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A B S T R A C T

The theoretical biologist Robert Rosen developed a highly original approach for investigating the
question “What is life?”, the most fundamental problem of biology. Considering that Rosen made
extensive use of mathematics it might seem surprising that his ideas have only rarely been implemented
in mathematical models. On the one hand, Rosen propagates relational models that neglect underlying
structural details of the components and focus on relationships between the elements of a biological
system, according to the motto “throw away the physics, keep the organisation”. Rosen's strong rejection
of mechanistic models that he implicitly associates with a strong form of reductionism might have
deterred mathematical modellers from adopting his ideas for their own work. On the other hand Rosen's
presentation of his modelling framework, (M, R) systems, is highly abstract which makes it hard to
appreciate how this approach could be applied to concrete biological problems. In this article, both the
mathematics as well as those aspects of Rosen's work are analysed that relate to his philosophical ideas. It
is shown that Rosen's relational models are a particular type of mechanistic model with specific
underlying assumptions rather than a fundamentally different approach that excludes mechanistic
models. The strengths and weaknesses of relational models are investigated by comparison with current
network biology literature. Finally, it is argued that Rosen's definition of life, “organisms are closed to
efficient causation”, should be considered as a hypothesis to be tested and ideas how this postulate could
be implemented in mathematical models are presented.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

When for the first time I heard about Robert Rosen's life-long
quest for the secrets of life, his theory of (M, R) systems and his
approach to complexity I didn’t quite know what to make of all
this. There was an obviously highly original idea for investigating a
question which is so hard to answer that it is, in fact, rarely asked:
What is life? Also the methods that Rosen used for his work,
borrowed from the highly abstract theory of categories, do not
quite fit in the classical arsenal of the applied mathematician's
toolbox. Could category theory, an area of mathematics so abstract
that, in fact, even some of its pioneers referred to it as “abstract
nonsense” be successfully applied to a fundamental real-world
http://dx.doi.org/10.1016/j.ecocom.2017.07.007
1476-945X/© 2017 Elsevier B.V. All rights reserved.
question “What is life?” which at the same time happens to be one
of the hardest scientific questions that one may possibly ask?1 That
sounded interesting, very interesting, indeed!

So I asked two questions that I usually ask myself when I hear
about something new and exciting to me in science:

1. Which of Rosen's ideas can I steal for my own work? (more
about stealing later, see Section 5.3!)

2. Do I believe Rosen's answers to his research questions “What is
life?” and “What is a complex system?”

I will present my answers to these questions as my personal
perspective on Robert Rosen's work. The purpose of this is two-
fold: First, in my opinion, Rosen's highly original work deserves
1 Rosen's work on (M, R) systems is by no means the only application of category
theory to the sciences. Best-known are perhaps applications in computer science—
two examples for textbooks are Pierce (1991) and Barr and Wells (2012)—as well as
mathematical physics (Coecke, 2011). A recent introduction to category theory with
a view towards applications in the sciences by Spivak (2014) underlines the fact that
the trend of category-theoretic ideas in science is increasing. But Rosen's work is
one of the earliest, if not the earliest application of category theory outside
mathematics.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecocom.2017.07.007&domain=pdf
http://dx.doi.org/10.1016/j.ecocom.2017.07.007
http://dx.doi.org/10.1016/j.ecocom.2017.07.007
http://www.sciencedirect.com/science/journal/1476945X
www.elsevier.com/locate/ecocom
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more attention from the mainstream of mathematical biologists.
Second, I believe that Rosen's frustration that his ideas were not
more widely and openly accepted (Mikulecky, 2001) is not
completely coincidental—there are important differences between
Rosen's theoretical concept of a model and the understanding of
modelling within the applied mathematics community. These
differences are on the one hand philosophical—Rosen demands
that a model accurately represents the causal relationships
between the elements of the system to be modelled (see Section 4)
whereas models typically built by applied mathematicians can be
regarded as formal representations of a hypothesis regarding a
possible mechanism underlying the system behaviour (see
Section 5). On the other hand, Rosen applies mathematical
notions, in particular, category theory, in a different spirit than
most applied mathematicians would. This issue—which is related
to Rosen's presentation of his ideas rather than the ideas
themselves—is more important than it may look at a first glance
because this difference in using mathematical tools may deter an
audience with a mathematical background from Rosen's ideas
(Section 6.2.1). My presentation is based on the original
publications Rosen (1958a,b, 1959, 1971, 1973, 1991) and Rosen
(2000) but I will most often refer to Rosen (1972) because this, in
my opinion, is the best summary of Rosen's early publications and
to his monograph “Life Itself” (Rosen, 1991) which is the most
comprehensive account of the philosophical basis of Rosen's work.
Another good introduction into Rosen's thinking are his “Autobio-
graphical Reminiscences” (Rosen, 2006).

The article is structured as follows: In Section 2 we introduce
the notions of metabolism-repair systems ((M, R) systems). In
Section 3 we present Rosen's proposed characterisation of life as
systems that are “closed to efficient causation”. We show that this
concept is not—as Rosen suggests—a specific property that can be
deduced from the architecture of (M, R) systems but should be
regarded as a postulate, a hypothesis to be tested by implementing
“closure to efficient causation” in mathematical models. Rosen's
specific view of modelling which is closely related to his
interpretation of category theory is presented in Section 4. I
describe the conceptual basis of mechanistic models in Section 5.
In particular, I will argue that Rosen's relational models can be
regarded as a specific type of mechanistic models. In Discussion
(Section 6) I compare mechanistic models with Rosen's perspec-
tive on modelling and present some ideas how his concept of an
organism could be investigated via mathematical models in
physiology and ecology.

2. Rosen's answer to the question “What is life?”

Although most people—with or without a scientific back-
ground—seem to have a good intuition when it comes to decide if
something is “alive” it is nevertheless very hard to come up with a
rigorous scientific definition of life. Thus, definitions of life are
usually descriptive—a list of properties that are characteristic of
living systems is given such as the following appearing in Campbell
(2008):

1. Order. Organisms are highly ordered, and other characteristics of
life emerge from this complex organization.

2. Reproduction. Organisms reproduce; life comes only from life
(biogenesis).

3. Growth and Development. Heritable programs stored in DNA
direct the species-specific pattern of growth and development.

4. Energy Utilization. Organisms take in and transform energy to do
work, including the maintenance of their ordered state.

5. Response to Environment. Organisms respond to stimuli from
their environment.
6. Homeostasis. Organisms regulate their internal environment to
maintain a steady-state, even in the face of a fluctuating external
environment.

7. Evolutionary Adaptation. Life evolves in response to interactions
between organisms and their environment.

But these properties are not necessarily defining: systems that
are not usually considered to be living systems may have one or
even several of these properties. Indeed, Campbell (2008) refers to
this list as emergent properties and processes of life rather than a
definition.

Instead of a descriptive definition, Rosen proposes a relational
approach for distinguishing systems that are “dead” from systems
that are “alive”. He starts from a set of components that he
explicitly refers to as black boxes i.e. he avoids making any
assumptions on the internal structure of these components.
Instead his focus is on the relationships between these compo-
nents—he develops a highly abstract theory with the purpose of
demonstrating that the way that components interact determines
if a system is “complex” or “simple” and also, if a system is “alive”
or “not alive”. By developing an approach that intentionally ignores
the properties of individual components of a system and
emphasising the relationships between these components he
followed a motto of his mentor Nicolai Rashevsky (cited according
to Rosen (2006))—“Throw away the physics, keep the organisa-
tion”. More generally, the question of the relationship between
structure (i.e., for example, the underlying physics) and function in
biology has a long history. For example, the famous Cuvier–
Geoffroy debate in front of the French Academy of Sciences in 1830
was ultimately about the two principles “form follows function”
which was Georges Cuvier's view whereas Geoffroy Saint-Hilaire
argued for the opposite position “structure determines function”.
In Rosen (1991), his monograph “Life itself”, he strongly rejects
“structure determines function” which is currently, for example,
influential in molecular biology in the theory of protein folding—
because the sequence of amino acids (primary structure) to a great
extent controls the three-dimensional arrangement (tertiary
structure) and this 3D structure determines the function of a
protein it is argued that structure determines function (Petsko and
Ringe, 2008).

In contrast, Rosen states that biological functions arise from the
interactions between the parts of a biological system, independent
of the material realisation of the components. In order to explain
this idea, let us consider calcium signalling. In many cases when
hormonal or electrical signals reach a cell, calcium oscillations are
used for propagating these signals within the cell and control a
wide range of cellular functions such as the contraction of heart
cells or the transcription of particular genes. The shape of these
oscillations can be very different between cell types although the
Ca2+ signalling components involved are the same—voltage-gated
Ca2+ channels, that allow calcium influx in response to electrical
signals, intracellular channels like the inositol-trisphosphate or the
ryanodyne receptor, that release large amounts of calcium from
intracellular stores when stimulated, and Ca2+ pumps, that return
Ca2+ released to the cytosol back to intracellular stores. How can
Ca2+ oscillations be so different in different cell types if they are
generated by similar sets of Ca2+ signalling components? An
obvious explanation is that Ca2+ oscillations in particular cell types
are shaped by relationships between the components that are
characteristic of this cell type. This is the concept of the Ca2+

“toolbox” which is the basis of our current understanding of Ca2+

oscillations (Berridge et al., 2000). But does the fact that
differences in the relationships between components are impor-
tant for explaining the different shape of Ca2+ oscillations imply
that we should restrict ourselves to investigating relationships and
completely ignore structural properties of the components? We
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will come back to this question in more general terms in the
Discussion.

From Rosen's introduction of his (M, R) systems it is quite clear
that he not only wishes to apply this approach for explaining the
behaviour of particular biological systems but from the outset he
aims for answering the grand question “What is life?”. As for many
models, also for (M, R) systems the answer to his question “What is
life?” is already determined to some extent by the construction of
the model—this will be explained in more detail in Section 5. Here,
we will demonstrate that Rosen focuses mostly on two of the
aspects of life mentioned above, energy utilisation (in the
following referred to as metabolism) and homeostasis.

The M in (M, R) systems refers to metabolism. Metabolism is
formally modelled as the transformation of “input materials” to
“output materials” via the action of components. Mathematically,
components are represented as mappings

f : A ! B; a 7!b ¼ f ðaÞ ð1Þ
between sets A (“input materials”) and B (“output materials”). In
biochemical terms, f may be interpreted as an enzyme because it
catalyses the transformation of elements of A to elements of B
while remaining unchanged.2 However, in real metabolic net-
works, enzymes degrade so that f will eventually “disappear”.3

Thus, in order to ensure long-term stability, Rosen assumes for
each component f of an (M, R) systems the existence of a
component F that “replicates” f should it be degraded. We denote
such a component Ff if we want to emphasise the fact that Ff

replicates the component f. The mappings F are again components
(called repair components) as defined in (1)

Ff : C ! HðA; BÞ; c 7!Ff ðcÞ ð2Þ

but the range of Ffmust be H(A, B), the set of maps between A and
B.4 Also, it is postulated that the domain C of Ff contains at least
one environmental output O i.e. there exits a subset of O � C that
does not contain the domain of any component f (Rosen, 1972).5

With the repair components F (the R in (M, R) systems), Rosen
adds a representation of homeostasis to his (M, R) systems—each
Ff ensures the continuous operation of a particular component f.
To give the repair components a biological interpretation similar to
the enzymes f, Rosen sometimes refers to the F as genetic
components. Thus, although this is not stated explicitly in Rosen's
writings, he therefore characterises life as the combined effect of
metabolism and homeostasis.6

Unfortunately, whereas the degradation of components f can be
prevented by the repair components F, repairing these newly
2 An adaptation of Rosen's terminology to biochemistry may be found in Letelier
et al. (2006). Here, we keep the original terminology.

3 The nature of this “disappearance” is not made explicit in Rosen's writings. He
only states that disappearance of a component has the effect that the production of
output material B stops.

4 By using this notation, Rosen would like to imply that the maps appearing in H
(A, B) are “(homo)morphisms”, maps that preserve mathematical structure
associated with A and B rather than general maps—see Section 4 for an explanation
of the category-theoretic notion of morphism via an example. But because Rosen
avoids assigning a specific mathematical structure to the sets A and B this has no
consequences for his model, in particular, the maps H(A, B) cannot model, for
example, biochemical properties of metabolism. Moreover, in many circumstances
the morphisms H(A, B) are still just a set even if A and B have a particular
mathematical structure.

5 By introducing Ff, strictly speaking, the set O fails to be an environmental
output because it is now contained in the domain of Ff.

6 In Rosen's own biochemical interpretation of the components f as enzymes and
F as genetic components, (M, R) systems can be related to the production of
enzymes via gene transcription which itself depends on the activity of enzymes. But
the abstract construction of (M, R) systems are general enough that the approach
can be applied to different domains.
introduced components F would require another set of repair
components. But Rosen was able to demonstrate that the infinite
regress of having to add more and more repair components could
be avoided—he proposed that under certain assumptions a repair
component for Ff could be identified with an element from the
range of f. Because a repair component for Ff (which Rosen
denotes b and names replication map) therefore does not need to
be added to the system, the infinite regress is avoided. We will
discuss the construction of b in the next section, Rosen himself
explains the details most clearly from a a mathematical point of
view in Rosen (1972).

In summary, we observe that by suitably combining metabolic
and repair components, an (M, R) systems is capable of achieving
homeostasis. Although all components have a limited life time, the
system is able to survive for much longer (in theory indefinitely)
because components are replaced early enough before they
degrade. Of course, this only refers to the components that are
parts of the (M, R) systems because at least some of them depend
on environmental inputs. This demonstrates that (M, R) systems
are able to autonomously maintain their internal organisation,
provided that an “energy source” (via environmental inputs) is
available. We will explain Rosen's own formulation of this result in
more detail in the next section.

3. Closure to efficient causation

In the previous section we explained that through interactions
of metabolic and repair components a (M, R) system achieves some
level of autonomy—it is capable of maintaining its internal
components (which all have a limited life time) by drawing on
an energy source from the environment. Rosen summarised this as
“organisms are closed to efficient causation”. In “Life Itself” he
discusses in detail how his theoretical ideas relate to the four
Aristotelean causes, 7 one of which is the efficient cause. The
efficient cause is most closely related to the modern notion of
causality. In the context of (M, R) systems each of the components
are the efficient causes of the transformation of elements in the
domain to elements in the range, for example, in (1), f is the
efficient cause for transforming A to f(A) � B. For the same example,
A provides the material cause for the transformation of A to f(A).8

We only consider the simplest (M, R) system,9 consisting of one
metabolic component f and one repair component Ff. In order to
avoid degradation of the repair component Ff we need an
additional repair component b that replaces Ff. Summarising (1),
(2) and adding b we get

A f BFf HðA; BÞ bHðB; HðA; BÞÞ: ð3Þ
Rosen develops a complicated argument why the map b in (3) can
be identified with an element b of the set B. He explicitly constructs
a parameterisation

B 3 b 7!bb : HðA; BÞ ! HðB; HðA; BÞÞ ð4Þ
that assigns a map bb to each b 2 B. Rosen's interpretation of (4) is
that each bb is, in fact, already contained in set B and needs not be
explicitly added to the system. Rosen's construction of the bb has
7 Applications of Aristotle's classification of four causes have some tradition in
biology, confer Tinbergen's levels of analysis, first presented in Tinbergen (1963).

8 Rosen also discusses the formal cause and the final cause. Although all four
causes are important for Rosen's theory, the remaining two Aristotelean causes are
not directly relevant to our discussion. Therefore we refer the reader to Rosen
(1991).

9 This is, in fact, not as strong a restriction as it may seem—by combining sets via
Cartesian products ‘�’ and defining maps on the products in an obvious way, several
(M, R) systems with more than three components can be cast in the form (3).
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caused a considerable amount of confusion—some authors
disputed its mathematical feasibility (Landauer and Bellman,
2002) whereas others responded to this claim by explicitly
constructing sets and maps as in (3) following Rosen's approach
(Letelier et al., 2006).

In contrast, I will argue that from a mathematical point of view
there is, in fact, nothing to show. The only restriction for b is the
condition that b(f) = Ff which means in terms of (M, R) systems
that b repairs Ff by transforming f. After choosing any map b that
fulfils this condition, a parameterisation bb as in (4) can be easily
obtained—we only need to select an arbitrary b* that maps to
bb� ¼ b and map all other elements of B to arbitrary bb.

Rosen's difficulty arises because he insists on deriving the
parameterisation bb from evaluation maps, see Rosen (1972)

where eb is denoted b̂:

eb : HðB; HðA; BÞÞ ! HðA; BÞ; F7!FðbÞ: ð5Þ
But there is no reason for constructing the maps bb in this way—
the fact that the bb were obtained from evaluation maps eb (5)
never plays a role in Rosen's discussions of the replication map b.
In summary, as Rosen postulated, it is indeed possible to construct
(M, R) systems where all components are “repaired” by other
components once they have surpassed their finite life time. But the
realisation of the map b does not, as Rosen suggests, follow from
the architecture of (M, R) systems. Instead, I propose to consider
the existence of the replication map simply as a postulate
regarding the structure of living systems, summarised in the
statement “organisms are closed to efficient causation”.

More interesting than the details of the mathematical
investigation is Rosen's interpretation of (M, R) systems whose
elements interact in a way that mutually ensures replacement of
failing components. (M, R) systems with this property provide
Rosen's model for organisms which he characterises as “organisms
are closed to efficient causation”. In order to explain this concept,
Rosen (1991, chapter 10) presents a diagram that illustrates this
statement (Fig. 1). The diagram shows—indicated by solid arrows—
the “material” transformations between elements of the sets A, B, H
(A, B), H(B, H(A, B)) and H(H(A, B), H(B, H(A, B)) (by a mapping to B)
but also shows “causal” relationships—indicated by broken
Fig. 1. Closure to efficient causation: This diagram (adopted from Rosan (1991,
chapter 10)) illustrates the different processes that the individual components of
the (M, R) system in (3) are involved in. On the one hand, solid arrows show where
transformations from input material to output material occur—A is transformed to
B, B is, in turn used for “repairing” f whereas f is transformed in order to repair Ff.
On the other hand, for the broken arrows, a component located at the start of an
arrow indicates the initiation of a transformation located at the arrow tip—f
catalyses the “metabolic” transition of A to B, Ff acts on B for repairing f and the
replication map bb starts the repair of Ff by transforming f. It is clear that each of
the components f, Ff and bb regulates the repair of another component. In Rosen's
words, the sets A, B, H(A, B) and H(B, H(A, B)) can be regarded as “material causes”
whereas f, Ff and bb are “efficient causes”. Because each of the components is in
turn produced by one of the other components the system is closed to efficient
causation.
arrows—where components initiate a transformation by acting
on elements in one of these sets. By following a broken and then a
solid arrow we see that the production of each component is
“caused” by another component in the system—in Rosen's own
words, f “entails” bb, bb “entails” Ff and Ff “entails” f. Thus, the
system contains a closed loop of efficient causation f ! bb! Ff

! f, a property that Rosen denotes closure to efficient causation.
In summary, in this section we have explained Rosen's proposed

definition of living systems,“organisms are closed to efficient
causation”. We have shown that “closure to efficient causation” is
not a result that follows from the construction of (M, R) systems. In
contrast, the ability of organisms to autonomously maintain their
internal organisation should be regarded as a postulate, a
hypothesis to be tested for concrete biological systems by
developing mathematical models. We will return to this important
idea in the Discussion.

4. The modelling relation

Interesting about Rosen's approach are not only (M, R) systems
themselves but also how they are constructed and investigated. He
uses category theory, one of the most abstract mathematical
disciplines, that was developed starting from the 1940s.10 In order
to give a simple example that introduces many important aspects
of category theory without requiring much mathematical back-
ground consider a planar algebraic curve.11 Readers that are
familiar with category theory may safely skip this slightly lengthy
example but I hope that it may be helpful for readers without prior
knowledge of category theory. The main purpose of this section is
to explain that the precise meaning of Rosen's notion of a modelling
relation may be regarded as the representation of a functor between
different categories. This has been explained more formally by
Louie (2009).

4.1. Algebraic curves or: an introduction to category theory

An algebraic curve in the plane is defined by a polynomial
equation in two indeterminates x and y i.e. f is an element of a
polynomial ring K[x, y]. Examples include the parabola, y � x2 = 0 or
the unit circle, x2 + y2 = 1. Geometrically, the curve is the set of pairs
(a, b) that fulfil the equation f(x, y) = 0; the (a, b) are elements of a
two-dimensional vector space R2. One of the most important
aspects of modern algebraic geometry is not to be very specific
about R, the interest is in general properties of algebraic sets
defined by systems of polynomial equations. Whereas classical
algebraic geometry investigates polynomial equations over the
complex numbers C, we may instead consider the real numbers R,
the rationals Q or a finite field with q elements Fq.12 Even more
generally, we may choose an algebra R over a field K. A K-algebra is a
vector space over a field K whose elements can in addition be
multiplied, unlike in a general vector space which only requires
addition of elements. Because, trivially, a field can be regarded as a
10 The following introduction to category theory is intentionally informal—the
point is to introduce the spirit of category theory rather than enabling the reader to
start their own career as a category theorist. See the Introduction of the classical
monograph by Mac Lane (1971) for a very readable exposition for the
mathematically inclined reader.
11 This is, in fact, the first example of category theory that I saw as a student. I
thank Prof. Heinz Spindler (University of Osnabrück, Germany) for his beautiful
lectures on algebraic geometry that gave me a lot of pleasure.
12 A field K is an algebraic structure where addition and multiplication of elements
are associative, commutative and distributive and additive and multiplicative
inverses exist. This means that for each a 2 K we find a b 2 K so that a + b = 0 (b is
denoted �a) and for each c 2 K, c 6¼ 0 there is a d 2 K such that c � d = 1 (d is denoted
d�1). Examples are the complex numbers C, the real numbers R, the rational
numbers Q or finite fields Fq with q elements.
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one-dimensional K-algebra over itself, this includes the examples
of different fields given above. The generality with which R can be
chosen is expressed quite clearly by the following category-
theoretic description of an algebraic curve. For an arbitrary non-
constant polynomial f 2 K[x, y], the affine planar algebraic curve C
over R with equation f is defined as the functor

C : AlgK ! Sets ð6Þ
with

CðRÞ ¼ fða; bÞ 2 R2jf ða; bÞ ¼ 0g ð7Þ
for all K-algebras R. Thus, CðRÞ is the set of zeroes of f over R2 which
means that the functor C provides us with a set for each K-algebra.
From the category-theoretical point of view, each K-algebra R is an
object of the category of “all” K-algebras AlgK and “all” sets are the
objects of the category Sets13. But a category not only consists of
objects but also of maps between objects that preserve the
algebraic structure of the objects, so-called morphisms. For Sets the
morphisms are just ordinary maps but for AlgK these are K-algebra
homomorphisms f : R ! S. As a map between categories, a functor
not only relates objects but also morphisms. For our example, for a
K-algebra homomorphism f : R ! S between K-algebras R and S we
obtain a corresponding map f� : CðRÞ ! CðSÞ between the sets CðRÞ
and CðSÞ via

f� : CðRÞ ! CðSÞ; ða; bÞ7!ðfðaÞ; fðbÞÞ: ð8Þ
Because f is a K-algebra homomorphism it is indeed true that if (a,
b) is a zero of f (over R2), (f(a), f(b)) is also a zero of f (over S2).

This abstract representation of a planar algebraic curve as a
relationship between K-algebras and the geometric objects of
interest, the sets CðRÞ, has a punch line that may give some insight
why category-theoretical ideas have been quite successful in some
areas of mathematics but, more importantly, clarify one of Rosen's
key ideas, the modelling relation. It can be shown that for describing
algebraic curves it is sufficient to consider only one particular K-
algebra, the coordinate ring14

A ¼ K½x; y�=ðf Þ; where ðf Þ ¼ fK½x; y�: ð9Þ
With the expression f K[x, y] we denote the set of all polynomials
that contain the polynomial f as a factor. The crucial point is that
the the coordinate ring A alone is sufficient for finding the curves
CðRÞ for all K-algebras R. We remind the reader that the functor C
assigns the evaluation map f� : CðAÞ ! CðRÞ defined in (8) to each
K-algebra homomorphism f : A ! R. It can be shown that we can
calculate the curve CðRÞ via

f�ð½x�; ½y�Þ ¼ ðfð½x�Þ; fð½y�ÞÞ; ½x�; ½y� 2 A: ð10Þ
by evaluating f* at the particular point ([x], [y]).15 In category-
theoretical terms, the coordinate ring A is called a representation of
the functor C via the universal element ([x], [y]). Informally this
means in the context of our example that some objects of the
13 Due to set-theoretic paradoxes, we can, in fact, not consider categories of “all” K-
algebras or “all” sets.
14 A (commutative) ring is an algebraic structure similar to a field. The difference is
that multiplicative inverses are not required to exist for all elements. Note that in
addition to the ring structure the coordinate ring also has the structure of a K-
algebra.
15 [x], [y] are equivalence classes and can be considered as those polynomials with
“remainder” x or y, respectively, when “dividing” by f—the coordinate ring is an
example of a quotient ring. We will not go into more detail because it does not add
much to the discussion and refer the interested reader to any introduction to
algebra.
category Sets, algebraic curves defined by f, can be understood by
analysing a particular K-algebra, the coordinate ring A.

4.2. The modelling relation and simulation

We will now—still with the example of a planar algebraic
curve—explain that Rosen's idea of a model can be understood as a
functor between a natural and a formal system. Both the natural as
well as the formal systems are represented as categories, in fact,
shortly after the initial introduction (Rosen, 1958a), Rosen (1958b)
redefined (M, R) systems using category-theoretical ideas—we will
discuss Rosen's use of category theory in Section 6.2. It is
instructive to observe how the representation of the “planar
algebraic curve functor” C that assigns to a K-algebra R a curve CðRÞ
is used by mathematicians working in the field of algebraic
geometry.

Let us say that algebraic curves are the “natural system”, graphs
obtained by finding the zeroes of a polynomial equation f(x, y) = 0.
In contrast, we regard K-algebras as a “formal system” that—
according to Rosen—encodes the “causal entailments” present in
the natural system. In general, causal entailment refers to the
relations between objects defined by the morphisms of a category
which is quite abstract. But for the specific example of algebraic
curves it is quite clear what this means. From a mathematical point
of view, studying a general algebraic curve over a general K-algebra
R is impossible without further assumptions on the K-algebra R
because sets do not have a lot of structure. In contrast, for K-
algebras, arithmetical operations such as addition and multiplica-
tion are defined and mathematical theorems have been proven
that give insight into how the elements behave under these
operations. Thus, whereas the structure of K-algebras may be
investigated with a variety of tools from commutative algebra,
much less insight can be gained by simply considering the sets CðRÞ
of algebraic curves over R. But the functor C enables us to switch
between the “natural system” (sets) and the “formal system” (K-
algebras) so that we can explore geometric facts using algebra.
Incidentally, algebraic geometers are well aware of this and refer to
this process with the motto “Think geometrically, prove algebrai-
cally!” (Alekseevskij et al., 1991).

Each K-algebra R can be understood as a “model” of another K-
algebra S because we can “translate” the algebraic curve CðRÞ over R
to the algebraic curve CðSÞ over S using the functor C by assigning
the evaluation map f* to each K-algebra homomorphism f : R ! S.
Even better, because the functor C has a representation via the
coordinate ring A (9) we may even resort to studying only one K-
algebra, namely the coordinate ring, and translate the results to
any other K-algebra via evaluating the functor at the universal
element (10).

Whereas the functor C provides us with an example of a model
in Rosennean terms, we may also look for an example of simulation
in the same context. Rosen defined a simulation as a relationship
that considers the natural system as a “black box” without
attempting (or being able) to capture the “causal entailment”
within the natural system. An example of simulation for our
example is the numerical approximation of algebraic curves.
Numerical methods may succeed in obtaining an approximation of
an algebraic curve without any consideration of the underlying
algebraic structure by iteratively approximating points of the curve
from a starting value (x0, y0) known to lie on the curve (Gomes
et al., 2009). With Rosen we might say that these numerical
methods are able to “predict” the “natural system” i.e. the algebraic
curve. But it is clear that this is not based on bringing the
entailment structure of a formal system in congruence with the
entailment structures of the natural system to be modelled. This,
however, is according to Rosen the ideal that a model should live
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up to. 16 As I will explain in the Discussion, it is exactly this
ambition that, in my opinion, separates Rosen's understanding of
modelling most strongly from an applied mathematician's view on
modelling which is illustrated in the next section.

5. Lie, cheat and steal—the applied mathematician's ways for
finding the truth

I believe that there is no elaborated philosophy of modelling in
applied mathematics that could be compared to Rosen's. So it
might be helpful to first look at Dynamic Models in Biology, a highly
readable introduction to mathematical biology by Ellner and
Guckenheimer (2007). Near the end of the book the authors briefly
introduce the “three commandments of modelling”:

1. Lie
2. Cheat
3. Steal

After explaining the three commandments in a bit more detail I
will provide a description of models in applied mathematics that
will be compared with Rosen's modelling relationship in Section 6.

5.1. Lying

Everyone knows that models are based on assumptions. What
not everyone knows is that models (at least the good ones (Ellner
and Guckenheimer, 2007)) are based on false assumptions. As
illustrations we can take nearly all mathematical models from
physics. One of the most striking example is the apparently
harmless notion of a mass point. Moving bodies such as cars, space
ships or parachutists are described by particles without spatial
extension whose mass is concentrated in a single point. In this way
our model describes objects that may weigh several tonnes or
more while at the same time they “are not even there” because it is
assumed to have no spatial extension! The only reason that we find
such an idea not completely outrageous is by the justification we
get for this model after we have applied it to a natural system. We
“get away” with this obviously wrong assumption, we can, for
example, predict the trajectories of celestial bodies to a certain
accuracy. Also, more detailed models of rigid body motion and the
notion of the centre of mass give additional support for this model
and insight why representing bodies as mass points worked in the
first place. The most important point here is, though, that before
this model was applied to a concrete problem, it was not at all clear
that it would turn out to provide a useful description of a physical
object. The justification of “lies” in modelling can only be given in
hindsight.

5.2. Cheat

With cheating, Ellner and Guckenheimer (2007) mostly refer to
a particular way of using statistics. They recommend to do things
that “would make a statistician nervous” by stretching the limits
16 An anonymous reviewer brought to my attention that two famous articles by
Alan Turing provide a good example for the difference between simulation and
model. The imitation game (also known as the Turing test) was proposed by Turing
(1950) in order to answer the question “Can machines think?”. In order to pass the
test the machine must communicate in natural language with a human evaluator
and through this conversation convince the evaluator that it is human. This is a
perfect example for simulation because by definition of the test it is unimportant if
and to which extent the machine attempts to accurately represent human
intelligence. In contrast, Turing (1952) proposes a mathematical model that exhibits
inhomogeneous stationary distributions (Turing instability). This leads to a model
that explains morphogenesis in terms of two interacting chemical species (an
“activator” and an “inhibitor”) that diffuse with different speeds.
within which statistical methods can be used instead of just
“letting the data speak for itself”. It is not easy to provide an
example for “cheating” because obviously scientists will usually
not describe anything they did in a study as cheating. Because I
would not like to accuse colleagues of cheating either I have no
choice but to give an example of “cheating” from my own work. A
few years ago I was working on a model for an ion channel
(Siekmann et al., 2012). My motivation was to take into account
model gating, a feature that is quite common in ion channel
dynamics but which has rarely been accounted for in models.
Instead of continuously adjusting their activity many ion channels
switch spontaneously between highly different types of behaviour
(modes). I wanted to demonstrate that across all experimental
conditions each of the different modes defined the same type of
behaviour i.e. could be described by statistically similar models.
Unfortunately, for some experimental conditions I was not able to
fit a model to the segments representative for the modes because
the channel was switching too fast and therefore the segments
were too short in order to produce statistically conclusive results.
But although I thus was not able to rigorously prove my claim I
nevertheless argued that the hypothesis of modes which are
unchanged across all experimental conditions was—with some
positive and in the absence of contrary evidence—presumably
correct.

This way of using statistical methods emphasises that
experimental data is only one of many sources of knowledge that
are synthesised in a mathematical model, thus, the fate of a model
should not depend solely on the success or failure of a particular
statistical method.

5.3. Steal

Although it may sound even worse than lying and cheating, in
scientific terms, stealing might actually be the most acceptable of
the three commandments. It simply means reusing ideas of models
that have previously appeared in the literature by, for example,
applying them to new systems. A famous example is the well-
known Lotka–Volterra model which can be seen as the beginning
of predator-prey modelling. Volterra (1926) simply reinterpreted
the law of mass action kinetics where the rate of a chemical
reaction is assumed proportional to the product of the concen-
trations of the two reactants as the catch rate of a predator feeding
on a prey. The reason that terms characteristic of chemical models
were often “stolen” by ecologists and epidemiologists is because
the law of mass action and enzyme kinetics can, from a more
abstract point of view, be interpreted as contact rates between two
populations (Siekmann, 2009).

We briefly mention one danger of stealing—in comparison to
the original domain of application, a “stolen” model may increase
the amount of lying and cheating—on the one hand the
assumptions of the original model may be less valid and on the
other hand experimental validation of the original model may not
be available in the new context.

5.4. What is a mechanistic model?

In order to compare the approach followed in typical models in
applied mathematics with Rosen's modelling relation I will give a
brief description of models in applied mathematics. I will refer to
these as “mechanistic” in the following because Rosen presumably
means similar models when he refers to mechanistic models.
However, I will argue in the Discussion that at least some of his
objections only arise when mechanistic models are interpreted in a
reductionistic sense.

The aim of a mechanistic model is to provide insight into a
natural system by synthesising different sources of knowledge.
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This is achieved by defining a formal system that transparently
captures how the elements of the system interact with each other
and how these interactions are parameterised with experimental
data. A mechanistic model is also strongly determined by a purpose
which means that already the architecture and not just the
interpretation of the model results is defined by the question that
the model should answer.

Building a mechanistic model starts with the formulation of a
set of assumptions that summarise what is known about a system,
extended by some hypotheses regarding details of the natural
system that are currently unknown. Which aspects of our
knowledge are represented in how much detail depends on the
model purpose. Based on the underlying assumptions a model
structure is constructed that is meant to represent the assumptions
as well as possible. This model can then be simulated in order to
produce results. The results obtained from the model are then
interpreted in comparison with the natural system and in the light
of the assumptions made in the beginning which leads to
conclusions that are drawn from the modelling study.

To give an example, I will refer to recent work in mathematical
ecology that I contributed to. A series of papers, starting with
Bengfort et al. (2016a) and Siekmann and Malchow (2016),
primarily had two purposes. The aim of Bengfort et al. (2016a)
was to investigate alternatives to the classical model of population
dispersal based on the common model for diffusion due to Fick
(Fick, 1855). Siekmann and Malchow (2016) considered alter-
natives to the classical model for environmental fluctuations based
on stochastic terms that scale linearly in the population densities.
Bengfort et al. (2016b) studied the combined effect of Fokker-
Planck diffusion (Fokker, 1914; Planck, 1917), an alternative to
Fickian diffusion, and linear noise terms whereas Siekmann et al.
(2017) combine Fokker–Planck diffusion with a nonlinear noise
term proposed in Siekmann and Malchow (2016). Consistent with
the model purpose, the authors primarily consider a very simple
model for the interactions of populations, the Lotka–Volterra
competition model. Also, a special parameter set is considered
where in the deterministic, non-spatial version of the model, the
population with the higher initial population always outcompetes
its competitor. In order to investigate spatial and stochastic effects,
the parameter of the diffusion model and the noise model are
varied. The models demonstrate that stochastic fluctuations
enhance the success of invading species that invade the habitat
of a resident population but may also enable resident and invader
to coexist which is impossible in the deterministic non-spatial
version of the model.

At this point it is important to note that the definition of a
mechanistic model presented here by no means excludes relational
models favoured by Rosen—in the terms developed here, an
important underlying assumption of a relational model simply is
that the internal structure of the individual system elements is not
represented in detail. The most important difference to Rosen's
interpretation of models is that no suggestion is made that a
mechanistic model accurately captures the causal relationships of
the system to be modelled—there is no modelling relationship that
in a theoretical sense provides the modeller with access to the
structure of the natural system. The reason for this is scepticism—a
large proportion of applied mathematicians would presumably be
highly pessimistic that achieving congruence between a formal
system and a natural system as envisaged by Rosen was possible
and even if it could be achieved that this could be verified. Thus,
from the outset, the motivation of a mechanistic model is much
more modest. The aim of modelling is to provide insight into an
aspect of a natural system that is defined by the purpose of the
model. Obtaining a complete understanding is, in principle, out of
reach due to the simplifying assumptions made when the model
was built. Also, mechanistic models can only provide possible
explanations of phenomena observed in the natural system. If the
results obtained from the model contradict the behaviour of the
natural system one concludes that the underlying assumptions of
the model are either incorrect or incomplete. But if the results are
consistent with the system to be modelled we cannot conclude
that the explanation provided by the model is correct because we
cannot exclude the possibility that alternative models with
completely different underlying assumptions produce similar
results. Instead of regarding a mechanistic model as a mathemati-
cal representation of some “truth” it is therefore more accurate to
think of a model as an argument for a particular hypothesis
explaining the observed behaviour of a natural system.

Finally, it is widely accepted among applied mathematicians
that not the development of individual models but the comparison
of several competing models of the same system that are based on
different assumptions provides most insight. Modelling is there-
fore not so far from studying a system via experiments—with the
important advantage described by the mathematician Vladimir
Arnold with the words “mathematics is the natural science where
experiments are cheap”. This is very well illustrated by several
monographs on mathematical biology for which we give a few
examples—the general introductions by Murray (2002, 2003);
Edelstein-Keshet (2005) and Ellner and Guckenheimer (2007)
mentioned above, also we refer to more specific books on ecology
(Okubo and Levin, 2001; Malchow et al., 2008) or physiology
(Keener and Sneyd, 2009a,b).

6. Discussion

6.1. Rosen's answer to his question “What is Life?”

As explained above, Robert Rosen looked for an answer to the
question “What is life?” in a way that was different to the
commonly used modelling approaches at his time. Following the
motto “throw away the physics, keep the organisation” he
proposed to investigate relationships between “components”
without associating these abstract entities themselves with any
structure.

Looking at this idea from the point of view of an applied
mathematician, we observe that Rosen's model starts with the
“lie”, in the sense of Section 5.1, that the physics of components
that make up a biological organism is mostly irrelevant for
understanding its functioning. A problem with this is that we can
only learn in hindsight, once this model has been applied to a real
biological organism, if this assumption has been able to provide
new insights. But because Rosen himself was more interested in
developing his formal framework and developing the theoretical
ideas he drew from those studies, his publications contain at most
hints to possible applications.

The idea of a relational approach to biology has, in the last two
decades, become quite influential under the name of “network
science”—we refer to the recent textbook by Barabási (2016), one of
the most influential figures of the discipline, as an introduction to
the large body of literature. Papers in network science often follow
statistical approaches for inferring networks from data and the
resulting networks are analysed by computational techniques
developed with methods from graph theory and statistical
mechanics.

Studies in the area of network science clearly illustrate the
challenges with “throwing away the physics and keeping the
organisation”. For example, once a large-scale biological network
has been inferred from data, the question of its interpretation
might not be easy to answer, precisely because only minimal
assumptions are made regarding the properties of individual
nodes. Is it most important that a network has certain global
properties such as being scale-free (Watts and Strogatz, 1998;
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Barabási and Albert, 1999), to which extent the network can be
controlled (Liu et al., 2011; Ruths and Ruths, 2014) or that certain
“network motifs” are more prevalent than expected by chance
(Milo et al., 2002; Alon, 2007)? If we consider, more specifically,
gene regulatory networks another problem becomes apparent.
Rosen always assumes that relationships between the components
of his (M, R) systems are known. Unfortunately, inferring the
interactions within biochemical networks such as the highly
complicated large networks of genes and their transcripts is often
quite challenging and might not lead to conclusive results. This
motivated, for example, Oates et al. (2014) to include a more
detailed model of the underlying reactions in order to obtain more
accurate results on the interactions between the components of
the biochemical network. Also, as far as the impact of the
conclusions is concerned, one might argue that combining
network models with at least some description of the underlying
“physics” of the components has been more promising than
studies that are restricted to networks whose nodes without
considering their underlying structure. As an example I refer to
Colizza et al. (2006) who investigated the global spread of
epidemics along the airline traffic network using the example of
the 2002 outbreak of severe acute respiratory syndrome (SARS).

In summary, by considering the example of “network science”
which is the area of science that is probably most closely related to
Rosen's idea of a relational biology, the benefit of Rosen's proposal
of throwing away the physics and keeping the organisation are not
entirely clear. But this has to be considered in a situation where
applications of his ideas are still in relatively early stages because
Rosen himself did not work towards applying his theory to
concrete biological problems.

6.2. Rosen's relational biology and category theory

As mentioned several times above, a strong view of Rosen's is
the motto “throw away the physics and keep the organisation”. For
this reason he deliberately defines the components of his (M, R)
systems as “black boxes”. Rather than describing the structure of
components that form a system, his relational biology focuses on
their interactions with other components. Consistently, he
primarily uses category theory for describing interactions between
objects; that the objects are members of categories with certain
underlying mathematical structures hardly plays any role.

This use of category theory is likely to disappoint most readers
of Rosen's works with a mathematical background. In the preface
of her recent textbook “Category Theory in Context” Emily Riehl
introduces category theory like this (Riehl, 2016):

Atiyah17 described mathematics as the “science of analogy.” In
this vein, the purview of category theory is mathematical
analogy. Category theory provides a cross-disciplinary language
for mathematics designed to delineate general phenomena,
which enables the transfer of ideas from one area of study to
another.

A strong motivation for the development of category theory and
one of the main reasons for its success as a mathematical discipline
is the formalisation of links between different areas of mathemat-
ics. When category theory was originally formulated by Eilenberg
and MacLane (1945) the new notions of category theory facilitated
understanding the connections between topological spaces and
algebraic objects such as groups or vector spaces that can be
associated to them. The ability for finding such mathematical
17 Sir Michael Atiyah (*1929), British mathematician, one of the most distin-
guished mathematicians of the 20th century. Apart from many other awards and
honours he won the Fields medal (1966) and the Abel Prize (2004).
analogies (between topological and algebraic objects in the case of
algebraic topology) crucially depends both on relations between
objects from particular categories (such as topological spaces or
groups) but also on the underlying mathematical structures of
these objects that are preserved by morphisms.

6.2.1. Rosen's treatment of category theory as an incremental
extension of graph theory

But, as already mentioned, Rosen explicitly avoids assigning
structure to the components of his (M, R) systems. From the
introduction of (Rosen, 1958b) it becomes clear that Rosen regards
category theory as an incremental extension of graph theory that
enables him to more flexibly describe relations between “black
boxes”. Unfortunately, this prevents him from taking much
advantage from the main strength of category theory, namely,
relating the structure of mathematical objects appearing in
different disciplines of mathematics. The negative impact of this
use of category theory on an audience of applied mathematicians
must not be underestimated. A strong motivation in mathematics
itself as well as in the community of applied mathematicians is to
use mathematical notions as efficiently as possible. By failing to
take full advantage of the ability of category theory to relate
mathematical structures Rosen does not only miss the chance to
capture properties of a biological system that might be encoded in
such structures. Even worse, an audience from a mathematical
background might even be deterred from Rosen's ideas, not
because of the ideas themselves but due to the perceived
shortcomings in their mathematical presentation. In summary,
one might go as far as saying that instead of being a strength of
Rosen's theories, category theory is one of the most important
obstacles for their acceptance. Nevertheless one shall not be overly
critical of Rosen's approach of using category theory for his
research—after all he was a pioneer in applying a novel, quite
difficult mathematical discipline at a time when even the
foundations of this discipline were still under development.

6.2.2. An alternative perspective on relational biology
Does the preceding section imply that category theory is not an

appropriate tool for investigating biological systems? One
reviewer of an earlier version of this manuscript kindly directed
me to work from the group of mathematical physicist John Baez
who have most recently applied category theory to open reaction
networks (Baez and Pollard, 2017). It is worthwhile to compare this
emerging research with (M, R) systems which were inspired by
networks of metabolic reactions. Rather than abstracting reaction
networks to a network of input–output relationships, Baez and co-
workers go the opposite way—they develop specific categories
RNet and RxNet in order to formalise Petri Nets, a diagrammatic
representation of chemical reactions. By constructing a functor to
the category Dynam of open dynamical systems they can relate a
given Petri net to a system of ordinary differential equations, the
rate equations associated with this particular Petri net. A functor
from Dynam to the category of relations Rel maps dynamical
systems to their steady states. Of course, the ambition of Baez and
co-workers is presumably not to answer questions like “What is
life?” but their “compositional framework” allows them to build
reaction networks from simpler components via composition of
morphisms and relate the structural properties of reaction
networks to similar models such as electrical circuits (Baez and
Fong, 2016), signal-flow diagrams (Erbele, 2016) and Markov
processes (Baez et al., 2015) which are all formalised in a similar
way as described above using the language of category theory. It
seems clear that although this work is not less “relational” than
Rosen's (M, R) systems or the network science approaches
mentioned in Section 6.1, the publications from Baez's group
clearly take advantage of category theory for relating the different
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mathematical structures characteristic of different modelling
approaches.

6.3. Rosen's modelling relation and mechanistic models in applied
mathematics

In “Life Itself”, Rosen (1991) repeatedly proposes relational
models as alternatives to mechanistic models. But, first of all,
according to the view explained in Section 5.4, mechanistic models
should not be considered as the opposite of relational models, in
fact, relational models can be regarded as a particular type of
mechanistic model. Second, many of Rosen's objections arise
because he implicitly assumes that mechanistic models necessarily
have to be interpreted in a reductionistic way. But building a
mechanistic model does not mean that the natural system
necessarily must be “reduced” to the mechanism represented by
the model—in fact, this is just a specific interpretation. In contrast,
in Section 5.4 we propose an alternative perspective on
mechanistic models—according to this view the “mechanism”

represented in a mechanistic model only provides an explanation
of a particular aspect of the system behaviour which is defined by
the underlying assumptions of the model. If additional aspects of
the system behaviour are to be considered this requires refining
the assumptions of the model, as a result the new model will
represent a more detailed mechanism that provides a more
comprehensive (but still partial) explanation of the system
behaviour.

6.4. Rosennean complexity and mechanistic models

The difference between Rosen's view on modelling and the
view I outlined in Section 5.4 is most obvious when considering his
definition of complex systems:

A system is simple if all its models are simulable. A system that
is not simple, and that accordingly must have at least one non-
simulable model, is complex.

Rosen's concept of complexity is a direct consequence of his
modelling relationship. With his modelling relationship he out-
lines an approach that enables us to directly relate a natural system
to a formal system, the model. Thus, it might seem that modelling
is, at least conceptually, trivial. Indeed, for our example of an
algebraic curve C (Section 4.1), the representation of the functor C
by the coordinate ring A (9) provides us with a “model” for the
algebraic curve over arbitrary K-algebras. But according to Rosen's
definition, the fact that the coordinate ring A exists as a model for
arbitrary K-algebras makes algebraic curves a “simple” system. For
a “complex” system, an analogue of the coordinate ring A might
still exist but it is “non-simulable” which Rosen defines as not
Turing-computable. Although such a model would still perfectly
describe the natural system, the required calculations formalised
by a Turing machine might not terminate in finite time.

Most striking about Rosen's definition of a complex system is
how the relationship of a system and “its” models is described.
According to Section 5.4 and in contrast to Rosen's concept of the
modelling relation a system does not “have” models—models
cannot be objectively associated with a system via the modelling
relationship but rather are subjectively attributed to the system by
the modeller. A model will—due to the requirement of making
simplifying assumptions—necessarily always remain incomplete,
the case of a “simple” system in Rosennean terms, where a perfect
formal representation of a natural system can be found, does not
exist. Mechanistic models serve a specific purpose by efficiently
representing a set of underlying assumptions that are consistent
with the purpose of the model. As explained in Section 5.4, rather
than being a formal representation of a particular “truth” about a
natural system, the aim of mechanistic models is to explore
scientific hypotheses that are represented in the assumptions of
the model. Therefore, consideration of competing models based on
alternative assumptions is an important part of scientific discus-
sion in the literature.

6.5. Rosennean complexity in the toolbox of mathematical biologists

The most important aspect of Rosen's theories is his postulate
that “organisms are closed to efficient causation”. In order to assess
how well this notion is able to describe living systems one has to go
beyond theoretical considerations. From the perspective of a
modeller it is therefore the most important shortcoming that so far
there are very few examples of mathematical models implement-
ing Rosen's postulate in the context of concrete biological systems.

In the field of modelling biochemical reactions, this issue is
being addressed by the group of Cárdenas and Cornish-Bowden. In
a series of papers, Letelier et al. (2006); Cornish-Bowden et al.
(2007); Cárdenas and Cornish-Bowden (2007) developed a simple
(M, R) system representing a simple biochemical reaction network
that was later implemented in a mathematical model and
investigated by simulation (Piedrafita et al., 2010, 2012a, 2012;
Cornish-Bowden et al., 2013). Whereas organisms are postulated to
be closed to efficient causation, they must be open to “material
causes” as explained in Section 3 or, in more familiar terms, flows
of matter and energy. A mathematical model that realises Rosen's
concept of an organism should therefore also appropriately
account for the exchange of matter and energy with the
environment. The bond graph methodology (Borutzky, 2010) is
an established approach from the engineering literature for
building models of complex systems with energy flows between
multiple domains (electrical, chemical etc.). Bond graphs were
recently applied to biochemical reactions (Gawthrop and Crampin,
2014; Gawthrop et al., 2015) and subsequently to more complex
physiological systems (Gawthrop and Crampin, 2016; Gawthrop
et al., 2017). Also, in mathematical ecology there are several
examples of energy-based models ranging from the early (E, M)
framework developed by Smerage (1976) to the more recent
studies by Cropp and Norbury (2012) and Bates et al. (2015).
Extending these frameworks by modelling approaches that realise
closure to efficient causation will enable us to investigate the
significance of Rosennean Complexity for ecosystems.

In all implementations of Rosen's principle of closure to
efficient causation an obvious difficulty is to identify “efficient
causes” and distinguish them from “material causes”—Rosen's own
publications provide relatively little guidance due to the mostly
formal presentation with very few specific biological examples. In
this regard, the recent paper Mossio et al. (2016) is highly relevant:
the authors develop a theory of biological organisation that
comprises Rosen's views but draws from the much longer tradition
of organicism. Organicism is a perspective on biology which states
that “organisms are the main object of biological science because
[...] they cannot be reduced to more fundamental biological entities
(such as the genes or other inert components of the organism)”
(Mossio et al., 2016). Organicism implies that the individual parts
that the organism consists of can only be understood by taking into
account their relationships and interactions with other parts. But
crucially, in contrast to the approach that Rosen takes with his (M,
R) systems, Mossio et al. (2016) avoid reducing the parts of an
organism to “black boxes” without underlying structure. Instead,
they identify specific parts of biological systems as constraints
which control processes without themselves being altered by
them—they give the role that enzymes play in reaction networks
and the influence of the vascular system on the flow of oxygen in
the body as examples. Biological organisation according to Mossio
et al. (2016) is realised via “closure of constraints” which shows
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that constraints are a closely related concept to Rosen's “efficient
causes”. This idea of biological organisation is one of three
theoretical principles for biology proposed in the highly readable
special issue “From the century of the genome to the century of the
organism: New theoretical approaches” published in Progress in
Biophysics and Molecular Biology—the others are variation (Mon-
tévil et al., 2016) and a postulated biological “default state” (Soto
et al., 2016). The articles from this special issue provide valuable
guidance to modellers who wish to construct models which
represent Rosen's idea of an organism or, indeed, stand in the much
longer tradition of organicism.

Although it seems clear that the task of building such
mathematical models that provide a better representation of
organisms will not be an easy one, it seems equally clear that this
will bring us another step further towards answering the grand
question “What is Life?”.
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