intestinal 
subtypes of gastric adenocarcinomas, in Barr- 
ett’s esophagitis and esophageal adenocarci-
nomas, in subtypes of lymphoma (including fol-
licular lymphomas and diffuse large B-cell lym-
phomas), in benign melanocytic skin nevi, in 
adenocarcinomas and squamous cell carcino-
ma of the lungs, in intraepithelial neoplasia of 
the prostate, and also in clear cell carcinoma of 
the kidneys (Table 2). Overall, EPHB1 was sug- 
gested to be a potential oncogene in cancer 
development.

We found that EPHB2 had higher expressions 
not only in colon and cervix tumors but also in 
head-neck, ovarian, bladder, lung, gastric, br- 
ain, esophagus, brain, and salivary-gland can-
cers, lymphomas, sarcomas, mesotheliomas, 
and seminomas (Figure 2). EPHB2 was overex-
pressed in adenomas and carcinoma of the 
colon, in squamous cell carcinoma of the 
tongue, head, and neck, in ovarian carcinoma, 
in infiltrating uroepithelial carcinoma of the 
bladder, in adenocarcinoma of the lungs, in 
squamous carcinoma of the cervix, in centro-
blastic lymphomas, in intestinal or mixed sub-
types of gastric adenocarcinomas, in subtypes 
of sarcomas (myxofibrosarcomas and round 
cell liposarcomas), in glioblastomas and me- 
ningiomas, in Barrett’s esophagitis and eso- 
phageal adenocarcinomas, in yolk sac tumors, 
and in pleural malignant mesotheliomas (Ta- 
ble 2). All of the increases of cancer/normal 
multiples of change were significant.

We also found that EPHB3 not only had high 
expression in lung and prostate cancers but 
also in a variety of cancer subtypes, such as 

ovarian cancer, sarcomas, and testicular can-
cer. EPHB3 was present in both colorectal and 
testicular cancers with gene ranks within the 
top 1% of upregulated genes (Figure 2). EPHB3 
was overexpressed in adenomas, adenocarci-
nomas, and mucinous carcinoma of the colon 
and rectum, in serous cystadenocarcinomas  
of the ovaries, in squamous cell carcinoma of 
the lungs, in synovial sarcomas, in testicular 
seminomas, and in prostate adenocarcinomas 
(Table 2). EPHB3 exhibited the top ranking of 
expression in all these cancers.

We found that EPHB4 had high expressions  
in prostate, colorectal, testicular, gastric, and 
esophageal cancers seminomas, and melano-
mas (Figure 2). EPHB4 was overexpressed in 
adenomas, adenocarcinomas, mucinous carci-
noma of the colon and rectum, in seminomas, 
mixed germ cell tumors, and yolk sac tumors  
of the testes, in the intestinal subtype of gas- 
tric adenocarcinomas, in squamous cell carci-
noma of the esophagus, in basal cell carcino- 
ma of the skin, and in prostate carcinoma 
(Table 2). Increased expression of EPHB6 was 
detected in bladder cancer, leukemia, lympho-
mas, and pleural malignant mesotheliomas 
(Figure 2). EPHB6 was mostly overexpressed in 
T-cell leukemia and superficial bladder cancer 
(Table 2).

Validation of EPH family member expressions 
with protein expressions

To further confirm our bioinformatics results 
analyzed on the Oncomine platform, we used 
the Human Protein Atlas database to verify  
EPH receptor members’ protein expressions  
in a variety of cancer cell lines. Pathology data 
of clinical human cancer tissues in the Human 
Protein Atlas collection were analyzed. These 
data revealed similar protein expression pat-
terns of target genes in different cancer pati- 
ents. Expressions of EPHA and EPHB family 
members in various types of cancer, namely 
colorectal cancer, breast cancer, lung cancer, 
gliomas, and prostate cancers, were examin- 
ed by immunohistochemistry (Figures 3, 4). In 
particular, EPHA1, EPHA6, EPH7, EPHB2, and 
EPHB3 had strong high expressions through- 
out many cancer cell lines. These data from the 
Human Protein Atlas were used to confirm the 
expressions of EPHA/B proteins from clinical 
patient tissues. Results of the Human Protein 
Atlas analysis were consistent with findings fr- 
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Table 2. Expressions of EPHB family members in cancer

Gene Cancer Subtype N
(case)

p value (cancer/
normal)

t‑test (cancer/
normal)

Multiple of change 
(cancer/normal) % Gene ranking Database reference

EPHB1  Brain Oligodendroglioma 180 7.90E-10 6.947 4.531 501 (in top 3%) Cancer Cell [97]
anaplastic oligodendroglioma 33 3.39E-7 6.559 2.201 379 (in top 2%) Cancer Res [98]

Uterus Uterine corpus leiomyoma 77 4.90E-7 5.366 2.903 318 (in top 2%) Cancer Res [99]
Gastric Diffuse gastric adenocarcinoma  90 4.87E-6 5.109 2.050 473 (in top 3%) Clin Cancer Res [100]

Gastric intestinal type adenocarcinoma 90 7.86E-5 4.540 2.178 467 (in top 3%) Clin Cancer Res [100]
Esophagus Barrett’s esophagus  118 7.23E-6 6.398 2.369 1230 (in top 7%) PLoS One [101]

Esophageal adenocarcinoma 48 2.68E-5 7.013 10.052 436 (in top 3%) Gastroenterology [87]
Barrett’s esophagus 48 4.32E-4 3.870 2.827 783 (in top 6%) Gastroenterology [87]

Lymphoma Follicular lymphoma 120 1.25E-5 5.106 2.613 39 (in top 2%) Nature [102] 
Diffuse large B-cell lymphoma 120 3.04E-4 5.286 3.006 52 (in top 2%) Nature [102]
Follicular lymphoma  102 1.10E-4 4.555 2.088 40 (in top 1%) J Exp Med [88]

Melanoma Benign melanocytic skin nevus 70 2.21E-5 5.241 2.185 328 (in top 3%) Clin Cancer Res [86]
Lung Lung adenocarcinoma  73 1.01E-4 5.192 2.608 303 (in top 3%) Proc Natl Acad Sci U S A [103]

Squamous cell lung carcinoma  73 1.35E-4 4.645 3.360 337 (in top 4%) Proc Natl Acad Sci U S A [103]
Prostate Prostatic intraepithelial neoplasia 101 3.44E-4 3.899 2.616 465 (in top 5%) Nat Genet [104]

Renal Clear cell sarcoma of the kidney 35 3.79E-4 19.043 8.371 48 (in top 4%) Clin Cancer Res [91]
EPHB2 Colorectal Colon adenoma  64 1.14E-18 14.090 2.901 72 (in top 1%) Mol Cancer Res [63]

Colorectal carcinoma 82 4.91E-15 11.319 2.266 184 (in top 1%) Clin Exp Metastasis [105]
Colon adenoma  40 2.96E-8 11.028 3.221 222 (in top 2%) PLoS One [106]
Colon carcinoma  40 9.04E-8 10.042 2.765 990 (in top 6%) PLoS One [106]

Head-Neck Tongue squamous cell carcinoma 58 7.10E-13 9.363 3.708 33 (in top 1%) BMC Cancer [107]
Head and neck squamous cell carcinoma  38 4.79E-5 8.795 2.652 142 (in top 2%) Oncogene [108]

Ovarian Ovarian carcinoma 195 4.75E-12 15.823 2.250 328 (in top 3%) Cancer Res [109]
Bladder Infiltrating bladder urothelial carcinoma 157 7.49E-12 7.678 3.380 295 (in top 3%) J Clin Oncol [62]

Lung Lung adenocarcinoma  246 1.02E-10 9.515 2.400 1122 (in top 6%) Cancer Res [94]
Lung adenocarcinoma 66 7.60E-7 5.548 2.958 264 (in top 3%) BMC Genomics [110]

Cervix Cervical squamous cell carcinoma 66 4.73E-10 7.630 4.561 128 (in top 2%) Genes Chromosomes Cancer [111]
Lymphoma Centroblastic lymphoma 336 7.80E-10 7.767 4.212 416 (in top 5%) Nat Genet [112]

Gastric Gastric intestinal type adenocarcinoma  69 4.82E-9 6.762 4.236 956 (in top 5%) Eur J Cancer [84]
Gastric intestinal type adenocarcinoma  90 1.42E-7 7.171 2.155 46 (in top 1%) Clin Cancer Res [100]
Gastric mixed adenocarcinoma 90 6.08E-5 6.158 2.177 313 (in top 2%) Clin Cancer Res [100]
Gastric cancer  27 1.42E-4 4.220 3.812 360 (in top 2%) Med Oncol [113]

 Sarcoma Myxofibrosarcoma  158 2.82E-7 6.033 2.155 1084 (in top 9%) Nat Genet [74]
Round cell liposarcoma 54 8.21E-4 3.742 2.288 665 (in top 6%) Cancer Res [75]

Brain Glioblastoma 54 6.63E-6 5.413 2.239 743 (in top 6%) Cancer Res [114]
Meningioma 18 8.07E-4 4.871 4.265 37 (in top 3%) Am J Pathol [115]

Esophagus Barrett’s esophagus  24 3.81E-5 5.544 6.303 27 (in top 1%) Cancer Res [116]
Esophageal adenocarcinoma 24 2.20E-4 4.856 7.833 164 (in top 2%) Cancer Res [116]

Seminoma Yolk sac tumor, NOS 107 6.91E-5 5.585 2.350 1350 (in top 8%) Cancer Res [65]
Mesothelioma Pleural malignant mesothelioma  54 4.38E-4 4.421 2.444 938 (in top 8%) Am J Pathol [117]
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EPHB3 Colorectal Colorectal adenocarcinoma 105 3.71E-18 12.557 3.833 65 (in top 1%) PLoS One [106]
Colon adenoma 64 7.26E-16 11.608 2.321 218 (in top 2%) Mol Cancer Res [63]
Colon adenocarcinoma  105 8.52E-12 9.012 2.106 206 (in top 2%) Genome Biol [69]
Colon mucinous carcinoma 105 8.05E-6 6.513 2.106 947 (in top 5%) Genome Biol [69]
Colon adenoma 40 5.62E-11 19.664 6.410 27 (in top 1%) PLoS One [106]
Colon adenoma 40 7.05E-11 18.096 4.881 30 (in top 1%) PLoS One [106]
Colon adenocarcinoma  123 2.68E-9 6.525 2.171 627 (in top 7%) Int J Cancer [63]
Rectal mucinous carcinoma 237 1.61E-4 6.917 3.393 1364 (in top 7%) Nature [93]

Ovarian Ovarian serous Cystadenocarcinoma  594 3.43E-10 15.427 2.306 63 (in top 1%) Nature [118]
Lung Squamous cell lung carcinoma 156 5.56E-10 8.577 2.130 964 (in top 5%) PLoS One [119]

Squamous cell lung carcinoma  73 7.31E-5 4.961 4.747 272 (in top 3%) Proc Natl Acad Sci U S A [103]
Squamous cell lung carcinoma  203 6.27E-4 3.502 5.147 389 (in top 5%) Proc Natl Acad Sci U S A [103]

Sarcoma Synovial sarcoma  54 8.17E-7 7.323 7.234 77 (in top 1%) Cancer Res [75]
Testicular Testicular seminoma  74 8.38E-7 6.034 2.418 475 (in top 5%) Proc Natl Acad Sci U S A [120]
Prostate Prostate adenocarcinoma 89 1.66E-4 4.303 3.914 226 (in top 2%) Cancer Res [121]

EPHB4 Colorectal Colorectal adenocarcinoma  105 1.21E-23 15.254 2.122 20 (in top 1%) PLoS One [106]
Colon adenoma 64 8.31E-22 16.394 2.589 20 (in top 1%) Mol Cancer Res [63]
Rectal adenoma  64 4.41E-6 10.091 2.758 831 (in top 5%) Mol Cancer Res [63]
Colon adenocarcinoma 237 8.13E-16 12.139 2.265 962 (in top 5%) Nature [93]
Cecum adenocarcinoma  237 4.04E-13 10.517 2.729 317 (in top 2%) Nature [93]
Rectal adenocarcinoma 237 6.18E-13 8.617 2.091 1483 (in top 8%) Nature [93]
Colon mucinous carcinoma 237 1.07E-11 9.348 2.444 408 (in top 2%) Nature [93]
Colorectal carcinoma  82 3.99E-12 11.872 2.525 476 (in top 3%) Clin Exp Metastasis [105]
Colon carcinoma 40 2.92E-10 16.846 3.071 218 (in top 2%) PLoS One [106]
Colon adenoma  40 1.45E-7 13.443 3.056 355 (in top 2%) PLoS One [106]

Testicular Testicular seminoma 74 1.39E-11 9.097 3.313 31 (in top 1%) Proc Natl Acad Sci U S A [120]
Mixed germ cell tumor, NOS 107 3.43E-9 7.921 2.246 1007 (in top 6%) Cancer Res [65]
Seminoma, NOS 107 1.28E-8 10.424 3.845 393 (in top 3%) Cancer Res [65]
Yolk sac tumor, NOS 107 9.63E-5 5.59;2 2.345 1476 (in top 9%) Cancer Res [65]

Gastric Gastric intestinal type Adenocarcinoma  69 8.77E-9 7.324 2.367 1057 (in top 6%) Eur J Cancer [84]
Esophagus Esophageal squamous cell carcinoma 34 2.90E-6 6.257 2.054 555 (in top 5%) BMC Genomics [122]

Barrett’s esophagus  48 7.42E-4 3.516 2.623 917 (in top 7%) Gastroenterology [87]
Melanoma Skin basal cell carcinoma  87 8.72E-6 8.478 2.458 360 (in top 2%) BMC Med Genomics [123]
Prostate Prostate carcinoma 101 2.58E-5 4.437 2.363 305 (in top 3%) Nat Genet [104]

EPHB6 Leukemia T-cell acute lymphoblastic leukemia  2096 3.83E-55 21.261 3.924 71 (in top 1%) J Clin Oncol [89]
T-cell childhood acute lymphoblastic leukemia 288 1.62E-7 10.033 4.216 173 (in top 2%) Blood [124]
T-cell acute lymphoblastic leukemia 127 1.13E-6 8.926 7.396 655 (in top 7%) Leukemia [125]

Bladder Superficial bladder cancer 157 3.90E-13 10.463 5.740 786 (in top 7%) J Clin Oncol [62]
Superficial bladder cancer  60 2.86E-7 6.025 2.224 477 (in top 4%) Cancer Res [126]
Superficial bladder cancer 54 1.16E-6 10.625 3.650 15 (in top 2%) Clin Cancer Res [127]

Lymphoma Mantle cell lymphoma 336 3.65E-6 5.395 5.250 193 (in top 3%) Nat Genet [112]
Mesothelioma Pleural malignant mesothelioma  54 1.85E-5 5.509 2.033 354 (in top 3%) Am J Pathol [117]
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om mRNA expressions in the Oncomine an- 
alysis.

Scoring of genetic associations based on 
ClueGo and CluePedia

We used the ClueGO and CluePedia databas- 
es to query genetic interaction networks as- 
sociated with EPHA and EPHB family genes. 
The ClueGO and CluePedia databases incor- 
porate gene-gene interactions from various 
databases, including Gene Ontology, KEGG, 
CORUM, and WikiPathways. The various sourc-
es of associated data are standardized in the 
ClueGo and CluePedia databases. A combined 
score was obtained by computing both known 
and predicted associations. A higher combin- 
ed score represents a more-reliable associa-
tion from more than one type of information. 
Based on these combined scores, a graphical 
network of gene-gene interactions was gener-
ated for some of the EPHA and EPHB family 
genes (Figure 5). Strong evidence for interac-
tions among these EPHA and EPHB family 
genes was supported by STRING, and other 
networks were validated in previous reports 
(Figures 6, 7). Hence, our interacting network 
presents a novel tool for screening potential 
biomarkers in the EPHA/B gene family.

Discussion

It is obvious that the EPH and ephrin binding 
complex functions in the development and pro-
gression of different types of tumors. These 
genes control the proliferation of stem cells 
and progenitor cells, invasion, and angiogene-
sis. Functions of EPH/ephrin receptors are dis-
tinct; however, all these genes play vital roles in 
cancer metastasis. Therefore, EPHs and eph-
rins are proposed to be potential therapeutic 
targets for cancer treatment [20]. The present 
study analyzed expression levels of EPHA/B 
genes in diverse clinical samples and cell lin- 
es of various cancers. By determining novel  
targets of EPHA/B in various types of cancer 
using high-throughput technology, the present 
data selected potential targets for future can-
cer treatment. According to our bioinformatics 
data, many EPHA/B family genes participate in 
diverse types of cancer. For instance, colorec-
tal cancer exhibited significant upregulation in 
EPHA1, EPHA2, EPHA8, EPHB2, EPHB3, and 
EPHB4. Likewise, EPHA1, EPHA2, EPHA4, EP- 

HB2, and EPHB6 were shown to be highly ex- 
pressed in bladder tumors. Also, esophageal 
cancer showed dramatic upregulation of EP- 
HA4, EPHA10, EPHB1, EPHB2, and EPHB4. 
Gastric cancer showed dramatic upregulation 
of EPHA4, EPHB1, EPHB2, EPHB3, and EPHB4. 
Prostate cancer showed dramatic upregulati- 
on of EPHA1, EPHA10, EPHB1, EPHB1, EPHB3, 
and EPHB4. Our study suggested that the high 
expression of EPHB2 was associated with cer-
vical cancer. EPHA3 and EPHB1 were only re- 
spectively upregulated in liver cancer and uter-
ine cancer. Many microarray and RNA-Seq da-
tasets were analyzed for expression patterns  
of EPHA/B through multiple types of cancer. 
The present study targeted candidates for car-
cinogenesis of specific cancers, and further 
studies should be conducted according to the- 
se findings.

EPHA/B and their ephrin ligands are known to 
be involved in tissue boundary formation, vas-
cular development, and axon control [21, 22]. 
EPHs and ephrins are membrane proteins whi- 
ch allow bidirectional signaling between adja-
cent cells. EPH-ephrin binding can regulate the 
actin cytoskeleton by affecting G-protein and 
Rho GTPase signaling to regulate cell morphol-
ogy, adhesion, and migration [23]. In various 
cell types, cell motility is controlled by crucial 
processes, such as microtubular dynamics, po- 
lymerization dynamics, and polarization of the 
cytoskeleton. Expressions of EPH receptors  
are upregulated in the course of tumor deve-
lopment. Overexpression of EPHA receptors is 
associated with a poor prognosis of cancer 
patients [24]. EPHB receptors interact with  
surrounding stromal cells to promote migra- 
tion and invasion of cancer cells [25]. How- 
ever, there are no systematic approaches to 
examine the functions of EPHA/B receptor fam-
ily genes in diverse types of cancer.

Previous research showed that positive EP- 
HA1 protein staining was significantly linked to 
more-aggressive renal cell carcinoma [8]. In- 
creased expression in EPHA1 was also detect-
ed in prostate cancers [26]. EPHA2 is express- 
ed by most epithelial cells [27]. The indepen-
dence of EPHA2 with its ephrin ligand suggests 
its potency with that type of cancer cell devel-
opment [28]. The EPHA2 staining intensity was 
dramatically elevated in advanced stages of 
urothelial carcinoma relative to the normal uro-
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Figure 3. Protein expressions of erythropoietin-producing hepatoma A (EPHA) family members in human tumor samples. Protein expression data of EPHA family 
members were acquired from the Human Protein Atlas. Representative pathology images of immunohistochemical staining for the top four cancers are indicated in 
the left panel, and the overall protein expression is indicated in the right panel.
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Figure 4. Protein expressions of erythropoietin-producing hepatoma B (EPHB) family members in human tumor samples. Protein expression data of EPHB family 
members were acquired from the Human Protein Atlas. Representative pathology images of immunohistochemical staining for the top four cancers are indicated in 
the left panel, and the overall protein expression is indicated in the right panel.
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thelium [29]. EPHA2 was suggested to play 
essential roles in stages I and II of colon car- 
cinogenesis [30]. EPHA3 is well known to play 
oncogenic roles in carcinogenesis, migration, 
invasion, angiogenesis, and cancer progres-
sion [31]. Expression of EPHA3 was correlated 
with poor survival of liver cancer patients [32]. 
EPHA4 is known to be dominantly expressed in 
the nervous system and inhibit axon regenera-
tion [33, 34]. In certain types of cancer, inhibi-
tion of EPHA4 impedes the progression and 
invasion of cancer cells [35]. Higher expression 
of EPHA4 was associated with cancer metasta-
sis [36, 37]. EPHA5 is mostly recognized for its 
critical role in axonal guidance during embry-
onic development [38]; however, its involve-
ment in cancer is still largely unknown. The 

expression of EPHA6 was reported to be con-
trolled by HOXA13 in the genital tubercle and 
its vasculature [39]. Although the biological 
function of EPHA6 is still largely unknown, 
EPHA6 was not selected for further examina-
tion because its expression data did not sa- 
tisfy the selection criteria of the present study. 
Throughout vertebrates and humans, EPHA7 is 
highly conserved. EPHA7 is also highly present 
in embryonic tissues, particularly in the central 
nervous system in the developing stage [40]. 
But little is known about the role of EPHA7 in 
cancer development. Recent genetic studies 
suggested that EPHA8 is involved in regulating 
cell adhesion and apoptosis [41]. Some find-
ings suggested that the EPHA8 receptor induc-
es axonal projections through regulation of the 

Figure 5. Erythropoietin-producing hepatoma (EPH) member’s interaction network via ClueGo and CluePedia. The 
interaction network among EPHA and EPHB family members were analyzed with ClueGo and CluePedia with gene 
ontology. Nodes represent genes and lines represent gene-gene interactions. The network modules were estab-
lished based on the network structure and biological functions of uploaded EPHA and EPHB member genes.



EPH receptor A/B family genes: novel targets for cancer therapy

1234	 Int J Clin Exp Pathol 2020;13(5):1220-1242

mitogen-activated protein kinase (MAPK) sig-
naling pathway [42]. A previous study show- 
ed that EPHA10 is only expressed in breast 
cancer but not in normal tissues [43]. Moreover, 
EPHA10 was also examined for its potential as 
a therapeutic target [44]. Our data in Figures 2 
and 3 and Table 1 further confirmed the sig- 
nificance of EPHA family receptors in various 
types of cancer.

Overexpression of EPHB1 was found in pati- 
ents with gastric cancer [19]. EPHB2 overex-
pression is well documented in various types  
of human cancers. EPHB2 is known to be in- 

volved in the onset of colon cancer [45], cervi-
cal cancer and cholangiocarcinoma metastas- 
is [46, 47]. EPHB3 was found to engage with 
the loss of metameric migratory patterns and 
disorganization of mobility of neural crest cells 
[48]. Overexpression of EPHB3 improved sur-
vival and migration of non-small cell lung can-
cer cells [49]. EPHB4 is known for playing a  
vital role in cell signaling and modulates integ-
rin activity to modify the actin skeleton [50]. 
Upregulation of EPHB4 is associated with the 
onset and progression of prostate cancer [51, 
52]. Overexpression of EPHB3 and EPHB4 was 
detected in prostate cancer and was associat-

Figure 6. Erythropoietin-producing hepatoma A (EPHA) member’s interaction network via the Search Tool for the 
Retrieval of Interacting Genes/Proteins (STRING) database. Protein-protein interactions were constructed with the 
STRING database. The thickness of the line indicates the strength of data support for protein-protein interactions. 
Colored nodes represent EPHA member proteins and the first shell of interactors; white nodes represent the second 
shell of interactors.
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ed with regional invasion and metastasis [25]. 
The present study proved the function of EPHB 
receptors in those cancers (Figure 2, Table 2).

Meanwhile, ClueGo and CluePedia used differ-
ent types of data and text mining tools to de- 
termine relationships between genes. In the lit-
erature, the network of SEMA3C, WNT3A, SE- 

MA4B, and ADAM10 was in an intermediate 
position between EPHB and EPHA family mem-
bers [53-61]. Our results showed that EPHA 
and EPHB family genes interacted with SE- 
MA3C, WNT3A, SEMA4B, and ADAM10. The 
STRING software contains thousands of or- 
ganisms and genes with millions of gene-gene 
interactions. Our present data revealed that 

Figure 7. Erythropoietin-producing hepatoma B (EPHB) member’s interaction network via the Search Tool for the 
Retrieval of Interacting Genes/Proteins (STRING) database. Protein-protein interactions were constructed with the 
STRING database. The thickness of the line indicates the strength of data support for protein-protein interactions. 
Colored nodes represent EPHB member proteins and the first shell of interactors; white nodes represent the second 
shell of interactors.
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these relationships might play a crucial role as 
the genetic backbone of cancer development. 
In conclusion, our study proved associations 
between upregulation of EPH receptor family 
genes in public databases from clinical sam-
ples and cancer cell lines. The overexpression 
of many subunits of the EPHA/B confirmed 
their function in cancer. The overexpression of 
EPHA1, EPHA4, EPHB1, EPHB2, EPHB3, and 
EPHB4 in cancers is a novel feature of this 
study. Partial inhibition of EPHA1, EPHA4, 
EPHB1, EPHB2, EPHB3, or EPHB4 may sup-
press cancer development. Therefore, these 
EPH receptors may serve as potential thera-
peutic targets for treating and regulating can-
cer development.
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