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Abstract: Background: Periodontitis is the second most common dental disease worldwide. TNF-α is up-regulated 
in periodontal disease and induces inflammation and cell apoptosis in gingival epithelial cells (GECs). miRNAs/
mRNA axis play an important role in cell progression and inflammation. However, studies on the pathogenesis 
of periodontitisare still scarce, especially in the regulation mechanism of miRNAs. Methods: The expression and 
protein level of miR-16-5p, miR-145-5p, BACH2, and caspase 3 were determined by quantitative real time PCR and 
western blot, respectively. Cell viability was measured by MTT assay. Cell apoptosis was detected by flow cytometry. 
Dual-luciferase assay was applied to verify miR-16-5p and miR-145-5p target to the 3’UTR of BACH2. Results: TNF-α 
induced miR-16-5p, miR-145-5p and caspase 3 expression, inhibited cell viability, promoted cell apoptosis in GECs. 
However, down-regulated miR-16-5p and miR-145-5p can restore the effects of TNF-α on GECs. In addition, dual-
luciferase assay determined that BACH2 was a common target of miR-16-5p and miR-145-5p. Knockdown of BACH2 
induced GECs apoptosis. Of note, cell apoptosis induced by miR-16-5p mimic, miR-145-5p mimic, and TNF-α was 
significantly reversed by up-regulating BACH2. Conclusion: miR-16-5p and miR-145-5p mediate apoptosis induced 
by TNF-α in human gingival epithelial cells by targeting BACH2.
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Introduction 

Periodontal disease is usually caused by bacte-
rial infection of the periodontal disease sur-
rounding the teeth, leading to inflammation [1]. 
Tumor necrosis factor alpha (TNF-α), as one of 
the cytokines, is involved in systemic inflamma-
tion, which is produced by activated macro-
phages [2-5]. TNF-α also acts as a diagnostic 
marker for periodontal disease, inducing cell 
apoptosis and inflammation [6, 7]. Fujita et al 
reported that TNF-α increased the permeablili-
ty of human gingival epithelial cells (GECs) and 
disrupted the gingival epithelial barrier [8]. 
However, the underlying mechanism of TNF-α 
has been not fully investigated.

MicroRNAs (miRNAs) are small, non-coding sin-
gle-stranded RNAs of ~22 nucleotides in length 
that inhibit translation initiation and protein 
synthesis at the post-transcriptional level, or 

induce messenger RNA degradation [9, 10]. In 
addition, miRNAs are associated with cell pro-
gression, inflammation, and autoimmune acti-
vation in multiple diseases, including periodon-
tal disease [11-14]. For example, miR-146a 
promoted periodontal ligament cells differenti-
ation and miR-142 triggered GECs apoptosis 
[14, 15]. A study of Chen et al suggested that 
miRNAs regulate cytokine responses in gingival 
epithelial cells. Moreover, through sequencing 
normal GECs and periodontitis GECs, C. 
Stoecklin-Wasmer et al suggested that miRNAs 
and mRNAs may have influenced the occur-
rence of periodontitis, and be involved in 
homeostasis and inflammatory or immune 
responses [16]. However, few studies have 
been done on the regulatory mechanism and 
function of miRNAs in periodontal disease. 

According to a previous study, miR-16-5p and 
miR-145-5p were up-regulated in inflamed gin-
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gival tissues [16]. However, the function and 
underlying mechanism of miR-16-5p and miR-
145-5p have been barely investigated in peri-
odontal disease. In this study, we found that 
miR-16-5p and miR-145-5p were induced by 
TNF-α in GECs, therefore, we speculated that 
miR-16-5p and miR-145-5p were involved in 
inflammatory response and development of 
periodontal disease.

Materials and methods

Patients 

GECs collected from healthy gingival tissue 
were obtained from 20 chronic periodontitis 
patients who underwent oral surgery at 
University of Chinese Academy of Sciences 
Shenzhen Hospital. No patients underwent 
periodontal therapy and had other inflammato-
ry diseases. Informed consent was obtained 
from each patient. This experiment was 
approved by institutional ethical committee 
and review board of University of Chinese 
Academy of Sciences Shenzhen Hospital.

Cell culture and TNF-α treatment

HEK293T cells were purchased from RiboBio 
Co. (Guangzhou, China). The GECs from gingival 
tissues were cultured in keratinocyte serum-
free medium containing calcium chloride, 
bovine pituitary, epidermal growth factor, peni-
cillin and streptomycin at 37°C with 5% of CO2. 
The culture medium was changed every other 
day. When the confluence reached up to 
70-80%, cells were treated different concentra-
tion of TNF-α (PeproTech Inc., Rocky Hill, NJ, 
USA).

Cell transfection 

NC (negative control), miR-16-5p, miR-145-5p, 
anti-NC, anti-miR-16-5p, anti-miR-145-5p, vec-
tor, BACH2, scramble and siBACH2 were pur-
chased from Genecopoeia (Rockville, MD, 
USA). Plasmid and oligos transfection were per-
formed using Lipofectamine 3000 (Thermo 
Fisher Scientific) following the manufacturer’s 
protocol. 

Quantitative real-time PCR

Total RNA was extracted from cells using Trizol 
reagent following the manufacturer’s protocol. 

RNA was reverse transcribed to cDNA using 
TaqMan miRNA Reverse Transcription Kit 
(Applied Biosystems, Foster City, CA, USA) for 
miRNA and using M-MLV Reverse Transcriptase 
(Invitrogen) for mRNA. Then, Real-time qPCR 
was performed using SYBR Green Real-time 
PCR kit (Invitrogen) according to the manufac-
turer’s protocol. U6 and GAPDH were employed 
as reference genes. Fluorescence of each sam-
ple was detected in an iQTM5 Multicolor Real-
Time PCR Detection System (Bio-Rad). The 
primers used for qRT-PCR are: miR-16-5p F: 
5’-TAGCAGCACGTAAATATTGGCG-3’, miR-16-5p 
R: 5’-TGCGTGTCGTGGAGTC-3’, U6 F: 5’-CTCGC- 
TTCGGCAGCACA-3’, U6 R: 5’-AACGCTTCACGAA- 
TTTGCGT-3’, miR-145 F: 5’-GCATCTCTGGTCAG- 
TTGGG-3’, miR-145 R: 5’-GACCTCAAGAACAGT- 
AT-3’, BACH2 F: 5’-CAGCTTGGCAGTGTAGGC-3’, 
BACH2 R: 5’-CCCTGGCTGTGACCTCCTC-3’, GA- 
PDH F: 5’-GCACCGTCAAGGCTGAGAAC-3’, GAP- 
DH R: 5’-ATGGTGGTGAAGACGCCAGT-3’. The 
2-ΔΔCt method was used to calculate the re- 
lative expression of mRNA and miRNA.

Western blot

Cells were lysed with RIPA buffer with phenyl-
menthylsulfonyl flourede (PMSF) and protein-
ase inhibitor. Nanodrop2000 (Thermo Fisher 
Scientific, USA) was applied to measure protein 
concentration. Then, 20 ug protein was loaded 
into the SDS-PAGE gel to run, and then trans-
ferred the gel onto the PVDF membrane. 
Membranes were incubated with the primary 
antibodies at 4°C overnight. Membranes were 
incubated with the HRP-conjugated secondary 
antibody solution for 1 h at room temperature. 
The blot was detected using the PierceTM  
ECL western blotting substrate (Thermo Fisher 
Scientific, 32109, USA). 

Dual luciferase reporter assay

The BACH2 3’UTR and BACH2 3’UTR mutant 
were amplified and inserted into the pMIR-
REPORT™ (Thermo Fisher Scientific, USA) to 
construct BACH2 wild type reporter vector 
(BACH2-wt) and BACH2 mutant type reporter 
vector (BACH2-mut). Then, BACH2-wt or BACH2-
mut was co-transfected with NC or miR-16-5p 
and miR-145-5p into HEK293T cells using 
Lipofectamine 3000. After 48 h post-transfec-
tion, the luciferase activity was measured us- 
ing Dual-Luciferase Reporter Assay System 
(Promega, USA).
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Measurement of caspase 3

The activity of caspase 3 was measured using 
a colorimetric assay kit (BioVision Inc., Mountain 
View, CA, USA) according to the manufacturer’s 
protocol. We read the absorbance at a wave-
length of 405 nm.

MTT assay 

2.0×103 cells were seeded in 96-well cell cul-
ture plates (Corning Inc., Corning, NY) and incu-
bated for 24 h. Then 20 µl MTT were added into 
each well and incubate for 4 h at 37°C before 
measuring the absorbance. 150 µL dimethyl 
sulfoxide (DMSO; Sigma) were added into each 
well and following incubation for 3 h at 37°C 
with 5% of CO2. Cell viability was measured 
using a spectrophotometric microplate reader 
(Beyotime Institute of Biotechnology, Haimen, 
China) at OD=450 nm.

Flow cytometry

Annexin V-FITC apoptosis detection kit (Beyo- 
time, Shanghai, China) was applied to detect 
cell apoptosis according to the manufacturer’s 
protocol. Briefly, cells collected were re-sus-

TNF-α induced miR-16-5p and miR-145-5p 
expression in GECs

To investigate the effect of TNF-α on miRNA 
expression, different concentrations of TNF-α 
was used to treat human GECs. After treatment 
with TNF-α at 5-20 ng/ml, the expression of 
miR-16-5p and miR-145-5p was significantly 
increased in the treatment of TNF-α compared 
with controls, peaking at 15 ng/ml (Figure 1A 
and 1C). In the following experiment, GECs were 
treated with 15 ng/ml TNF-α and the expres-
sion of miR-16-5p and miR-145-5p at 5 h, 10 h, 
15 h, 20 h, 30 h and 45 h were detected. The 
results showed that miR-16-5p and miR-145-
5p expression were significantly higher than 
that of the control group at 10 h, peaking at 20 
h (Figure 1B and 1D). Therefore, miR-16-5p and 
miR-145-5p expression were induced by TNF-α 
in GECs in a dose-dependent manner.

miR-16-5p and miR-145-5p were involved in 
TNF-α induced apoptosis in GECs

Next, we further validated the interaction of 
miR-16-5p and miR-145-5p with TNF-α in the 
biologic effects of GECs. MMT assay analysis 
showed that TNF-α remarkably decreased cell 

Figure 1. TNF-α induced miR-16-5p and miR-145-5p expression in GECs. (A, 
C) The expression of miR-16-5p (A) and miR-145-5p (C) was detected using 
qRT-PCR in GECs treated with different concentrations of TNF-α for 24 h. (B, 
D) The expression of miR-16-5p (B) and miR-145-5p (D) was detected using 
qRT-PCR in GECs at different times at 15 ng/ml TNF-α. *P<0.05.

pended in binding solution 
(200 μl) and stained with 
Annexin V-FITC (10 μl) and 
propidium iodide (10 μl) for  
15 min at 37°C. Cell apopto-
sis rate was monitored by flow 
cytometry (BD Biosciences, 
San Jose, CA, USA).

Statistical analysis

All data were performed as 
mean ± SD (standard devia-
tion) from at least 3 tim- 
es independent experiments. 
The Student’s t-test or one-
way analysis of variance were 
used to analyze the differenc-
es between groups. The analy-
sis of results was displayed 
using GraphPad Prism 7.0 
(GraphPad Software, San Die- 
go, CA, USA). P<0.05 was 
regarded as significant.

Results 
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Figure 2. miR-16-5p and miR-145-5p were involved in TNF-α induced apoptosis in GECs. A. Cell viability was measured using MTT in control, TNF-α, TNF-α + anti-
miR-16-5p, TNF-α + anti-miR-145-5p and TNF-α + anti-miR-16-5p + anti-miR-145-5p groups. B. Cell apoptosis was determined using flow cytometry in control, TNF-α, 
TNF-α + anti-miR-16-5p, TNF-α + anti-miR-145-5p and TNF-α + anti-miR-16-5p + anti-miR-145-5p groups. C. The activity of caspase 3 was measured in control, 
TNF-α, TNF-α + anti-miR-16-5p, TNF-α + anti-miR-145-5p and TNF-α + anti-miR-16-5p + anti-miR-145-5p groups. D and E. Western blot was applied to detect the pro-
tein level of caspase 3 in controls, TNF-α, TNF-α + anti-miR-16-5p, TNF-α + anti-miR-145-5p and TNF-α + anti-miR-16-5p + anti-miR-145-5p groups. *P<0.05, TNF-α 
group vs control group; #P<0.05, TNF-α + anti-miR-16-5p, TNF-α + anti-miR-145-5p groups vs TNF-α group; &P<0.05, TNF-α + anti-miR-16-5p + anti-miR-145-5p 
group vs TNF-α + anti-miR-16-5p, TNF-α + anti-miR-145-5p groups. 
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viability. However, transfection of anti-miR-16-
5p and anti-miR-145-5p can promoted cell via-
bility inhibited by TNF-α. Interestingly, anti-miR-
16-5p and anti-miR-145-5p co-transfection 

significantly promoted cell viability inhibited by 
TNF-α compared with TNF-α + anti-miR-16-5p 
and TNF-α + anti-miR-145-5p groups (Figure 
2A). In addition, flow cytometry demonstrated 

Figure 3. BACH2 is a target of miR-16-5p and miR-145-5p directly. (A) Prediction of a miR-16-5p binding site in the 
BACH2 mRNA 3’UTR. (B) The relationship between miR-145-5p and BACH2 mRNA was verified using luciferase re-
porter assay. (C) Prediction of a miR-145-5p binding site in the BACH2 mRNA 3’UTR. (D) The relationship between 
miR-145-5p and BACH2 mRNA was verified using luciferase reporter assay. (E, F) BACH2 mRNA (E) or protein level 
(F) was measured using qRT-PCR or western blot in NC, miR-16-5p, anti-NC and anti-miR-16-5p groups. (G, H) 
BACH2 mRNA (G) or protein level (H) was measured using qRT-PCR or western blot in NC, miR-145-5p, anti-NC and 
anti-miR-145-5p groups. *P<0.05.
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that TNF-α significantly induced cell apoptosis 
in comparison to the control group; neverthe-
less, cell apoptosis of TNF-α + anti-miR-16-5p 
and TNF-α + anti-miR-145-5p was lower than 
that in TNF-α group and was higher than that  
in TNF-α + anti-miR-16-5p + anti-miR-145-5p 
groups (Figure 2B). Moreover, caspase 3, a bio-
marker of apoptosis, was measured by qRT-
PCR and western blot. The results showed 
activity of cle-caspase 3 was induced by TNF-α, 
but transfection of anti-miR-16-5p and anti-
miR-145-5p reversed its expression in GECs 
respectively (Figure 2C-E). Therefore, TNF-α 
inhibited cell viability, induced cell apoptosis, 
and cle-caspase 3 activity, whereas transfec-
tion of anti-miR-16-5p and anti-miR-145-5p 
restored TNF-α’s effect on GECs.

BACH2 is a target of miR-16-5p and miR-145-
5p directly

To further determine the underlying regulatory 
mechanism of miR-16-5p and miR-145-5p, bio-
informatic analysis was used to predict their 
downstream gene and the result showed that 
BACH2 was a potential target of miR-16-5p and 
miR-145-5p (Figure 3A and 3C). Next, lucifer-
ase reporter assay was applied to verify wheth-
er miR-16-5p and miR-145-5p binds to the 
3’UTR of BACH2. The vector of BACH2 3’UTR 
wild type or BACH2 3’UTR mutated was co-
transfected miR-16-5p or miR-145-5p into 
HEK293T cells respectively. The results showed 
that the luciferase activity of miR-16-5p binding 
to BACH2-wt 3’UTR was significantly decreased, 
but no effect with BACH2-mut 3’UTR. Similar to 

miR-16-5p (Figure 3B), the luciferase activity of 
miR-145-5p binding to BACH2-wt 3’UTR was 
significantly decreased, whereas there was no 
effect of BACH2-mut 3’UTR (Figure 3D). 

Additionally, as shown in Figure 3E and 3F, up-
regulated or down-regulated miR-16-5p can 
decrease or increase BACH2 expression. 
Moreover, overexpression or inhibition of miR-
145-5p also can decrease or increase BACH2 
expression (Figure 3G and 3H). Thus, these 
findings showed that BACH2 was a common 
target of miR-16-5p and miR-145-5p directly.

Knockdown of BACH2 promoted apoptosis in 
GECs

To realize the effect of BACH2 on TNF-α-induced 
apoptosis in GECs, we obtained the GECs lines 
with down-expressed BACH2. The analysis of 
qRT-PCR and western blot showed that siBACH2 
transfection inhibited BACH2 mRNA and BACH2 
protein (Figure 4A and 4B), which can be used 
for subsequent experiments. Then, we detect-
ed cell apoptosis in scramble and siBACH2 
groups by flow cytometry. The results showed 
that knockdown of BACH2 remarkably raised 
cell apoptosis compared with the scramble 
group (Figure 4C). Thus, knockdown of BACH2 
can promote apoptosis in GECs.

Over-expressed BACH2 reversed apoptosis 
induced by miR-16-5p, miR-145-5p and TNF-α 
in GECs

To further explore the correlation between 
BACH and miR-16-5p, miR-145-5p and TNF-α, 

Figure 4. Knockdown of BACH2 promoted apoptosis in in GECs. (A, B) BACH2 mRNA (A) or protein level (B) was 
measured using qRT-PCR or western blot in scramble and siBACH2 groups. (C) Cell apoptosis was determined using 
flow cytometry in scramble and siBACH2 groups. *P<0.05.
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Figure 5. Over-expressed BACH2 reversed apoptosis induced by miR-16-5p, miR-145-5p or TNF-α. A. BACH2 protein level was detected using western blot in miR-16-
5p + vector and miR-16-5p + BACH groups. B. Cell apoptosis was determined using flow cytometry in miR-16-5p + vector and miR-16-5p + BACH groups. C. BACH2 
protein level was detected using western blot in miR-145-5p + vector and miR-145-5p + BACH groups. D. Cell apoptosis was determined using flow cytometry in 
miR-145-5p + vector and miR-145-5p + BACH groups. E. BACH2 protein level was measured using qRT-PCR or western blot in control and TNF-α groups. F. BACH2 
protein level was measured using qRT-PCR or western blot in TNF-α + vector and TNF-α + BACH2 groups. G. Cell apoptosis was determined using flow cytometry in 
TNF-α + vector and TNF-α + BACH2 groups. *P<0.05.
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we obtained the vector overexpressed BACH2 
(BACH2), and then BACH2 was co-transfected 
with miR-16-5p mimic or miR-145-5p mimic 
into GECs. The analysis of western blot dis-
played that the expression of BACH2 was sig-
nificantly higher in miR-145-5p + BACH group 
or miR-16-5p + BACH group than that in miR-
16-5p + vector group or miR-145-5p + vector 
group (Figure 5A and 5C) As shown in Figure 
5B, cell apoptosis in miR-16-5p + BACH group 
was significantly lower than that in the miR-16-
5p + vector group. Similarly, cell apoptosis in 
miR-145-5p + BACH group was significantly 
reduced compared with that in the miR-145-5p 
+ vector group (Figure 5D). Thus, BACH2 
expressed high inhibited the effect of miR-16-
5p and miR-145-5p on cell apoptosis in GECs. 
Furthermore, Figure 5E shows that TNF-α sig-
nificantly inhibited BACH expression. GECs 
lines overexpressing BACH2 were obtained, 
which were treated with TNF-α (Figure 5F). 
Up-regulated BACH2 could reduce cell apopto-
sis induced by TNF-α (Figure 5G). Taken togeth-
er, overexpression of BACH2 can inhibit cell 
apoptosis induced by miR-16-5p, miR-145-5p, 
and TNF-α respectively.

Discussion 

Periodontitis is the second most common den-
tal disease worldwide, affecting human dental 
health and life quality seriously [17]. However, 
studies on the pathogenesis of periodontitis 
are still scarce, especially in the regulatory 
mechanism of miRNAs. 

miRNAs, as an important regulatory factor in 
organisms, are closely related to the occur-
rence, development and prognosis of human 
diseases, including cell differentiation, cell pro-
liferation, cell migration, apoptosis, inflamma-
tory and immune response [12, 15, 18-21]. For 
example, miR-663 contributes to cell prolifera-
tion by targeting CDKN2A [22]. miR-21 pro-
motes cell growth and invasion by suppression 
of PTEN in NSCLC [23]. However, a study 
showed that different expressions of miRNAs 
were analyzed in healthy and inflamed gingival 
tissues including miR-16-5p and miR-145-5p. 
miR-16-5p and miR-145-5p were up-regulated 
in inflamed gingival tissues, suggesting a pos-
sible positive correlation with inflammation. In 
our study, the results of the treated GECs with 
TNF-α showed that miR-16-5p and miR-145-5p 

was significantly up-regulated, suggesting 
TNF-α induced miR-16-5p and miR-145-5p 
expression.

miR-16-5p and miR-145-5p are associated 
with a variety of diseases. For example, miR-
16-5p was down-regulated in chordoma and 
miR-16-5p expressed high inhibited chordoma 
cell proliferation, invasion and migration by tar-
geting Smad3 [24]. Qu et al reported that up-
regulation of miR-16-5p suppressed cell growth 
and induced apoptosis via down-regulating 
VEGFA in breast cancer. Otherwise, miR-16-5p/
SESN1 axis regulated p53 signaling pathway, 
affecting myoblast proliferation, apoptosis and 
differentiation [25]. Similar to the function of 
miR-16-5p, miR-145-5p inhibited cell prolifera-
tion by inhibiting SOX2 [26]. Additionally, miR-
145-5p regulated hypoxia-induced inflamma-
tory response and apoptosis by targeting CD40 
in cardiomyocytes [27]. Our functional experi-
ments indicated that TNF-α inhibited cell viabil-
ity and induced apoptosis and activated cas-
pase 3 in GECs. However, suppression of 
miR-16-5p and miR-145-5p could restore the 
effects of TNF-α on GECs, suggesting miR-16-
5p and miR-145-5p were involved in the inflam-
mation and apoptosis of periodontitis.

To further explore the regulatory mechanism of 
miR-16-5p and miR-145-5p, we found that 
BACH2 was a target of miR-16-5p and miR-
145-5p by luciferase reporter assay. Broad 
complex-tramtrack-bric a brac and Cap’n’collar 
homology 2 (BACH2), as a broad regulator of 
immune activation, stabilizes immunoregulato-
ry function, and suppresses lethal inflamma-
tion to stabilize Treg-mediated immune homeo-
stasis [28]. Otherwise, BACH2 also represses 
the plasma cell gene network in B cells to ele-
vate antibody class switch and regulates the 
pre-B-cell receptor checkpoint gene CDKN2A 
and TP53 [29, 30]. Moreover, BACH2 was also 
associated with autoimmune, inflammation, 
and cell progression in human diseases, such 
as leukemia, pancreatic carcinoma, and breast 
cancer [31-33]. For example, miR-148a pro-
moted plasma cell differentiation by regulating 
Mitf and BACH2 [34]. miR-142 was up-regulat-
ed induced by TNF-α and promotes GECs cell 
apoptosis by suppression of BACH2 [14]. In our 
present study, we validated the function of 
BACH2 in GECs. The results of our experiment 
showed that knockdown of BACH2 could pro-
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mote GECs apoptosis. In addition, to further 
explore the regulatory mechanism of miR-16-
5p, miR-145-5p and BACH2 in GECs, BACH2 
was co-transfected with miR-16-5p, miR-145-
5p into GECs. The results showed that cell 
apoptosis induced by miR-16-5p, miR-145-5p 
were reversed by up-regulating BACH2. 
Interestingly, the effect of TNF-α on GECs apop-
tosis was weakened by BACH2 overexpression. 
These findings suggested that miR-16-5p/
BACH2 and miR-145-5p/BACH2 axis are asso-
ciated with GECs inflammation and cell apopto-
sis. Although the new regulatory mechanism of 
miR-16-5p, miR-145-5p and BACH2 has been 
verified to play an important role in GECs 
induced by TNF-α, it must beverified in vivo. 

Conclusion

In conclusion, our findings showed that miR-16-
5p and miR-145-5p was associated with GECs 
apoptosis induced by TNF-α via regulating 
BACH2, helping explain pathogenesis of peri-
odontitis disease.
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