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Abstract

Stem cell-based regenerative medicine is a promising approach for tissue reconstruction. However, a large number of
cells are needed in a typical clinical study, where conventional monolayer cultures might pose a limitation for scale-
up. The purpose of this review was to systematically assess the application of microcarriers in Mesenchymal Stem

Cell cultures. A comprehensive search was conducted in Medline via Ebscohost, Pubmed, and Scopus, and relevant
studies published between 2015 and 2019 were selected. The literature search identified 53 related studies, but only
14 articles met the inclusion criteria. These include 7 utilised commercially available microcarriers, while the rest were
formulated based on different surface characteristics, all of which are discussed in this review. Current applications of
microcarriers were focused on MSC expansion and induction of MSCs into different lineages. These studies demon-
strated that MSCs could proliferate in a microcarrier culture system in-fold compared to monolayer cultures, and the
culture system could simulate a three-dimensional environment which induces cell differentiation. However, detailed
studies are still required before this system were to be adapted into the scale of GMP manufacturing.

Introduction

Mesenchymal stem cells

Adult mesenchymal stem cells are becoming increasingly
popular as a potential cell source in regenerative medi-
cine nowadays. This multipotent CD 34~ fibroblast-like
stem cell has the ability to differentiate into specialized
cells such as adipocytes, osteocytes, chondrocytes, and
myocytes [1-3]. It can be isolated from various adult
tissue sources such as blood or adipose tissue, dermis,
muscle, dental pulp, and Wharton’s jelly [4-7]. In con-
trast to embryonic pluripotent stem cells, MSC is devoid
of ethical, histocompatibility, and teratomas-formation
issues. In addition to that, several studies successfully
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demonstrated the efficacy of MSCs in regenerating new
tissues and repair defects [8—11].

Stem cell-based regenerative medicine is an emerging
approach for tissue reconstruction. Allogenic hemat-
opoietic stem cell transplant has the potential to play a
significant role in the treatment of autoimmune diseases
or hematopoietic disorders. However, the applications
of therapy are limited due to morbidity and mortality of
graft versus host disease (GVHD). Studies have reported
that mesenchymal stem cells could reduce inflamma-
tory cytokines through interplay with several subsets of
immune cells; thus the immunoregulatory capacity of
MSCs makes them of great interest in clinical studies
involving GHVD [12-14].

Anti-inflammatory properties of mesenchymal stem cells
Aside from its regenerative capabilities, MSCs are
known for its immunosuppression or anti-inflammatory
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ability in cell transplantations. The role of MSCs as
an anti-inflammatory agent has become more evident
with the elucidation of the mechanism of inflamma-
tion, which includes the release of intracellular cytokines
such as interleukin-la from injured cells or activation
of macrophages by pathogen-associated molecular pat-
terns (PAMPs) or damage-associated molecular patterns
(DAMPs) interaction with receptors to generate proin-
flammatory cytokines [15-17].

According to the results reported by [18], administra-
tion of MSCs into a mouse model successfully inhibited
bleomycin (BLM)-induced elevation of TNF-a, IL-1a,
and ILIRN mRNA in the lungs, which protected lung tis-
sues from BLM-induced injury by blocking TNF-a and
IL-1qa, the main proinflammatory cytokines in the lungs.
A similar anti-inflammatory property was reported by
Oh et al., where the suppression of IL-2 and IFN-y, and
the reduced infiltration of CD4" cells by MSCs, showed
a reduction in corneal inflammation and neovascularisa-
tion [19]. In short, the anti-inflammatory effects of MSCs
have been reported in various events such as lung injury,
myocardial infarction, corneal injury, sepsis, and diabetic
wound healing [20-23].

Cytokines in inflammatory events

Inflammatory mechanisms in GVHD were generally
associated with activation of immune cells (T cells, B
cells, and macrophages) in the presence of antigen-
presenting cells (APC). These immune cells will release
substances called cytokines which regulate or facilitate
immune responses. For instance, the IL-1 pathway plays
a crucial role in generating sterile inflammation, which
is similar in effect as that produced by tumor necrosis
factor-a (TNF-a) in lung injuries [24]. In addition, the
presence of pro-inflammatory cytokines such as TNF-a
and IL-6 in serum also contributed to sepsis in a mouse
model [25]. In addition to that, the secretion of TNF-a
and IL-1a by macrophages also induced peritonitis in a
mouse model [26].

TNF-« is a prototypical member of a large superfam-
ily known as TNF/TNEFR superfamily, which comprises
more than 40 family members. The TNF-a gene is a sin-
gle-copy gene on human chromosome 6 (murine chro-
mosome 17), which codes for a 27-kDa (233 amino acid)
protein that is proteolytically cleaved into a 17-kDa (157
amino acid) molecule [27]. TNF-a is secreted from acti-
vated macrophages by induction of Toll-like receptors
and other factors, and generally after priming with inter-
feron gamma (IFN-y). It is rapidly released after trauma,
infection, or exposure to bacterial-LPS and was shown to
be one of the early abundant mediators in inflamed tis-
sues. Apart from that, the role of TNF-a during inflam-
mation is mostly associated with coordination of the
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pro-inflammatory cytokine cascade. Therefore, TNF-a
is considered as a master regulator of pro-inflammatory
cytokines during inflammation [28].

Mesenchymal stem cells expansion

Clinical applications of mesenchymal stem cells require
billions of cells [29] and two-dimensional platforms,
which might pose a challenge in scaling-up. In a clini-
cal study of acute ischemic stroke, it was suggested that
the number of MSCs required for administration to a
single patient ranged from 1-8 x 10° MSCs per kg of
body mass, depending on the indication [30]. Innova-
tion of cell culture products aim to address surface
limitations imposed by monolayer culture flasks. Multi-
layered flasks which could accommodate up to 40 layers
of culture chambers is a good example of such innova-
tion. However, difficulty in observing the in-cultured
cells could be a potential downside of this innovation. In
order to achieve a scalable undifferentiated mesenchymal
stem cell number for cell transplantation and tissue engi-
neering applications, 3-dimension culture techniques
seem to be a more reliable approach compared to 2D cul-
tures. Mesenchymal stem cell expansion in bioreactors
potentially provide ease of scalability, flexible modes of
operation, better process monitoring, and control com-
patibility. For example, Zhou et al. (2013) developed a
novel strategy for 3D expansion of bone marrow MSCs,
which produced a 10.440.8-fold increase compared to
2D cultures on day 5.

3-D cell culture

Various tissue-engineering studies utilising a 3D scaffold
system have shown their efficacy in in vitro culture of
MSCs. Three-dimensional culture conditions simulates
environment of cells in vivo, therefore providing a suita-
ble condition that enhances cellular activities that are not
observed in normal monolayer cultures [31].

While 3D scaffold systems propose unique attractive
advantages, these also brought about significant chal-
lenges for MSC culture including: (i) the use of unde-
fined components from human or animal tissue, which
may result in batch-to-batch variation and poses risks
for pathogen and immunogen transfer [32, 33], and thus
an obstacle for good manufacturing practice (GMP) in
cell production [34]; (ii) substantial cell aggregation that
could possibly lead to MSC differentiation or senescence
[35]; (iv) limited cell expansion rates and yield per vol-
ume [36]; and (v) unpredictable consequences of long-
term serial expansion.

One way to address a few of the abovementioned chal-
lenges is to adapt the use of microcarriers. These micron-
sized spherical particles were initially used for the growth
of adherent cells for viruses and production of vaccines
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[37-39]. Over the decades, properties of microcarriers
underwent various modification and innovation to meet
the need of different cell types. To date, there are numer-
ous manufacturers and multiple microcarrier varieties
are commercially available.

Microcarrier in 3-D culture

Microcarriers provide surface matrices that enable
attachment of adherent cells to form cell-microcarrier
complexes suspended in growth medium [40]. The fun-
damental structure of microcarriers are tiny beads (size
ranging from 100—300 microns) that are able to maintain
suspension during stirring. A number of microcarriers
have been synthesized and made commercially available,
e.g. glass, diethylaminoethyl (DEAE)-dextran, acryla-
mide, polystyrene, collagen, and alginate [41].

Microcarrier-based cell culture systems are relatively
flexible as they promote higher cell yield and can be inte-
grated into existing bioprocess manufacturing systems
such as stirred bioreactors and spinner flasks [42]. Such
microcarriers have been established for vaccine produc-
tion or fermentation processes decades ago, however,
downstream processes were only focused on metabo-
lites instead of cells. In cell-based therapy, the product
of interest are the cells itself, and the main objective of
bioprocessing changed from maximising the yield of
metabolites to harvesting large quantities of MSCs. Since
mesenchymal stem cells required a support surface for
cell division, microcarriers are often added into culture
media to provide sufficient adherent surface for MSCs
in three-dimensional culture. Figure 1 shows the basic
approach of up-scaling MSC production in microcar-
rier-based culture system. Microcarriers provide a large
surface area for cell growth during proliferation in sus-
pension cultures, thus allowing scaling-up of cell produc-
tion in small volumes of medium [43]. In addition to that,
the suspended system provides better nutrient intake and
gas exchange, and at the same time the adjustable stir-
ring mechanism provides control over shear stress which
might facilitate differentiation along certain lineages [44].
This approach could be an ideal model for MSC expan-
sion for its large surface area per unit volume of media
compared to T-flask cultures. Hence, the selection of
microcarriers are crucial as it would contribute a direct
impact on cell expansion.

To date, there are vast reports which suggests extensive
choices of suitable microcarriers for mesenchymal stem
cell culture. Alginate/PEG-based microcarriers could
provide good attachment and proliferation of human
umbilical cord blood mesenchymal stem cells, with well-
controlled microcarrier degradation for harvesting [45].
The use of Cytodex type 1 from GE healthcare for por-
cine bone marrow-derived MSCs could produce cell
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numbers of approximately 4 x 10° cells/mL [46], while
the use of Cytodex type 3 showed similar cell numbers
(3.8 x 10° cells/mL) for human placental MSCs [47].

Methods

Search strategy

The review was conducted to systematically assess arti-
cles on the application of microcarriers for MSC culture.
Three databases were comprehensively used to search
for relevant studies; Medline via Ebscohost, Pubmed,
and Scopus. The keywords used were the combination of
words “Mesenchymal Stem Cell” AND “Microcarriers”

Selection criteria

The year limit for searches was from 2015 to 2018, and
only studies published in English were considered. The
search outcomes identified all articles containing the
word “mesenchymal stem cell” and “microcarrier”. Data-
bases were searched individually to ensure all relevant
studies were considered. The titles and abstract were
carefully screened for eligibility related to the topic of
interest. Primary studies related to microcarrier appli-
cation were included. Review articles, news articles, let-
ters, editorials, and case studies were excluded from the
search.

Data extraction and management

Data were extracted from each eligible article by two
reviewers. The selected papers were screened in sev-
eral phases prior to inclusion. First, titles that were not
relevant to the topic were excluded. Next, abstracts of
the papers were screened, and unrelated studies were
excluded. All duplicates were removed. The following
data were summarized from the selected studies: authors,
year, source of MSCs, applications, type of microcarrier
used, results, and conclusion.

Results

Search result

The primary search identified 432 articles: 61 articles
were derived from Pubmed, 265 from Ebscohost, and 106
articles from Scopus. To minimize bias and improve the
strength of the related articles, two reviewers indepen-
dently assessed the articles according to the inclusion and
exclusion criteria. A total of 379 articles were removed
as they were unrelated to either mesenchymal stem cells
or microcarriers. A joint discussion was conducted to
achieve consensus on differences which emerged during
the assessment. From the 53 remaining articles, 12 dupli-
cates were removed before full articles were retrieved.
From the remaining 41 articles, 27 articles were rejected
based on the inclusion criteria as these articles were not
primary studies, were not related to mesenchymal stem
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Source of MSC
-Bone marrow
-Periosteum
-Amniotic membrane

Isolation of MSC

MSC 2-D culture on culture flask

Microporous
microcarrier

Non-porous
microcarrier

Microporous
microcarrier

Macroporous
microcarrier

Types of microcarrier based on porosity

Chondrogenic/ osteogenic induction
in cell-microcarrier construct

specific condition

MSC 3-D culture on micr
(Small scale)

Bench scale manufacturing of MSC
(1L-5L)

Pilot scale manufacturing of MSC
(Up to 20L)

Fig. 1 Schematic illustrating the basic flow of up-scaling MSC culture from laboratory scale into manufacturing scale. To date, a “pre-adaptation”
period prior microcarrier culture system in MSC s still required, where 2-D culture flasks were used for cell isolation. The up-scale of MSC production
can be first optimising culture condition in a small-scale culture system (usually 10-500 mL), followed by up-scaling into bench scale (1-5 L), and
finally up to manufacturing scale (up to 20 L). There are 3 major types of microcarrier: non-porous, microporous and macroporous. Cells attach
differently based on the porosity of the microcarrier. In general, cells will be attached on the surface of non-porous and microporous microcarrier;
while microporous microcarrier provides larger spaces, which allow cells to attach into the inner part of the microcarrier. Due to the similarity
towards human body environment, MSCs-microcarriers constructs were found to be able to differentiated into osteo- and chondro-lineage in a

Macroporous
microcarrier

Non-porous
microcarrier

MSC attachment on microcarriers

cells or microcarriers, or were unavailable as full articles.
Finally, a total 14 studies were selected for data extraction
in this review. The flow chart of the selection process is
shown in Fig. 2.

Study characteristics
All studies were published between 2015 and 2019 and
reported on in vitro studies. Thirteen studies utilised

human mesenchymal stem cells, while only one reported
using rat MSCs. Seven out of 14 articles utilised commer-
cially available microcarriers, while the rest were formu-
lated based on different surface characteristics. From the
generated data, articles were classified into three aspects:
Microcarriers in MSC culture, MSC expansion and MSC
differentiation. A summary of the studies is provided in
Table 1.
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Search of electronic databases

Total =432

Pubmed = 61, Ebscohost = 265, Scopus = 106

Rejection of not-related title =379

Screening of duplicates
Pubmed = 6, Ebscohost = 25, Scopus = 22
Total =53

Removal of duplicates = 12

Primary screening of abstracts
Pubmed =5, Ebscohost = 20, Scopus = 16
Total =41

Rejection of abstracts based on

selection criteria = 27

Full articles obtained
Pubmed = 6, Ebscohost = 4, Scopus = 4
Total = 14

Fig. 2 Flow chart of the article selection process from Pubmed, Ebscohost, and Scopus databases

Discussion

The database search provided 14 articles related to
Wharton’s Jelly and microcarrier. From these articles,
various sources were examined regarding microcarrier
application on MSC culture. This review assessed the
application of microcarrier on MSC culture, which may
have remarkable potential for different usage in future
application.

Microcarrier in MSC culture

Generally, microcarriers can be divided into 3 major
types: non-porous, microporous and macroporous
(Fig. 1). While non-porous microcarriers are relatively
straightforward with limited surface area, the micropo-
rous structure of microcarriers allow cells attached on
the carrier to undergo material transfer on the basolat-
eral side of the cell; however, the surface area available
for cell attachment is also limited on the outer surface
of the microcarrier. In contrast, macroporous microcar-
riers provide a larger pore size that enable cells to enter
into the microcarrier. In this case, macroporous micro-
carriers contributes a larger surface area per millilitre of

media compared to microporous microcarriers, hence
potentially higher cell yields in large scale cultures [48].
Table 2 shows the summary of the microcarrier used in
the 14 studies selected aforementioned, the details were
arranged based on the material, surface feature, diameter,
porosity, concentration in culture and results of applica-
tion for each microcarriers.

The fabrication material of microcarriers is also a cru-
cial factor in microcarrier cultures because of its physical
and chemical effects towards cells, which include poros-
ity, mechanical strength, permeability of nutrients, size,
density, and shape [49]. In order to facilitate adherent
cells to attach on the carrier surface, the divalent cati-
ons or protein available in culture medium is important
so that cell could utilise it for attachment. Polymers such
as polystyrene, plastic, or glass are commonly utilised as
the basic matrix of microcarriers; these microcarriers
are usually positively charged or chemically bounded to
facilitate the attachment of adherent cells which possess
an uneven distribution of negative surface charge. While
microcarriers with higher charge densities were devel-
oped to promote cell adhesion for cell lines with weak
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adhesion (E.g. Cytopore 1 & 2), these microcarriers poses
a challenge during cell harvesting due to difficulties with
cell detachment at the end of the culture [50].

To overcome this problem, biopolymers (dextran, gela-
tin, cellulose, agarose, alginate) were introduced as they
potentially facilitate cell harvesting while providing a bio-
compatible environment for cultures [51, 52]. In addition,
microcarriers with surface modifications (E.g. protein or
collagen coated), could also achieve a similar effect as the
microcarriers mentioned above. Fibronectin for example,
is commonly used to coat plastic or glass microcarriers to
increase cell adhesion in microcarrier cultures, and used
in concentrations ranging from 1-50 ug/mL [53-55]. On
the other hand, compounds such as casein, chitosan, or
even PNIPAAm was grafted on the surface of microcar-
riers to modify its adhesion properties and to provide an
easier solution for cell harvesting [51, 56, 57].

Application of microcarriers in MSC culture

MSC expansion

A study found that PEG coated microcarriers supported
the expansion of hMSCs in a serum-free environment,
with doubling time under 25 h in the growth phase, as
well as preserving its osteogenic and adipogenic differen-
tiation post-harvest [58]. Genipin cross-linked alginate-
chitosan microcarriers were demonstrated to provide
26% higher MSC attachment and twice the proliferation
rate compared to the commercial microcarrier, Cyto-
dex 1. The cells produced were easily detached without
an extended incubation period or intense agitation dur-
ing harvesting [51]. Whereas Krutty et al. developed a
chemically defined PVG microcarrier which achieved a
six-fold expansion in MSCs, while retaining their ability
to differentiate after harvesting [59].

Under xenogenic-free culture conditions, Gupta et al.
reported that HPL resulted in faster cell proliferation by
5.240.61-fold in comparison to 2.7 +02.22-fold in FBS
[60]. In addition, an automated serum-free, microcarrier
culture system was established. It was found that such
approach can produce more than tenfold MSC expansion
compared to serum-based, manual spinner flask methods
[61].

Several studies have been conducted on the formation
of MSC-microcarrier aggregates and explored possible
methods to overcome drawbacks associated with such
culture strategies. It was suggested that hMSC aggregates
generated from thermal responsive microcarriers in bio-
reactors maintained comparable immunomodulation
and cytokine secretion compared to conventional cul-
ture strategies [62]. Heathman and co-workers reported
a minimum agitation speed in a bioreactor system
to obtain high cell numbers; however, low agitation
were still accompanied by cell aggregation, leading to
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inconsistencies between pre- and post-harvest sampling.
Therefore, an alternative oxygen supply method is needed
to overcome the current downsides faced by readily
available methods, which introduced shear forces to the
cells during increased agitation speeds in up-scaling of
cultures [63]. On the other hand, a protocol which uti-
lised short periods of intense agitation in the presence of
enzymes such that the cells were detached yet remained
undamaged and retained post-harvest characteristics,
was reported [54].

MSC differentiation

Aside from up-scaling MSC expansion, more researchers
were shifting their focus towards inducing cell differenti-
ation in microcarrier cultures simulating a three-dimen-
sional human body environment. Lin et al. showed that
chondrogenic pellets generated from microcarrier cul-
tures developed larger pellet diameters, and produced
more DNA, GAG and collagen II per pellet with greater
GAG/DNA and collagen II/DNA ratios compared with
that of tissue culture flasks, while similar result were
observed by using another type of microcarrier [64].
An increasing number of studies have highlighted bone
formation potential by using microcarrier cultures, for
example, a new process developed by Zhang et al. fab-
ricated pre-vascularized bone microtissues by integrat-
ing microcarrier culture and co-culture with MS and
HUVEC [65]. Aside from that, Tanimowo et al. fabricated
a novel agarose-k-casein microsphere which upregulated
the expression of osteogenic differentiation markers in
bone marrow MSCs [57]. A titanium phosphate glass
microcarrier that enhances bone morphogenic protein-2
(BMP-2) and osteopontin (OPN) expression by h-MSC
was introduced. BMP-2 is considered an important pro-
tein in cell differentiation and tissue regeneration, which
is normally associated with osteoinductive growth fac-
tors [66]; OPN on the other hand is mainly related to
bone metabolism and remodelling [67]. In this case, it
was suggested that titanium phosphate glass microcarri-
ers influenced hMSC differentiation and metabolic activ-
ity and could contribute in bone tissue engineering [55].

Conclusion
Limitation of cell numbers in MSC-based cell therapy
enlightened multiple approaches to increase the cell
yield. Three-dimensional microcarrier cultures seems
to be a potential candidate in the up-scaling production
of MSCs. This review demonstrates that microcarriers,
whether commercially available or produced in-house,
were capable of enhancing production and inducing
chondrogenic and osteogenic differentiation in MSCs.
However, several challenges in this system need to be
addressed during cell manufacturing. The yields of MSC
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up-scale activity are still showing inconsistency from one
another, even similar culture techniques and consuma-
bles were used. This problem could be possibly due to
the batch-to-batch variances present in undefined media
which relying on animal/human derived serum as main
supplement. The variation from each batches of serum
further affect the quality of the up-scaled product by
different sources of origin, brands, and present of uni-
dentified risk of contamination. In this case, one of the
solutions to minimise this variations is the adaptation of
serum free media (SFM) in MSC culture as mentioned by
Ota et al. [68]. Aside from cell yield variations, the down-
stream harvesting approaches still require optimisation
to improve cell recovery; in fact, MSC differentiation effi-
ciency in 3D system remains uncertain and the mecha-
nism is still not well-studied. Therefore, detailed studies
are still required before this system to be adopted into
the scale of GMP manufacturing.
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