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Crop improvement is crucial to ensuring global food security under climate change, and hence there is a pressing need for
phenotypic observations that are both high throughput and improve mechanistic understanding of plant responses to
environmental cues and limitations. In this study, chlorophyll a fluorescence light response curves and gas-exchange
observations are combined to test the photosynthetic response to moderate drought in four genotypes of Brassica rapa. The
quantum yield of PSII (fPSII) is here analyzed as an exponential decline under changing light intensity and soil moisture. Both
the maximum fPSII and the rate of fPSII decline across a large range of light intensities (0–1,000 mmol photons m22 s21; bPSII)
are negatively affected by drought. We introduce an alternative photosynthesis model (bPSII model) incorporating parameters
from rapid fluorescence response curves. Specifically, the model uses bPSII as an input for estimating the photosynthetic
electron transport rate, which agrees well with two existing photosynthesis models (Farquhar-von Caemmerer-Berry and
Yin). The bPSII model represents a major improvement in photosynthesis modeling through the integration of high-
throughput fluorescence phenotyping data, resulting in gained parameters of high mechanistic value.

Increasing global populations and environmental
change require greater mechanistic understanding of
plant responses to fluctuating environmental factors
along with meaningful phenotyping for tolerance to
stress such as drought (Sheffield and Wood, 2008; Jin
et al., 2018). Improved phenotyping technologies can
also advance our ability to link physiological mech-
anisms to rapidly improving genetic information.
Among the challenges toward this goal is the genetic
complexity behind drought tolerance traits of interest

to breeders (Holland, 2007; Shi et al., 2009). Hence,
model-assisted phenotyping has been advocated to
separate complex traits such as quantum yield of
photosynthesis, stomatal conductance, and water use
efficiency into manageable mechanistic components
(Tardieu, 2003). Mechanistic modeling formalizes
plant physiology using interconnected mathematical
equations, which describe primary biochemical and
first-principles biophysical processes. Improving predic-
tive understanding of crop responses to changing envi-
ronments will require that mechanistic models directly
use phenotypic and environmental data to simulate
outcomes sensitive enough to capture possible vari-
ation in the expressed traits among unknown geno-
types. When these requirements are met, mechanistic
models can assist in unraveling the genetic archi-
tecture underlying the complex quantitative traits of
drought physiology (Reymond et al., 2003; Hammer
et al., 2006; Chenu et al., 2009).

Although mechanistic models have evolved to cap-
ture the expression of complex plant traits in a changing
environment, no current model can dependably capture
the impact of drought on photosynthesis (Drake et al.,
2017). Photosynthesis models focus on those environ-
mental factors considered critical to net assimilation
rates (An; de Witt, 1966; Farquhar et al., 1980; Patrick
et al., 2009; Yin et al., 2009). Observations of An and
available CO2 (A/Ci) are combined inmechanistic models,
such as the Farquhar, von Caemmerer, and Berry (FvCB)
model (Farquhar et al., 1980), to reveal biochemical
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mechanisms underpinning photosynthesis. FvCB
estimates An as limited by two primary factors. First,
Rubisco-limitedAn (Ac) is dominated by the response
of the maximum rate of carboxylation (Vcmax). Second,
light-limited An (AJ) is constrained by the electron trans-
port rate (ETR) across PSII and PSI, which ultimately
produces ATP and NADPH needed for the Calvin car-
boxylation cycle (Farquhar et al., 1980; Von Caemmerer,
2000). Although the FvCB model captures the phenom-
enological link betweenETR andAn, it omitsmechanistic
details of the photosynthetic electron transport chain
(Horton et al., 1994; Allen and Pfannschmidt, 2000; Laisk
et al., 2002; Yin et al., 2004). Whereas the conceptual
power of a reduced complexity model (FvCB) yields
crucial insights under nonstressed conditions, it lacks
additional mechanistic detail for plants exposed to
environmental stress (Urban et al., 2017).
Drought stress impacts both Ac and AJ via interactive

mechanisms (Flexas and Medrano, 2002; Bota et al.,
2004; Fini et al., 2012). The initial response to water
stress is often a decline in stomatal conductance (gs),
which impacts CO2 availability for photosynthesis
(Medrano et al., 2002; Grassi and Magnani, 2005).
Additional CO2 constraints on Ac are possible via me-
sophyll conductance (gm), limiting CO2 at the site of
carboxylation (Flexas et al., 2002, 2018; Niinemets et al.,
2009; Pons et al., 2009). Prolonged CO2 limitation can
result in overreduction of the photosynthetic electron
transport chain (Miller et al., 2010), triggering the
production of reactive oxygen species at different sites of
the photosynthetic pathway with the potential for pho-
tooxidative damage (Krieger-Liszkay et al., 2008; Miller
et al., 2010; Sharma et al., 2012). PSII is highly susceptible
to oxidative stress, and a variety of mechanisms, collec-
tively called photoprotection, preserve it from irreversi-
ble photodamage that causes sustained declines in the
overall efficiency of PSII (Murata et al., 2007; Takahashi
and Badger, 2011). Heat energy dissipation, state transi-
tions, augmented PSI energy utilization, and changes in
leaf absorbance using alternate pigments or chloroplast
avoidance are all knownmechanisms of photoprotection
(Müller et al., 2001; Kasahara et al., 2002; Takahashi and
Badger, 2011).
Photosynthesis models must now progress to reflect

these stress-induced mechanisms while using high-
throughput phenotyping data, including noninvasive
measures of leaf spectral reflectance, absorbance, and
chlorophyll a fluorescence (Cruz et al., 2016; Kuhlgert
et al., 2016; Silva-Perez et al., 2018). Fast and informa-
tive techniques provide fine temporal resolution of
mechanistic responses to external stressors frommild to
lethal stress (Guadagno et al., 2017), which are neces-
sary to improve predictive understanding of photo-
synthesis responses to drought.
In particular, pulse amplitude modulated (PAM)

chlorophyll a fluorescence analysis quantifies PSII
activity in response to observed photosynthetically
active radiation (Q) and is informative of the status
of the photosynthetic electron transport (Maxwell
and Johnson, 2000; Kramer et al., 2004a; Baker, 2008).

PAM measurements, using the signal of the excitation
energy reemitted by the chlorophyll a molecule as
fluorescence, are used to define the fate of the absor-
bed light in the leaf and are currently one of the fastest
and most reliable phenotyping tools in photosynthetic
measurements (Filek et al., 2015; Gullì et al., 2015;
Flood et al., 2016; Guadagno et al., 2017; Gómez et al.,
2018). The operating efficiency of PSII (fPSII) is a flu-
orescence parameter calculated from the relative dif-
ference in light conditions between the steady-state
fluorescence (Fs) and the maximum fluorescence emitted
after a saturating flash that closes (reduces) all PSII re-
action centers [Fm9; i.e. fPSII 5 (Fm9 2 Fs)/Fm9; Genty
et al., 1989]. A large fraction of the excitation energy
not used in PSII photochemistry or reemitted as fluo-
rescence is dissipated as heat via regulated (e.g. non-
photochemical quenching [NPQ]) and nonregulated
energy dissipation (e.g. fNO) mechanisms (Müller et al.,
2001; Kramer et al., 2004a). Recently, the original deri-
vation of NPQ has been extended, allowing for high-
throughput estimates of quantum yield NPQ (fNPQt;
Tietz et al., 2017). fNPQt can be measured in a few
seconds, allowing for high-throughput and field ap-
plications, and its calculation does not require full
relaxation of quenching processes as for the classic
NPQ parameter. The combination of fluorescence
observations with leaf gas-exchange data has been
shown as a powerful way to inform and test models of
photosynthesis (Laisk et al., 2002; Yin et al., 2009;
Bellasio et al., 2016).
Alternative models of photosynthetic electron trans-

port have been developed using an increasing number
of mechanistic details of the Z-scheme for the electron
transport (Fig. 1). Within chloroplasts, photosynthetic
electron transport occurs across the thylakoid mem-
branes (Fig. 1A), where a hydrogen ion gradient builds
up upon the transfer of excited e- to ultimately produce
ATP and NADPH, which are used as substrates in the
Calvin cycle. Figure 1B summarizes the ETR derivation
of the FvCB model. This model assumes that the elec-
tron flow is entirely linear (LEF) from PSII to NADP1
reduction, with the CO2 fixation rate from the A/Ci re-
sponse used to parametrize the maximum ETR (Jmax).
Data from the linear portion of a light response curve
can be used to parameterize quantum yield on a
DCO2/DQ basis (fCO2; Fig. 1B, inset graph). Although
the significance of the correlation between the quan-
tum yield of assimilation and the PSII quantum yield
has been previously studied (Oberhuber and Edwards,
1993; Pietrini and Massacci, 1998; Singsaas et al., 2001),
to the best of our knowledge, the effect of drought on its
linearity is still unclear. The FvCBmodel has been recently
implemented to include proportional changes between
ETR and An using observations of An and fPSII under
low-light conditions (Q, 200 mmol photons m22 s21)
to estimate ETR and AJ (Fig. 1C; Yin et al., 2004, 2009;
Bellasio et al., 2016). Quantum yield is estimated on a
De-/DQ basis using the linear portion of the fPSII light
response (Fig. 1C, top inset graph), but the use of only
low-light conditions to characterize PSII quantum
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Figure 1. Simplified illustration of the light reactions of photosynthesis representing how three conceptual models account for the
photosynthetic electron transport. A, Upon light energy absorption, energy in the form of excited electrons (e2) is transferred from
light-harvesting antennae to the reaction centers of PSI and PSII in the chloroplastic thylakoid membranes. This energy transport
has been described as a Z-scheme (Hill and Bendall, 1960) whereby e2 from PSII produce a transmembraneH1 gradient (used for
ATP production)while e2 downstreamof PSI produceNADPH; bothATPandNADPH are then used for Calvin cycle CO2 fixation.
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yield is limiting. In the Yin model, a lumped param-
eter, s, is estimated to account for the energy parti-
tioning between photosystems (r2), leaf absorbance in
the antenna complex (aleaf), and the potential use of
electron pathways other thanLEF (falt). However, neither
FvCB nor the Yin model explicitly addresses the influ-
ence of environmental stress on ETR and An, and they
are not well equipped to capture the AJ responses of
the PSII antenna complex to stressors (Govindjee, 2002;
Asada, 2006; Murata et al., 2007; Urban et al., 2017).
Here, we introduce an alternative approach (bPSII

model) that considers PSII activity across a wide range
of light conditions and that can better accommodate the
role of stress-related mechanisms (Fig. 1D). We observe
that data from the fPSII/Q response can be modeled as
an exponential decline (Fig. 1D, inset graph). This new
parameter as the rate of decline (bPSII) can be used to
calculate ETR, AJ, and An under stress conditions such
as drought. Using amore complete characterization of
quantum yield via the fPSII light response, the bPSII
model approach accommodates mechanisms of pho-
toprotection including NPQ, chloroplast avoidance,
and pigment alterations as well as PSII damage rela-
tive to repair (Fig. 1D). Our integration of the fPSII
decline provides a link between gas conductance-
based limitations on Ac and photoprotective limita-
tions impacting AJ, representing a further step in the
mechanistic understanding of the electron transport
under stress (incremental yellow shadow in Fig. 1).
All model parameters (observed and predicted) for
the FvCB, Yin, and bPSII models are compared in Table 1,
whereas Table 2 describes the equations used in the
three photosynthesis models.
We tested the bPSII approach in an effort to analyze

physiological responses of An under different soil mois-
ture conditions from full watering to moderate drought
in the species Brassica rapa (Supplemental Figs. S1 and S2).
High intraspecific physiological diversity with respect
to complex quantitative traits such asAn andwater use
efficiency has previously been shown for Brassica species
(Edwards et al., 2011, 2012; Franks, 2011; Baker et al., 2015),
making it a perfect model to investigate photosynthesis
phenotyping tools. Specifically, we tested a turnip

crop type (VT), a cultivated oilseed (R500), and two
experimental genotypes (recombinant inbred lines
[RILs]) developed from a cross between a rapid-cycling
genotype (Imb211) and an oilseed crop (R500), thus en-
suring a broad range of both photosynthetic and biomass
allocation diversity (Edwards et al., 2011; Yarkhunova
et al., 2016; Pleban et al., 2018).
We developed a fPSII light response curve using a

three-parameter exponential function,

fPSII 5 ðaPSII 2 kPSIIÞeQbPSII þ kPSII ð1Þ

where the exponential rate of decline for fPSII (bPSII)
under increasing light (Q) and the intercept of fPSII asQ
approaches zero (aPSII) are used tomodel the responses.
Importantly, aPSII derives from measurements taken in
light conditions and is different that the classic Fv/Fm
parameter derived from dark-adapted measurements
(Table 1). The kPSII term represents a non-zerominimumof
fPSII asQ approaches∞. To evaluate potential differences
in photoprotection strategies due to ETR, we validated the
fPSII light response parameters (bPSII and aPSII) at different
soil moisture conditions. Then, we incorporated these
parameters in an alternative photosynthesis model
that directly incorporates fPSII light response traits into
the estimation of ETR, and we assessed how the derived
parameters relate to known traits, includingVcmax and gm.
Using rapid measurements with high mechanistic

significance, our approach innovatively connects high-
throughput phenotyping and biophysical modeling to
better predict plant photoprotective strategies. Gained
knowledge will help to clarify the complexity of pho-
tosynthetic traits, such as drought tolerance, thus im-
proving breeding and management strategies toward
more drought-resistant crops with increased final yield.

RESULTS

Establishing Drought Treatments

After sowing, plants were immediately randomized
and put into different treatment groups (Supplemental

Figure 1. (Continued.)
For modeling applications (inset graphs of B, C, and D), photosynthetic quantum yield describes how light energy relates to CO2

fixation (Genty et al., 1989; Martre et al., 2015) and assumptions are made about the processes of electron transfer more or less
obscuring (gray boxes in B, C, andD) the actual physiologicalmechanisms. B, In the traditional FvCB conceptualization, quantum
yield is calculated on a photon-to-CO2 basis (fCO2; inset graph). Here, ETR processes are ignored, assuming 100% LEF from PSII
to NADPH production, leaf absorbance (aleaf) is fixed (0.85), and an implicit 50:50 fractionalization ofQ exists between PSII and
PSI (r2). C, The Yin conceptualization improved the use of PSII physiology by calculating quantum yield on a photon-to-e2 basis,
using the relationship between fPSII and Q under light-limiting conditions (fPSII_ll; top inset graph). Yin also used a lumped
s parameter defined by the slope of a linear regression of An against (Q fPSII)/4 using light , 200 mmol m22 s21, where 4 is the
number of protons needed to synthesize one ATP. This regression was used to calibrate for three factors, the unknown fraction of
nonlinear electron flow around PSI (falt), aleaf, and r2 (collectively s; bottom inset graph). D, Our alternative bPSII conceptuali-
zation captures the behavior of energy transfer from the antennae complex to the PSII reaction complex. Here, quantum yield is
modeled using an exponential decay function (Eq. 1) across all relevant Q conditions, on a photon-to-e2 basis, providing esti-
mates of both maximum light-acclimated quantum yield (aPSII) and the decay rate in fPSII under increasingQ (bPSII; inset graph).
The bPSII model maintains the use of the s parameter to address falt, aleaf, and r2. Implementations of modeling photosynthetic
electron transport in the Yin and bPSII approaches are represented as incrementing highlighted yellow in C and D.
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Fig. S1). On experimental day 0 (28 d after sowing),
drought was applied via complete water withholding
for the droughted cohort. Control pots (well watered
[WW]) were watered daily throughout the experiment,
andWWplants were measured on experimental days 1,
4, 5, 6, and 9. Droughted plants were assigned to three
different groups, and replicate plants were observed on
experimental days 4 to 7 (treatment group D1), 9 to 12
(treatment group D2), and 15 (treatment group D3). On
experimental day 9, water was reapplied to a subset of
droughted plants (R1), and they were observed on ex-
perimental days 9 to 12. On experimental day 15, a sec-
ond subset of droughted plants (R2) was rewatered and
observed 6 h after rewatering. Finally, on day 16, the last
subset of droughted plants was rewatered and assessed
at 30 h after rewatering (R3). For each experimental day,
volumetric soil water content (VWC) was measured
across all cohorts of plants for the duration of the
experiment (Supplemental Fig. S2).

Impact of Drought on Leaf Traits and
Genotypic Difference

The progressive drought and recovery (Supplemental
Fig. S1) application inevitably impacted the photosyn-
thetic performance of all genotypes. Table 3 summarizes

14 photosynthetic leaf traits assessed on three different
experimental days for each B. rapa genotype. As expected,
D1 plants were the least impacted by water scarcity
for the measured physiological traits. However, early
signs of drought stress were already detected. gs was
reduced in D1 plants of all genotypes by a mean of
0.166 0.1 mmol m22 s21, with the biggest decline for
R500 (0.29 mmol m22 s21). In VT, the electrochromic
shift (ECSt; D absorbance 530 nm), which reflects the
transthylakoidal ΔH1 gradient, at 300 and 1,000 mmol
photon m22 s21, increased in D1 plants relative to
WWplants. More sustained drought (D2 and D3 plants)
results in pronounced changes across all genotypes
(Table 3). gs showed further reduction in all geno-
types but r46 in D3 plants. LEF was decreased across
genotypes, with R500 showing the greatest loss at
both 300 and 1,000 mmol photon m22 s21.fNPQt and
ECSt at both 300 and 1,000 mmol m22 s21 increased
overall in D3 plants. Pigments content as SPAD at 530 nm
units and relative chlorophyll content increased in all four
genotypes of the D3 cohort. The changes in ECSt, LEF,
and SPAD are reflected in a decreased lumped s param-
eter in D3 plants, which accounts for potential changes
in falt, r2, and aleaf (Supplemental Fig. S3). These results
validate the robustness of high-throughput measure-
ments of fluorescence to pick up early signs of drought
stress. The drought treatments applied here can be

Table 1. List of abbreviations used for models (observations, predictions, and parameters)

Abbreviation Definition Units

An CO2 assimilation rate observed mmol m22 s21

Ci Intercellular CO2 partial pressure observed Pa
Tleaf Leaf temperature observed °C
gs Conductance to CO2 from atmosphere to intercellular space observed mmol m22 s21

O Ambient O2 (assumed 21% atmosphere) Pa
Q Photosynthetically active radiation observed mmol m22 s21

fPSII Operating efficiency of PSII (Fm9 2 Fs9/Fm9) observed e2 photon21

Ac Predicted Rubisco limited rate of CO2 assimilation mmol m22 s21

Aj Predicted electron transport limited rate of CO2 assimilation mmol m22 s21

Jm Predicted rate of electron transport following FvCB mmol m22 s21

Jf Predicted rate of electron transport following Yin mmol m22 s21

Jl Predicted rate of electron transport following beta decay model mmol m22 s21

R Universal gas constant (8.314 J K21 mol21) J K21 mol21

aleaf Absorptance of leaf photosynthetic pigments %
r2 Partitioning of energy between PSII and PSI %
falt Fraction of electron not using LEF (1 2 fpseudo(b)/(1 2 fcyc) in Yin et al. (2009) %
s Lumped parameter (r2 aleaf falt; Yin et al., 2009) %
G*25 CO2 photocompensation point (standardized to 25°C) Pa
Kc25 Michaelis-Menten constant for Rubisco for CO2 (standardized to 25°C) Pa
Ko25 Michaelis-Menten constant for Rubisco for O2 (standardized to 25°C) kPa
Ei’s (Kc, Ko, Rd, Vcmax, G*, Jmax, gm) Activation energy used in Arrhenius function KJ mol21

Rd25 Respiration rate in the dark (standardized to 25°C) mmol m22 s21

gm25 Mesophyll conductance (standardized to 25°C) mmol m22 s21 Pa21

Vcmax25 Maximum rate of carboxylation (standardized to 25°C) mmol m22 s21

Jmax25 Maximum rate of electron transport (standardized to 25°C) mmol m22 s21

fCO2 Quantum yield of CO2 using Equation 2.6 mol CO2 mol21 photon
uJ Curvature factor on electron transport rate predictions Jm and Jf unitless
fPSII_ll Maximum quantum efficiency following Yin using Equation 2.6 mol e2 mol21 photon
bPSII Decay rate in fPSII under increasing Q using Equation 1 Q -1

aPSII Modeled fPSII as Q approaches zero using Equation 1 unitless
kPSII Modeled fPSII as Q approaches ∞ using Equation 1 unitless
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considered as mild to moderate for B. rapa, with an
overall recorded VWC never lower than 3% and plants
still capable of recovery upon rewatering for all gen-
otypes (Supplemental Fig. S1). Changes in physio-
logical traits reflect the expected behavior of the four
genotypes under drought (Edwards et al., 2011, 2012;
Baker et al., 2015; Greenham et al., 2017). Genotypes
with high biomass accumulation (R500, r301, and VT)
were more impacted at an earlier stage by changes in
soil moisture, whereas the small, highly water use-
efficient r46 was able to tolerate drought and maintain
a stable level of gas exchange despite the decreased LEF.
These genotypic differences in drought behavior were
confirmed when looking at the onset of NPQt at in-
creased LEF (Supplemental Fig. S4), where R500 and VT
showed earlier changes inNPQt values already at lower
LEF in comparison with the inbred lines r46 and r301.

Analysis of Rapid Light Response Curves of Fluorescence

Rapid chlorophyll a fluorescence light response curves
were taken on 119 replicate leaves during six different
experimental days, with each genotype 3 treatment
replicated one to seven times (mean replication rate of
3.3; Supplemental Fig. S1). The variation in sample size

was due to time constraints and destructive measure-
ments occurring during the experiment. First, the rapid
light response curves for all genotypes and treatments
were pooled together with the mean of observed fPSII
at each Q estimated using the median value of the
posterior distributions of the parameter from Equa-
tion 1. The decline was then fitted with an exponential
model for each genotype and treatment (Fig. 2). All
genotypes show a decline in fPSII under drought,
more pronounced after 15 d (D3), but all plants re-
covered to prestressed values after rewatering (R1,
R2, and R3). The partial increase of fPSII can be found
in the rapid leaf development of the utilized geno-
types, typical of the Brassicaceae. Since the youngest
fully developed leaf was utilized at each measuring
point, leaf growth and display changed over the course of
15 d, causing different leaf angles, changes in the photo-
synthetic complex stoichiometry, and different responses
to incoming radiation and absorbance. Then, to utilize
a more rigorous and probabilistic approach to signify
differences (Kruschke, 2014), we used the 95% posterior
high-density intervals (HDIs) as a Bayesian probabilistic
estimator of difference. Figure 3 summarizes the changes
in bPSII and aPSII, estimated following Equation 1, at
varying VWC. Genotypes VT and r301 showed credible
interval differences at 95% HDI in bPSII for D2 and D3

Table 2. List of equations used in three photosynthesis models (FvCB, Yin, and bPSII decay)

Equation

No.
Equation Description

2.1
An 5

�
Ac   if  Ci ,Ccrit

Aj   if  Ci .Ccrit

An depending on two limiting factors and the critical Ci (Ccrit)

2.2 Ai 5 2 bþ
ffiffiffiffiffiffiffiffiffiffiffiffi
b2 2 4ac

p
2a

General quadratic form for solving Ac, Aj, Jm, and Jf

2.3
a5

2 1
gm

b5
Vcmax 2Rd

gm
þ Ci þ Kc

�
1þO
Ko

�

c5Rd

�
Ci þ Kc

�1þO
Ko

�

Quadratic roots using intercellular CO2 (Ci) and a gm term for describing Ac

2.4
a5

2 1
gm

b5

Ji
4
2Rd

gm
þ Ci þ 2G∗

c5RdðCi þ 2G∗Þ2 Ji
4
ðCi 2G∗Þ

Quadratic roots for Aj using Jm, Jf, or Jl

2.5 Qabs 5Qaleaf
a5 uJ
b5 2 ðQabsfCO2

Þ2 Jmax

c5QabsfCO2
Jmax

Quadratic roots for whole-chain ETR (Jm) as described by Von Caemmerer (2000) assumes aleaf

5 0.85

2.6 a5 uJ
b5 2 ðQsfIIll Þ2 Jmax

c5QsfIIll Jmax

Quadratic roots for combined gas-exchange and chlorophyll fluorescence ETR (Jf) as described
by Yin et al. (2009), s5aleaf f   falt

2.7 Jl 5fpredsQ bPSII model for full fPSII versus Q derivation of ETR (Jl) using Equation 1 to predict fII from
decay with Q
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relative to the WW treatment, whereas r46 and R500
showed a credible interval difference (95% HDI) only for
D3 relative to the WW treatment (Fig. 3, A–D).

All genotypes demonstrated similar recovery patterns
in bPSII, with credible differences at 95% HDI for the R2
and R3 treatments relative to D3. For R plants, a less
negative bPSIIwas observed at 30 h after rewatering (R3)
with respect to the 6-h period (R2), demonstrating on-
going recovery during that time period. Figure 3, E to H,
displays the change of slope in fPSII as Q approaches
zero, aPSII, with 95% posterior HDI. r301, R500, and VT
all show credible interval differences at 95%HDI in aPSII
for D3 relative to WW treatment, whereas r46 remains

stable in aPSII. The aPSII parameter shows a recovery
response similar to bPSII, with r301, R500, and VT all
showing credible interval differences at 95% HDI for
the R3 treatment with respect to prestressed values.

Comparison of Photosynthesis Models

All three photosynthesis models (FvCB, Yin, and
bPSII) performedwell across genotypes and treatments
when comparing observations of leaf gas exchange
with simulated results, using themedians of the posterior
(i.e. a more rigorous Bayesian estimator that incorporates

Table 3. Genotype 3 treatment trait estimates

Modeled traits show median of posterior distribution (95% credible interval range), while observed traits show mean values (SD). Boldface indicates
significance relative to well-watered conditions at P , 0.05 or for 95% confidence interval (CI). HDI interval difference not intersecting with zero
was used to describe a credible trait variance (Amax and s).

Trait Treatment r301 r46 R500 VT

Amax Well watered 27.70 (25.47, 30.26) 17.12 (14.99, 19.57) 25.42 (22.86, 28.13) 18.25 (15.94, 20.64)
(mmol m22 s21) Early drought 28.70 (26.02, 31.22) 14.54 (12.73, 16.43) 25.62 (23.33, 27.74) 14.71 (12.91, 16.45)
(95% CI range) Late drought 9.70 (7.63, 11.76) 8.75 (6.65, 10.71) 4.75 (2.17, 7.21) 3.30 (20.74, 6.83)

s Well watered 0.33 (0.3, 0.37) 0.29 (0.25, 0.32) 0.32 (0.29, 0.34) 0.31 (0.27, 0.35)
unitless Early drought 0.36 (0.33, 0.38) 0.28 (0.25, 0.31) 0.32 (0.3, 0.34) 0.29 (0.25, 0.32)
(95% CI range) Late drought 0.16 (0.12, 0.2) 0.19 (0.15, 0.22) 0.26 (0.02, 0.53) 0.11 (0.05, 0.17)

ESCt_300 3 1000 Well watered 1.7 (0.35) 1.7 (0.34) 1.4 (0.32) 1.2 (0.42)
D absorbance 530 nm Early drought 1.4 (0.10) 1.7 (0.49) 1.8 (0.48) 1.9 (0.32)
(SD) Late drought 3.0 (0.44) 2.4 (0.13) 2.7 (0.24) 2.7 (0.21)

ESCt_1000 3 1,000 Well watered 2.7 (0.15) 2.6 (0.27) 2.5 (0.29) 1.9 (0.78)
D absorbance 530 nm Early drought 2.5 (0.18) 2.3 (0.35) 2.3 (0.65) 2.4 (0.22)
(SD) Late drought 3.7 (0.43) 3.1 (0.27) 3.6 (0.57) 3.7 (0.07)

LEF_300 Well watered 61.07 (2.90) 57.37 (0.26) 70.25 (4.43) 64.06 (3.39)
(mmol m22 s21) Early drought 68.72 (0.18 57.46 (7.59) 63.27 (4.34) 61.23 (3.05
(SD) Late drought 34.48 (11.38) 43.06 (7.59) 36.21 (5.70) 42.39 (1.53)

LEF_1000 Well watered 93.00 (6.78) 79.14 (8.03) 106.17 (6.76) 92.48 (7.64)
(mmol m22 s21) Early drought 105.18 (0.30) 76.93 (2.65) 98.07 (17.36) 88.93 (9.63)
(SD) Late drought 49.22 (13.29) 54.62 (10.92) 51.74 (8.27) 59.93 (3.61)

wNPQt_300 Well watered 0.31 (0.03) 0.33 (0.04) 0.21 (0.03) 0.24 (0.04)
(%) Early drought 0.24 (0.02) 0.32 (0.01) 0.27 (0.06) 0.28 (0.03)
(SD) Late drought 0.55 (0.05) 0.49 (0.07) 0.52 (0.08) 0.49 (0.03)

wNPQt_1000 Well watered 0.64 (0.02) 0.66 (0.02) 0.57 (0.03) 0.59 (0.04)
(%) Early drought 0.6 (0.01) 0.67 (0.01) 0.60 (0.06) 0.62 (0.03)
(SD) Late drought 0.73 (0.01) 0.73 (0.02) 0.69 (0.05) 0.69 (0.01)

wNO_300 Well watered 0.21 (0.019) 0.22 (0.009) 0.24 (0.011) 0.25 (0.028)
(%) Early drought 0.22 (0.018) 0.23 (0.01) 0.23 (0.032) 0.24 (0.011)
(SD) Late drought 0.18 (0.045) 0.17 (0.015) 0.20 (0.036) 0.18 (0.019)

wNO_1000 Well watered 0.15 (0.022) 0.15 (0.006) 0.18 (0.018) 0.20 (0.029)
(%) Early drought 0.15 (0.005) 0.15 (0.011) 0.17 (0.021) 0.17 (0.008)
(SD) Late drought 0.15 (0.026) 0.14 (0.007) 0.19 (0.035) 0.16 (0.005)

SPAD 530 Well watered 58.66 (3.93) 52.42 (6.57) 58.53 (5.8) 41.54 (8.2)
Early drought 53.06 (7.57) 45.61 (7.39) 56.86 (17.02) 43.19 (9.4)

(SD) Late drought 98.91 (10.11) 72.59 (11.91) 102.86 (8.66) 84.86 (27.68)
gs Well watered 0.48 (0.07) 0.21 (0.06) 0.44 (0.12) 0.23 (0.11)

(mmol m22 s21) Early drought 0.30 (0.15) 0.17 (0.07) 0.15 (0.15) 0.09 (0.11)
(SD) Late drought 0.19 (0.14) 0.17 (0.12) 0.04 (0.06) 0.06 (0.06)

Leaf temperature Well watered 21.2 (1.57) 20.68 (1.02) 20.58 (1.19) 21.03 (0.94)
Differential (°C) Early drought 20.17 (0.81) 0.51 (1.32) 0.45 (1.48) 1.76 (0.7)
(SD) Late drought 20.1 (1.41) 0.53 (0.57) 0.33 (0.24) 20.24 (0.35)

Relative Well watered 45.75 (3.58) 42.46 (5.91) 45.72 (3.03) 29.57 (10.98)
Chlorophyll Early drought 47.13 (3.18) 38.12 (2.41) 41.29 (14.02) 39.00 (4.99)
(SD) Late drought 73.52 (2.04) 56.82 (5.37) 77.85 (3.67) 67.44 (10.18)
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uncertainty in bothmeasurements andmodels; Kruschke,
2014; McElreath, 2016) parameter distributions. For
the bPSII model, a comparison of simulated An versus
observed An from light response and A/Ci curves re-
sults in 0.66 , R , 0.98 across genotypes and treat-
ments (Supplemental Fig. S5).
The bPSII parameter, describing the slope of decline of

fPSII versus Q, was integrated into the ETR derivation
for estimating light-limited photosynthesis, AJ, and the
updated ETR description was compared with both
the FvCB and Yin photosynthesis models. To quan-
titatively evaluate the alternate modeling approaches
estimating ETR, posterior parameter distributions were
compared between the FvCB, Yin, and bPSII decline
models (Figs. 4 and 5). The correlation (R) of themedians
of these posterior distributions was chosen to evaluate
the strength and direction of a linear relationship among
alternative parameterizations. For the parameter Vcmax,
all models showed close agreement in estimates, with
R values of 0.97 to 0.98 (Fig. 4, A–C). For gm, the R value
between the FvCB model and the bPSII model was 0.9,
between the Yin model and the bPSII model it was 0.9,

and between the FvCB model and the Yin model it was
0.99 (Fig. 4, D–F). Additional posterior parameters not
common to all three models were compared with factors
with similar biophysical meaning, such as quantum
yield terms (fCO2,f2ll, andaPSII; Fig. 5, A–C).Agreement
between the quantum yield terms is particularly strong
between f2ll (Yin model) and aPSII (bPSIImodel; Fig. 5B).
The kPSII estimates show little correlation with Jmax in
the FvCB or Yin model (Fig. 5, D and E), whereas Jmax
estimates in FvCB and Yin are highly correlated. The
Yin model and the bPSII model were highly correlated
in the lumped s parameter (R 5 0.83). The convexity
factor, u, used in the FvCB and Yin models shows a
correlation of 0.57, with the Yin estimates closer to the
maximum of 1. Finally, a comparison was made be-
tween bPSII as described in Equation 1 and the Vcmax
and Jmax estimates from the FvCB and Yin models.
bPSII showed an R value of 0.81 with Vcmax as de-
scribed by the FvCB model and 0.83 with Vcmax as
described by Yin. bPSII showed R 5 0.69 with Jmax
estimates of the FvCB model and R 5 0.68 with Yin
(Supplemental Fig. S6).

Figure 2. fPSII across photosyntheti-
cally active radiation (Q) of 0 to
1,000 mmol photons m22 s21 for four
B. rapa genotypes. Observations of
r301 (A), r46 (B), R500 (C), and VT
(D) occurred over a range of water
regimes from well-watered (W1, W2,
and W3) to increasing drought (D1,
D2, and D3) conditions and different
levels of rewatering (R1, R2, and R3).
Points are mean values of replicates
(n curves 5 119, average n curves per
replicate 5 3.3), and fitted lines use
median posterior estimates of a three-
parameter exponential decline model
(Eq. 1) by genotype 3 treatment.
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Comparison of High- and Low-Throughput
Fluorescence Measurements

Full gas-exchange light response curves coupledwith
fluorescence were taken on 34 leaves on four experi-
mental days with each genotype3 treatment replicated
one to four times (mean replication rate of 2.3 6 0.9;
Supplemental Fig. S1). The variation in sample size was
once again due to time constraints and destructive
measurements occurring during the experiment. Spe-
cifically, the assessment of gas-exchange light response
curves was done at experimental days 1 and 6 for WW
plants, at days 5 and 7 for D1 plants, and at days 9 and
13 for D2 plants. Rewatered plants in the cohort R2
were observed at experimental day 10 (Supplemental
Fig. S1). The assessment of rapid fPSII versus Q curves
was done at experimental days 1, 5, and 9 for WW
plants, at day 5 for D1 plants, at days 9 and 12 for D2
plants, and at day 13 for D3 plants. Rewatered plants
had rapid fPSII versus Q observations for cohort R1 on
experimental day 9, for cohort R2 on experimental day
13 (6 h after watering was restored), and for cohort R3

on experimental day 14 (30 h after watering was re-
stored). The comparable posterior parameter estimates
were matched with posterior parameter estimates from
classic gas-exchange light response curves following
Equation 1 and shown in Supplemental Figure S7. The
median posterior estimates of bPSII show an R value of
0.72, whereas median posterior estimates of aPSII show
R 5 0.67 (Supplemental Fig. S7, A and C). Next, the
correlation between the posterior estimates for both
bPSII and aPSII derived using the full bPSII photosyn-
thesis model and the rapid fluorescence curves was
tested (Supplemental Fig. S7, B and D). The full bPSII
photosynthesis model utilizes coupled gas-exchange
and fluorescence observations from a low-throughput
infrared gas analyzer (LiCOR 6400XT), whereas the
rapid fluorescence curves of fPSII versus Q curves are
obtained using the high-throughput spectrophotome-
ter MultispeQ. Despite the different times of collection,
the two methods agree, with correlations of 0.66 for
bPSII and 0.69 for aPSII (Supplemental Fig. S7, B
and D).

Figure 3. PSII dynamics in response to different water regimes. Decline rate in fPSII under increasing light intensity (bPSII [Q21]; A–D)
andmaximum light-acclimated PSII efficiency (aPSII; E–H) are shown for the four B. rapa genotypes R500 (A and E), r301 (B and F), r46
(C andG), andVT (D andH) over a range ofwater regimes, as defined in Figure 2, described byVWC. Points representmedian posterior
estimates of bPSII and aPSII from a three-parameter exponential decline model (Eq. 1; bPSII and aPSII are derived from n curves5 119,
average n curves per replicate 5 3.3), vertical bars are 95% high-density intervals of posterior estimates, and horizontal bars are SD

values on observations of VWC (n 5 153, average n per replicate 5 4.25). At right are Bayesian prior distributions of bPSII and aPSII.
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DISCUSSION

Here, we tested how applying alternative descriptions
of quantumyield (fCO2,fPSII, andbPSII) in photosynthesis
models (Fig. 1) can improve the mechanistic realism
of electron transport processes and their potential
changes under drought. Our bPSII photosynthesis
model utilized the full fPSII versus Q response, ac-
counting for possible photoprotective mechanisms
(i.e. NPQ, changes in absorbance, etc.). All these
mechanisms decrease photosynthetic ETR and play
crucial roles in the An magnitude under stress, and
we have to consider and quantify them to mecha-
nistically improve simulated responses to drought
and other environmental changes.

bPSII Dynamics

Ourmain goal was to explore the use of chlorophyll
a fluorescence parameters derived from rapid light
curves, collected with a dynamic high-throughput tool,
to develop a photosynthesis model for estimating

photosynthetic ETR. The major design improvement
of the MultispeQ is the quick capture of fluorescence
parameters precisely during steady-state illumination
(Kuhlgert et al., 2016), and we tested the relationship
between rapid fluorescence data from the MultispeQ
and the LiCOR 6400-40 fluorimeter (Fig. 6). Single-
measurement comparisons grouped by genotype
show linear relationships across different light levels
andwater treatment, withR2. 0.9 despite the variations
in time of day, duration of the actinic light, etc., between
the low- and high-throughput measurements due to the
fact that the LiCOR instrument is primarily utilized to
take simultaneous measurements of gas exchange. Our
results build on previouswork byMeacham et al. (2017),
who posed the question about the use of rapid fluores-
cence analysis for photosynthesis modeling. However,
we experimented beyond their results, using the high-
throughput MultispeQ instead of a monitoring PAM
device from Walz, thus avoiding the use of aluminum
foil to cover the leaves during the measurements and
the possible increases in temperature with consequent

Figure 4. Comparison of posterior median estimates of parameters common to the FvCB, Yin, and bPSII photosynthesis models. A
to C, Comparison of Vcmax estimates between bPSII and FvCB, bPSII and Yin, and FvCB and Yin with R for each relationship. D to F,
Comparison of gm estimates between bPSII and FvCB, bPSII and Yin, and FvCB and Yin with R for each relationship. Genotypes and
water regimes are as defined in Figure 2.
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changes in water vapor exchange (Giorio, 2011; Bücher
et al., 2018). Rapid light curves are complex to inter-
pret due to the presence of several components in the
photosynthetic apparatus characterized by different
time constants (i.e. the time to reach ;63% of the full
response) involved (Pearcy, 1990; Way and Pearcy,
2012). We acknowledge that light harvesting and
energy transfer respond nearly instantaneously to
changes in the light environment, whereas adjust-
ments in the carbon cycle metabolites can take up to
several seconds (Powles, 1984; Geiger and Servaites,
1994). However, the use of a fast analysis is necessary
to capture the true light conditions of plants in the
field, where they rarely photosynthesize at full capacity
(Ort and Melis, 2011). Fast changes in incoming radia-
tion, such as that used during the collection of rapid light
curves, can be thought to have similar consequences as
for leaves exposed to sunflecks. After an initial uncou-
pling of the electron transport from CO2 fixation, the
metabolite pool has been shown to refill within a few
seconds in healthy leaves (Parry et al., 2008;McClain and
Sharkey, 2019). The fluorescence calculated parameters

have already been shown to have a very dynamic be-
havior (Porcar-Castell et al., 2012), which leaves room to
accommodate for stress-related mechanisms.

The exponential decline of fPSII versusQ (Eq. 1) takes
into account changes occurring at PSII antenna reaction
center complexes and is extremely relevant under stress
conditions. These changes are not included in current
photosynthesis models (Fig. 1). Identifying the param-
eter bPSII, meaning the rate of decline of fPSII at Q in-
crease, and its dynamics at the onset of water stress is
highly valuable to mechanistically elucidate processes
of photoprotection and increased photorespiration,
which are relevant for the overall reduction of assimi-
lation under stress (Ort and Baker, 2002; Souza et al.,
2004). The fPSII andQ relationship has been previously
used to assess photosynthetic responses using the
ETR maximum, showing declines under water stress
(Rascher et al., 2004; Li et al., 2008; Batra et al., 2014).

Our results depict a more complete picture of the
changes in fPSII versus Q under drought, and the pa-
rameter bPSII seems to be better suited to explain a
range of stress responses (Figs. 2 and 3). The observed

Figure 5. Comparison of posterior median estimates of parameters in the FvCB, Yin, and bPSII models. A to C, Comparison of
quantum yield terms for each model: aPSII (mol photon mol21 e2) of the bPSII model with fCO2 (mol CO2 mol21 e2) of the FvCB
model (A), aPSIIwith fPSII_ll (mol photon mol21 e2) of the Yin model (B), and fJwith fPSII_ll (C) with correlation coefficient (R) for
each. D and E, Comparison of the s parameter between the Yin model and the bPSII model (D) and comparison of uJ between the
Yin model and the FvCB model (E). Genotypes and water regimes are as defined in Figure 2.
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declines in bPSII, here observed under drought, may in
fact be the result of more or less regulated processes,
such as NPQ (Table 3), chloroplast light avoidance, and
nonregulated energy dissipation (Müller et al., 2001;
Kasahara et al., 2002; Takahashi and Badger, 2011).
Furthermore, the modest recovery after a 6-h period
in both bPSII and aPSII suggests that these parameters
account for more than just fast-regulated photo-
protective mechanisms (Dall’Osto et al., 2005; Lambrev
et al., 2012). Nearly full recovery by 30 h after the start of
rewatering may be due to slow-relaxing and/or unreg-
ulated processes, alongwith protein turnover and repair
processes that require a longer time to return to prestress
conditions (Nishiyama et al., 2006; Brooks et al., 2013;
Malnoë, 2018). Indeed, both slow and rapid light curves
are able to trigger slow-relaxing NPQ mechanisms (qI),
with qI having lifetime changes similar to those observed
during qE (rapid relaxing mechanisms; Müller et al.,
2001; Lazár, 2015; Ruban, 2016).
Both bPSII and aPSII depicted genotypic variation

relative to drought severity, with r301 showing greatest
declines (i.e. transgressive segregation with respect to
the RIL parents), followed by R500 and VT, which ac-
cumulate the highest amount of aboveground biomass
(Fig. 3, B and F). Future work should consider how the
slope of variation in the fPSII versus Q response relates
to previous findings of root-shoot allocation differences
occurring under drought (Edwards et al., 2016) as
well as explore how variance in bPSII may influence
reactive oxygen species production and, when more

pronounced declines occur, cellular damage (Reddy
et al., 2004).

Implementing Photosynthesis Modeling

Using direct observations of fPSII versus Q data as
parameters in a leaf photosynthesis model provided a
means of quantifying the impacts of PSII photoprotective
mechanisms on ETR. Although these protective pro-
cesses are critical to final net photosynthesis, they are
abstracted out of all FvCB-based modeling efforts
(Horton et al., 1994; Allen and Pfannschmidt, 2000;
Laisk et al., 2002); therefore, current parameterization
approaches may be biased by tuning parameters
without mechanistic insight. Our bPSII approach ex-
tends the development of FvCB-based models using
both A/Ci and light response curves in analysis (Holland,
2007; Patrick et al., 2009) to integrate both gas-exchange
and fast chlorophyll a fluorescence observations into
models (Laisk and Loreto, 1996; Laisk et al., 2002; Yin
et al., 2006, 2009). The bPSII photosynthesis model
maintains the use of commonly employed parame-
ters, such as Vcmax, Rd, and gm, while shifting away
from others, such as Jmax and uJ, that do not fully in-
corporate stress impacts on ETR, for describing ETR
and associated processes. Estimates of the common
parameters including Vcmax show strong similarity
across the three considered photosynthetic models
(Fig. 4). The correlations between the bPSII with Vcmax

Figure 6. PSII efficiency instrumenta-
tion correlation. Comparison of fPSII

across two instruments, LiCOR 6400 and
MultispeQ, and three light intensities (0,
500, and 1,000 mmol photons m22 s21

photosyntheticallyactive radiation [PARi])
for the four B. rapa genotypes r301 (A),
r46 (B), R500 (C), and VT (D). Each set
of observations occurred over a range
of water regimes from well-watered
(W1) to increasing drought (D1–D3) and
rewatering (R2). Points are means of rep-
licates, and error bars represent SD (total n
LiCOR 6400 5 162, average n per rep-
licate 5 2.7; total n MultispeQ 5 213,
average n per replicate5 3.6).
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and Jmax estimates of the FvCB and Yin models is
promising formodel parameterization. The throughput of
fPSII versus Q measurements will also increase the
number of genotypes used in models and thus better in-
corporate mechanistically rigorous, genotype-level in-
formed parameters for crop simulation (Boote et al., 2001;
Bertin et al., 2010; Archontoulis et al., 2012; Pleban et al.,
2018).

The lumped s parameter has a valuable role in ac-
commodating a number of mechanisms affecting the
final ETR and showed declines after 13 d of drought
(Supplemental Fig. S3). Our photosynthesis model is
able to assess the extent of the mechanisms slowing
down ETR as a whole. However, the same MultispeQ
collects fluorescence values at each recorded pulse. All
components of NPQ (qE, qT, and qI) could then be
calculated from values of Fm9 and Fm over time, allow-
ing for a detailed energy partitioning analysis. These
results could benefit the model and separate physio-
logical (feedback mechanisms) and damage conse-
quences of the stress. Future work, including the use of
knockout mutants, such as those for genes involved in
NPQ mechanisms, will be needed to disentangle the
three factors lumped in s (falt, aleaf, and r2). Changes in
relative chlorophyll and SPAD at 540 nm affect the
overall leaf absorbance (aleaf) and are partially respon-
sible for changes in s (Table 3). Future work evaluating
the light-harvesting properties of photosynthetic pig-
ment molecules will help clarify the importance of this
component on the lumped s. Isolating changes in aleaf
might also use statistical methods to identify dominant
shifts in absorption from spectrophotometric data
(Baker et al., 2018). It appears likely that the other two
factors, falt and r2, changed during drought progres-
sion, based on the decline in LEF relative to increases in
ECSt (Table 3). We speculate that the altered relation-
ship between LEF and ECSt may relate to energetic
spillover and changes in cross-membrane ΔH1 triggering
unbalanced activity in the PSII-PSI duo, ultimately leading
to an increased cyclic electronflowaroundPSI (Livingston
et al., 2010; Strand et al., 2015). Future data-model inte-
gration could consider saturation pulse estimation of PSI
yield parameters to quantify the specific contribution of falt
and r2 (Klughammer and Schreiber, 1994). Integration
with ECSt data could also assist in understanding the
potential for change in how transthylakoidal ΔH1 might
be coordinated by the use of cyclic and other nonlinear
electron transport pathways (Kramer et al., 2004b).

Our framework offers opportunities to better evalu-
ate stress limitations on quantum yield and ETR. The
coupling of s and bPSII as described here is critical for
future efforts to model individual photoprotective,
photoinhibitory, and photodamaging mechanisms,
which are encompassed in these two parameters,
albeit in a lumped way. Further implementation of
current instrumentation and furthermodeling approaches
may allow for itemizing specific physiological or genetic
mechanisms underlining s and bPSII responses to drought
(Noctor et al., 2002; Miller et al., 2010; Guadagno
et al., 2017).

bPSII Photosynthesis Model Limitations

Our approach needs additional tests under natural
and/or higher intensity light conditions to investigate
details of photoprotective mechanisms and their be-
havior under extreme environmental conditions. For
instance, the ratio of carotenoids in the PSII antenna
complex responsible for NPQ can vary with growing
conditions (Kato et al., 2003). Furthermore, photodamage
has been shown to bemore severe in theUV range and at
500 to 600 nm, and the ratio of photodamage to repair is
higher as light intensity increases (Nogués and Baker,
2000; Murata et al., 2007; Zavafer et al., 2015). Also, dy-
namic fluctuations in light, such as those in natural set-
tings, can have relevant effects on photosynthetic rate
(Vialet-Chabrand et al., 2016, 2017), which we expect are
more severe under drought, with subsequent recovery
processes possibly delayed (Fig. 3). The repair of PSII
damage can also be compromised by temperature
stress (Murata et al., 2007). Consequently, how bPSII,
aPSII, and s respond to field conditions, drought, and
other stresses should be further investigated.

The difficult estimation of gm may also affect further
implementation of our framework, and alternative
methods of gm assessment should be considered. The
gm estimation in all three photosynthesis models used
the combined fluorometry/gas-exchange approach
(Harley et al., 1992; Pons et al., 2009; Archontoulis
et al., 2012). Two of the three models (Yin and bPSII)
included the s parameter to consider alternative electron
pathways influencing the gm estimation (Fig. 4, D–F).
State-of-the-art photosynthesis models include a dynamic
gm responding to variations in both internal leaf status
and external environments (Tazoe et al., 2009; Moualeu-
Ngangue et al., 2017). Coupling online isotope discrimi-
nation data to the linear and total electron flow, gathered
from gas-exchange and fluorometry observations, may
help resolve concerns related to gm estimation and allow
for the integration of a dynamic gm model into the bPSII
method (Pons et al., 2009; Tazoe et al., 2009; Gu and Sun,
2014; Moualeu-Ngangue et al., 2017; Flexas et al., 2018).

Predictive understanding of both photoprotective
and gm mechanisms is still in its infancy; the alternative
approachwe have successfully tested provides a crucial
transfer of high-throughput empirical measurements
and analyses to mechanistic simulations that are likely
to improve predictive understanding of drought and
other stress responses across a range of plant species and
genotypes. OurbPSIImodelwill further the improvements
of currentwhole-plant cropmodeling by the incorporation
of first-principles mechanisms (Hammer et al., 2006;
Chenu et al., 2009; Wang et al., 2019) through the incor-
poration of more genetic and omic information into the
parameters of biophysical-based models.

MATERIALS AND METHODS

Plant Material

Four genotypes of Brassica rapa were utilized for our analysis: two crop ac-
cessions, R500 (oilseed crop, B. rapa ssp. trilocularis [‘Yellow Sarson’]) and VT
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(VT-089, D’Auvergne Hative); and two RILs (r46 and r301). The RILs are part of
a population developed from a cross between the R500 3 Imb211 genotypes.
The R500 genotype is an oilseed cultivar planted in India for approximately
3,000 years (Prakash and Hinata, 1980) with large allocation to seed production
(Baker et al., 2015). The Imb211 genotype is a rapid-cycling line derived from the
Wisconsin Fast Plant (Williams and Hill, 1986). The extremely divergent se-
lection history suggests that genetic variation segregating in the RILs may re-
semble that segregating in crop 3 wild hybrids found commonly in nature
(Adler et al., 1993). The RIL population has been previously described, and the
two RILs of interest were chosen based on their transgressively segregating
drought stress phenotypes identified in earlier research (Iniguez-Luy et al.,
2009; Edwards et al., 2011, 2012; Pleban et al., 2018). Seeds of R500, r46, and r301
were obtained from a single-seed collection bulked at the University of
Wyoming in 2011. VT was obtained from the Wageningen University and
Research Center for Genetic Resources (CGN#10995).

Growth Conditions

Seeds were germinated and grown in pots (500mL) filledwith a soil mixture
(Miracle-Gro Moisture Control Potting Mix [20%, v/v] and Profile Porous
Ceramic Greens Grade [80%, v/v]) with the addition of 2 mL of Osmocote
18-6-12 fertilizer (Scotts). Experiments occurred during July and August
2017 at the University at Wyoming in three growth chambers (PGC-9/2;
Percival Scientific). Growth chamber conditions were set at a 14-h photo-
period of approximately 250 to 300 mmol photons m22 s21 Q, with a 25°C to
30°C/18°C to 22°C day/night cycle, and relative humidity maintained at
45% to 65%. Soil moisture content was monitored daily for all treatment
groups (ECH2O/EC5 probe; Decagon). Plants were randomized in three
growth chamber compartments with blocks of each treatment, with a
randomized mix of four genotypes present in each compartment.

For 4 weeks, all plants were regularly watered to maintain VWC at 0.36 5.
At 28 d after sowing, watering was withheld from treatment plants in the
droughted and rewatered cohorts (Supplemental Fig. S1). On experimental
day 0, drought was applied via complete water withholding for the droughted
cohort. Droughted plants were assigned to three different groups and rep-
licate plants observed on experimental days 4 to 7 (treatment group D1), 9 to
12 (treatment group D2), and 15 (treatment group D3). On experimental day
9, water was reapplied to a subset of droughted plants (R1), and they were
observed on experimental days 9 to 12. On experimental day 15, a second
subset of droughted plants (R2) was rewatered and observed 6 h after
rewatering. Finally, on day 16, the last subset of droughted plants was
rewatered and assessed at 30 h after rewatering (R3). Soil moisture obser-
vations in this study were comparable to those from Guadagno et al. (2017),
where the mean VWC was 0.06 6 0.01 after 14 d of drought; here, the mean
VWC after 13 d of drought was 0.05 6 0.03.

Plant Physiological Observations

Physiological data collection followed the temporal frequency in
Supplemental Figure S1. For evaluation of photosynthesis traits through-
out the treatment period, A/Ci curves and photosynthetic light response
curves were taken (LiCOR 6400XT; LI-COR Biosciences) following estab-
lished methods (Long and Bernacchi, 2003). Both response curves were
measured between 10 AM and 4 PM on fully expanded leaves (between fifth
and eighth leaves) with cuvette settings at a flow rate of 300 mmol s21,
relative humidity maintained at 50% 6 8%, and temperature maintained at
20°C. A/Ci curves set sample chamber CO2 concentrations to 50, 100, 200,
300, 400, 500, 600, 800, 1,000, 1,250, 1,500, and 2,000 mmol CO2 mol21 air. A/Ci

curves were taken on WW, D1, and R1 plants. Light response curves were
measured across 10 light conditions (Q5 2,000, 1,500, 1,000, 500, 250, 125, 60, 30,
15, and 0 mmol photons m22 s21). Light response curves were taken onWW, D1,
and R1 as well as D2 and D3 plants. For both response curves, PAM fluorescence
was measured immediately after gas exchange using a leaf chamber fluo-
rimeter (LiCOR 6400-40; LI-COR Biosciences). With actinic light main-
tained at setting of curve protocol (l5 470 nm, 10% blue to obtain values of
Fs), a short saturating pulse (0.8 s; ;8,000 mmol photons m–2 s–1) was ap-
plied to measure Fm9with a short far-red pulse to record the Fo9 value at the
end of induction (Baker, 2008). These were used to determine the operat-
ing efficiency of PSII photochemistry, (Fm9 2 Fs)/ Fm9 5 fPSII, for light-
acclimated conditions (Genty et al., 1989). Fluorescence measurements
were taken in conjunction with all changes in Ci or Q for each A/Ci and
light response curve.

Further chlorophyll fluorescence observations used a rapid PAM light re-
sponse protocol developed for the MultispeQ spectrophotometer (PhotosynQ).
The protocol is available on the PhotosynQ platform under project title: B.
rapa drought and recovery Chl Fl evaluation (https://photosynq.org/
projects/b-rapa-drought-and-recovery-chl-fl-evaluation). In a single 5-min
clamping with a fully expanded leaf (between fifth and eighth leaves), ac-
tinic light (655 nm [Lumileds; LXZ1-PA01]) was incremented at 10 light
intensities (1,000, 800, 600, 500, 400, 300, 200, 100, 50, and 0 mmol photons
m–2 s–1) for 30 s before a PAM fluorometry sequence was initiated following
established methods (Rascher et al., 2000; Datko et al., 2008). After each
light acclimation period, the PAM sequences used the classic multiphase
flash technique with four rectangular saturation flashes of 4,500, 4,050,
3,600, and 3,150. A linear regression of each maximum fluorescence ramp
versus 1/Q was made to determine expected Fm9, used for calculating fluo-
rescence parameters. Recently, the original derivation of NPQ was extended
to NPQt, allowing for high-throughput (under 1 min each) yet mechanisti-
cally relevant measurements (Tietz et al., 2017). Therefore, this protocol
assessed fPSII, the fraction of Q dissipated safely as heat (fNPQt), and the
fraction of Q quenched via unregulated excitation dissipation (fNO) at each
light intensity. fNPQt assumes a constant theoretical maximum dark-adapted
fluorescence yield, and fNO represents the fraction of light use remaining
after accounting for fNPQt and fPSII [fNO 5 1 2 (fNPQt 1 fPSII); Tietz et al.,
2017]. From these response curves, LEF was calculated for each Q following
LEF5 fPSII Q aleaf r2, where aleaf is assumed to be 0.85 and r2 is assumed to be
0.5. Rapid PAM light response curves were taken on plants from each
watering cohort (Supplemental Fig. S1).

Total ECSt measurements were obtained at two Q intensities (300 and
1,000 mmol photons m22 s21 at 650 nm) using the MutlispeQ (Kuhlgert
et al., 2016). ECSt monitors the proton flow into the thylakoid lumen by
evaluating shifts in the absorbance of cross-membrane carotenoid pigments
(Fig. 1, blue H1 arrows). The carotenoid absorbance spectrum is dependent
on the changing electrical gradient produced by proton flow across the
thylakoid membrane (Sacksteder et al., 2000). The protocol for these ECSt
observations is available on the PhotosynQ platform (https://photosynq.org/
projects/b-rapa-drought-and-recovery-ecs-evaluation). ECSt observations
were taken on plants of all watering cohorts (Supplemental Fig. S1). Obser-
vations of relative chlorophyll content were also measured with a hand-held
MultispeQ spectrophotometer on plants of all watering cohorts (Supplemental
Fig. S1).

Exponential Decline of fPSII Versus Q

Light response data, fPSII, from both the LiCOR fluorimeter and the
MultispeQ rapid fluorescence protocol were used to model the decline in
fPSII under increasing Q. A hierarchical Bayesian framework generated
genotype 3 treatment posterior trait distributions of exponential decline pa-
rameters. A three-parameter exponential decline function was used following
Equation 1:

fPSII 5 ðaPSII 2 kPSIIÞeQbPSII þ kPSII

where aPSII (y intercept) represents the maximum light-adapted fPSII, bPSII

represents the exponential decline rate in fPSII under increasing Q, and kPSII
represents a non-zero minimum of fPSII as Q approaches ∞. Equation 1 was
modeled using rjags (Plummer, 2014), with samples from the posterior pa-
rameter distributions generated from a Gibbs sampling method (Plummer,
2003). Model parameters (aPSII, bPSII, and kPSII) were estimated using a three-
level hierarchical structure with global, genotype 3 treatment, and individual
plant levels. Priors for the means of the exponential decline parameters followed
wide informed normal distributions broadly informed with wide variances.
Priors for the precision terms used weakly informed normal distributions
(Gelman, 2006). The credible interval divergence at 95%HDIwas used to evaluate
posterior parameter differences for each treatment time. This comparison metric
used in Bayesian analysis allows the identification of definitive portions of the
posterior distributions characterized by higher probability density than the re-
gions outside those intervals (Kruschke, 2014, 2018; Kruschke and Liddell, 2018),
with more rigorous results and higher predictive power.

Photosynthesis Modeling

Utilizing Bayesian statistics, all photosynthesis models describe how
quantum yield and underpinning mechanisms are related to CO2 assimilation
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under changing light conditions and water availability. The three model formu-
lations are similar to those found in photosynthesis process models while hier-
archically incorporating uncertainty and providing probabilistic quantification of
parameters. Tables 1 and 2 outline the three modeling approaches used to test the
utility of fPSII light response data for characterizing ETR and light-limited An. All
three approaches estimate An following Equation 2.1 with the estimation of the
criticalCi (Ccrit), whereAc shifts toAJ, followingmethods detailed below. All three
approaches estimateAc using Equations 2.2 and 2.3 (Table 2). The approaches
vary in the derivation of photosynthetic ETR. The first approach followed the
FvCB model, estimating ETR using information from leaf gas exchange (Eq.
2.5; Farquhar et al., 1980; Farquhar and Wong, 1984; Fig. 1A). This FvCB
derivation of ETR for AJ (Jm) requires estimation of three parameters: Jmax, the
maximum rate of electron transport; fCO2, the quantum yield on a CO2-to-
photon basis; and uJ, the convexity factor for the response of ETR to Q. Two
other parameters are fixed a priori in FvCB: an equal fractionation of light
between PSI and PSII (r2 5 0.5), and leaf absorbance (aleaf) is set at 0.85. The
second approach, described by Yin et al. (2009), used a combined gas-
exchange and fluorescence approach for modeling ETR (Jf; Fig. 1B). The Yin
model used fPSII data to parameterize PSII efficiency under limiting light
(fPSII_ll) as well as the lumped parameter, s, which lumps aleaf differences,
differences in r2, as well as utilization of alternate electron paths, falt, along the
Z-scheme (Eq. 2.6). Low-light (0 , Q , 200 mmol photon m22 s21) response
data (An, Q, and fPSII) were subset to estimate Rd, s, and fPSII_ll in the Yin
model. Rd is estimated as the y intercept of linear regression of An against
QfPSII

4 . The slope of this regression is used to estimate s. The quantum yield
parameter for the Yin model, fPSII_ll, was estimated as the y intercept of a
linear regression of An against fPSII under low Q. Finally, for the third ap-
proach, the bPSII photosynthesis model derivation ETR (Jl), the full light
response fPSII data set was passed in the bPSII model for the estimation of
aPSII, bPSII, or kPSII needed to describe ETR (Jl; Fig. 1C). Following Equation 1,
the aPSII, bPSII, and kPSII estimates were used to predict fPSII at each Q, next
Jl was solved following Equation 2.7. bPSII implementation used the same
Rd and s estimation as Yin.

All models used a temperature response following anArrhenius function for
Kc, Ko, Vcmax, Jmax, gm, Rd, and G*. Each parameter was normalized with respect
to 25°C following:

X5X25 exp
�

Ex
	
Tleaf 2 25



298  R

	
Tleaf þ 273



�

ð3Þ

where Tleaf is leaf temperature (°C), X25 is the parameter normalized with re-
spect to 25°C, EX is the activation energy of each parameter, and R is the uni-
versal gas constant (8.314 J K21 mol21). Other temperature response functions
were considered, but given the limited variability in Tleaf (mean 5 20 6 0.2), a
simple one-parameter equation was selected for analysis.

Ccrit, the Ci at which An transitions from Ac to AJ, was fixed at 285 ppm in all
models based on an analysis of Fv9Fm9 under increasing Ci. Fv9Fm9 increases
when Ci , Ccrit and remains constant when Ci . Ccrit (Sharkey et al., 2007;
Gu et al., 2010; Moualeu-Ngangue et al., 2017). A Bayesian model was
employed using a single change point method (Dose and Menzel, 2004) to
estimate individual and population-level Ccrit. Results of the change point
model found that the posterior population level estimate had a mean of
287.3 with a 95% HDI of 265.1 to 318.7 ppm (Supplemental Fig. S8).

All Ci, An, Q, and Tleaf data from A/Ci and light response curves were used
to estimate An traits, an approached used previously (Patrick et al., 2009;
Archontoulis et al., 2012), with fPSII data supplied to the Yin and bPSIImodels
as described above. Parameter priors for FvCB and shared parameters among
the three models were selected based on a recent implementation (Pleban
et al., 2018). The code for all three photosynthesis models as well as the
simple bPSII decline model are available at https://github.com/jrpleban/.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Experimental design and observation schedule.

Supplemental Figure S2. Volumetric soil water content dynamics.

Supplemental Figure S3. Changes in lumped s parameter estimates.

Supplemental Figure S4. Onset of the NPQt parameter.

Supplemental Figure S5. Simulated An versus observed An for three pho-
tosynthesis models.

Supplemental Figure S6. Correlations of bPSII with classic photosynthetic
model parameters.

Supplemental Figure S7. Decline rates of PSII efficiency under changing
light conditions.

Supplemental Figure S8. Identification of the transition point between Ac

and AJ (Ccrit).
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