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Abstract

Viscoelastic blends of biodegradable polyesters with low and high molecular weight distributions 

have remarkably strong adhesion (significantly greater than 1 N/cm2) to soft, wet tissue. Those 

that transition from viscous flow to elastic, solidlike behavior at approximately 1 Hz demonstrate 

pressure-sensitivity yet also have sufficient elasticity for durable bonding to soft, wet tissue. The 

pressure-sensitive tissue adhesive (PSTA) blends produce increasingly stronger pull-apart adhesion 

in response to compressive pressure application, from 10 to 300 s. By incorporating a stiffer high 

molecular weight component, the PSTA exhibits dramatically improved burst pressure (greater 

than 100 kPa) when used as a tissue sealant. The PSTA’s biodegradation mechanism can be 

switched from erosion (occurring primarily over the first 10 days) to bulk chemical degradation 

(and minimal erosion) depending on the chemistry of the high molecular weight component. 

Interestingly, fibrosis toward the PSTA is reduced when fast-occurring erosion is the dominant 

biodegradation mechanism.
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INTRODUCTION

Tissue adhesives can reduce tissue damage by securing organs or biomedical devices 

noninvasively, potentially eliminating the need for sutures or staples in some surgical 

procedures. Here, we describe a pressure-sensitive tissue adhesive (PSTA) that can be fixed 

to intestinal or cardiac tissue simply by applying pressure to the interface, and without any 

curing event, drastically improving usability. This method employs a bimodal polymer 

blending strategy to produce an inherently tacky and tissue adhesive polymer film that is 

also biodegradable, biocompatible, and sprayable. By varying polymer chemistry of the 

blend, we demonstrate control over the PSTA’s viscoelasticity and biodegradation rate, 

allowing it to be tuned depending on the intended application.

Many tissue adhesives—especially conventional surgical sealants, such as fibrin glue—rely 

on a curing step to become sticky. Commercial packages of fibrin glue contain a solution of 

fibrinogen and a solution of thrombin that are loaded into a dual-barrel syringe.1 Other 

prominent examples of tissue adhesives with two-component mixing and gelation include 

various synthetic hydrogels, which cross-link upon mixing.2–5 Cyanoacrylate glues 

polymerize at the interface with tissue and rapidly solidify. Many one-component, light-

cured tissue adhesives have been developed to simplify deposition and gain control over the 

timing of the curing step.6–9 However, to allow for the curing step, the tissue adhesive 

precursors in all of these examples must be deposited as liquids onto the surgical site, 

resulting in difficult experiences for surgeons, especially in minimally invasive procedures 

where specialized applicators are required.10,11 Inaccurate application may lead to longer 

surgery times or cause unforeseen complications, such as thromboembolism.12,13

Bioinspired and reactive surface chemistries have been widely studied to improve tissue 

adhesion. Some tissue adhesives incorporate functional groups to bond to tissue, such as 

dopamine via oxidation, chitosan via electrostatics, N-hydroxysuccinimide, which readily 
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reacts with amines in tissue, or oxidized dextran, also via amines.14–17 However, the 

cohesive properties—especially rheology—of tissue adhesives are often overlooked. A 

particularly good example of this transition occurring is in the field of mussel-inspired 

chemistry, which increasingly studies the cohesive properties of the pH-sensitive L-DOPA–

metal complexes formed within mussel plaques. These and other bioinspired principles can 

be used as inspiration for new adhesive materials.18–21 Few synthetic tissue adhesives have 

cohesive properties tailored to promote strong adhesive bonding.

RESULTS AND DISCUSSION

To develop the PSTA, we investigated blends of poly(lactide-co-caprolactone) (PLCL), 

which is a biodegradable elastomer,22 and poly(lactide-co-glycolide) (PLGA), which could 

be used to increase stiffness (Figure 1A). Distinct low molecular weight (LMW) and high 

molecular weight (HMW) distributions of PLCL (see gel permeation chromatography 

(GPC), Figure 1B,C) were used to modulate viscoelasticity. In this work, we show that the 

rheological properties of the blends, especially their creep compliance and tan(δ), have a 

profound effect on their surface wettability and, subsequently, their tissue adhesion. The 

PSTA capitalizes on advances in the synthesis and processing of biodegradable elastomers, 

such as optimized random copolymer ratios23,24 and polymer blends with modified thermal 

properties25–29 or degradation rates.30–32

The components of the PSTA can be dissolved in acetone to yield a sprayable polymer 

solution (Figure 1A, inset). Blends of LMW PLCL and HMW PLCL, as well as blends of 

LMW PLCL with PLGA, were investigated. Sprayability allows the PSTA to be deposited 

directly to the surgical site as fibers using a solution blow spinning airbrush (Figure 1D).33 It 

then forms a thin film on tissue after softening (film shown in atomic force microscopy, 

Figure 1E). Tissue adhesion, degradation, and mechanical properties were characterized to 

determine which polymer blends exhibited the strongest pressure-sensitive adhesion. 

Depending on whether HMW PLCL or PLGA was incorporated, the PSTA could be tuned to 

degrade at different speeds and with varying amounts of erosion, which in turn produced 

differences in intraperitoneal space adhesiogenicity and immune response.

To investigate the PSTA’s ability to form a strong adhesive bond, we sprayed the PSTA onto 

cardiac tissue and applied a poly(tetrafluoroethylene) cardiac patch with compressive force. 

Pressure-sensitivity of the PSTA can be inferred from the effect that pressure application 

time has on adhesion strength (Figure 2A). LMW PLCL has inherently high wettability and 

tack on wet tissue, producing a strong adhesive bond in seconds. To compare the effects of 

using HMW additives to create a PSTA blend with mechanical integrity, either HMW PLCL 

or PLGA was blended at a 70:30 ratio of LMW PLCL to HMW additive. 70:30 blends of 

LMW and HMW PLCL produce adhesive bonds that are stable, significantly increasing in 

strength after 5 min of applied pressure. Figure 2B summarizes the short-term time course of 

adhesion for 4 blends of LMW and HMW PLCL, showing that for LMW PLCL alone the 

bond deteriorates within 5 min. Without HMW PLCL, adhesion peaks at 1 min after 

application and then decreases.
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The sealing strength of the polymer blends in wound closure was tested by measuring the 

burst pressure of a sealed partial incision ex vivo on segments of porcine intestine (Figure 

2C). LMW PLCL supplemented with PLGA outperforms the PLCL LMW/HMW blends in 

this form of testing because of its high resistance to inflationary forces. The PLGA 

reinforces the system without sacrificing adhesion, preventing cohesive failure (Figure 2D). 

This, in combination with the adhesion strength study (Figure 2A), suggests that PLCL 

LMW/HMW PSTA would perform best as a surgical glue because it is less likely to 

experience adhesive failure and has inherent tackiness. However, LMW PLCL reinforced 

with PLGA would make a superior surgical sealant because it has the stiffness and strength 

to withstand inflation and deformation forces. Ultimately, this study demonstrates that using 

a system of PLCL and PLGA allows for the production of adhesive blends with a wide range 

of mechanical properties and potential applications.

The viscoelasticity of the PSTA dictates its ability to quickly form adhesive bonds with high 

strength. We used shear rheology to determine the relative modulus and frequency-

dependent viscoelasticity of the PSTA polymer blends. Blends with tack—especially those 

containing LMW PLCL—exhibit lower storage modulus (G′) and loss modulus (G″) 

(Figure 3A). The ratio of G″ to G′, plotted as tan(δ), represents the relative influence of 

viscous and elastic behavior (Figure 3B); it captures the unique ability of these elastomeric 

polymer blends to be viscous on long time scales (corresponding to 0.1–5 Hz) and elastic on 

short time scales (5–100 Hz). Both 70:30 PSTA blends are shifted toward the viscous-

dominated regime (tan(δ) > 1): this imbues them with the high wettability and compliance 

(Figure 3C) necessary to quickly form adhesive bonds under pressure (Figure 3D) that pure 

HMW polymer cannot. Surface properties were also investigated by measuring the water 

droplet contact angle (Figure S2), as surface energy may influence interface formation and 

wetting behavior.34–37 Interestingly, the PLCL used here is relatively hydrophilic, producing 

contact angles less than 90° for all types. However, there are no significant differences 

between the various PLCL groups at the time of application, which suggests that excellent 

wetting properties of the LMW PLCL blend PSTAs are largely a function of viscoelasticity 

and mechanical properties.

Blends of synthetic rubber—such as polyisobutylene and poly(styrene–butadiene-styrene) 

block copolymers—and a phenolic tackifying resin have been widely used for pressure-

sensitive adhesion to nontissue, dry surfaces in consumer products like sticky notes.38,39 

These pressure-sensitive adhesives (PSAs) have even been repurposed for topical 

applications, such as adhesive bandages. While synthetic rubber PSAs can adhere effectively 

to skin—which is dry and hydrophobic unlike the wet tissue surfaces of internal organs—

they are nondegradable, have been shown to cause allergic dermatitis, and may strip the 

healing wound of new tissue.40–44 Previous research has established that their strong 

pressure-sensitive adhesion is a feature of their viscoelasticity, especially those that possess a 

transition from viscous to elastic behavior at intermediate frequency.45,46

Incorporating the HMW component allows the PSTA to retain sufficient elasticity under 

sudden deformation to form a durable bond that does not succumb to weak disruptive forces 

(Figure 3E). PSA formulations typically feature an elastomer with a rubbery region whose 

glass transition temperature (Tg) is 40–70 °C less than the operating temperature and glassy 
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regions that resist flow.47 In tension, the PLCL-based PSTA blends demonstrate high strain 

recovery (Figure 3F). The PLCL selected for the PSTA (70:30 L:CL ratio) possesses a Tg of 

approximately −10 °C (Figure S1), which is ideal given that the operating temperature is 

body temperature (37 °C). In comparison, PLGA, which is much stiffer, has a Tg of 

approximately 40 °C.

Biodegradation of synthetic polyesters in vivo is a function of both polymer chain cleavage 

due to hydrolysis and erosion of LMW aggregates. Simulated mass loss studies and gel 

permeation chromatography (GPC) were performed to quantify both aspects of 

biodegradation. PLGA (50:50 L:G) primarily undergoes bulk polymer chain cleavage (GPC, 

Figure 4A), with minimal mass loss due to erosion occurring over 28 days (Figure 4B). 

However, LMW PLCL completely erodes in 1 day, and HMW PLCL undergoes a 

combination of erosion and bulk degradation. Blends of these exhibit a range of degradation 

speeds, determined by the HMW component. PLGA can be used to create slow-eroding 

PSTAs: adhesive blends with the pressure-sensitive properties of LMW PLCL (see 

schematic, Figure 4B). Blends of LMW and HMW PLCL also have low stiffness and high 

failure strain throughout their degradation (Figure 4C,D). The synergy in desirable 

degradation rate, viscoelasticity, and high adhesive strength afforded by a 70:30 blend of 

LMW and HMW PLCL is illustrated by Figure 4E, which consists of a logarithmic 

regression model (Figure S3) of adhesion strength versus time and tan(δ).

The sprayable PSTA can be delivered directly to the surgical site, allowing for custom 

fabrication of adhesive layers. It produces an initially porous mat that can span wounds 

(Figure 5Ai,ii). This adhesive layer can be used to secure a small biomedical device, such as 

a cardiac patch (Figure 5Aiii). When removed, the PSTA exhibits strong adhesion to both 

surfaces (Figure 5Aiv), dissipating a high amount of energy through stretching before 

detachment (Figure 5Av). The PSTA layer remains sticky after detachment but leaves little 

to no residue.

To determine the potential immune response to the fast-degrading components of the PSTA, 

we employed an intraperitoneal space implantation mouse model that can be used to 

evaluate fibrosis.48,49 Surprisingly, PSTAs composed exclusively of PLCL produced fewer 

cases of fibrotic adhesions to the fat pads at 3 and 10 days than those that incorporated 

PLGA (Figure 5B). In the context of implanted materials, fibrosis may occur either (1) due 

to chronic inflammation in response to the implanted material or (2) due to acute 

inflammation from the wound healing response to surgical trauma that inhibits fibrinolysis.
50–54

Interestingly, polymer degradation rate and mode play a critical role in the formation of 

fibrotic adhesions in this model. Each implant sample was also examined for fragmentation, 

which indicates high levels of erosion during degradation (Figure 5B). Those that degrade 

quickly, and primarily via erosion, like LMW PLCL, produced no adhesions to the fat pad; 

the implant itself degrades into soft fragments which could be found in the intraperitoneal 

space (Figure S4). PLGA implants, which primarily degrade via bulk chemical degradation, 

can be found intact (Figure S4), and were more frequently associated with adhesions to the 

abdominal fat pads or other organs.
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Serum levels of tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) were also 

determined (Figure 5C,D). TNF-α and IFN-γ were rarely significantly different between the 

saline-injected sham procedure and other treatments, except in cases where the serum of the 

polymer-treated mice had decreased levels. The only case of elevated TNF-α compared to 

saline injection was for PLGA, which may be connected to the more severe immune 

response that coincides with fibrosis. This reduction in fibrosis when using PLCL-based 

PSTA blends suggests that it may be possible to reduce fibrotic adhesions using polymer 

blending strategies that promote erosion. Previous studies have also shown that 

viscoelasticity itself may affect cell adhesion.55

CONCLUSION

By blending LMW and HMW biodegradable polyesters, we formulated adhesives 

demonstrating a range of viscoelastic properties, from stiff and elastic to stretchy and 

resilient. Using elastomeric PLCL allowed for strong, pressure-sensitive bonding to occur 

with soft, hydrated tissue substrates, yielding a sprayable PSTA that is sticky without the 

need for curing. We further investigated the biodegradation and in vivo immune response 

toward these polymers, revealing interesting connections between degradation mechanisms 

and the tendency of intraperitoneal adhesions to form between the adhesive and surrounding 

organs such as the cecum or abdominal fat pad, as seen in our mouse model. Fast-degrading 

PSTAs composed of LMW and HMW PLCL have the potential to be used as temporary, 

biodegradable internal tissue adhesives with excellent flexibility during biodegradation and 

reduced potential for complications.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Components (A, B) and gel permeation chromatography (C) of the tissue adhesive polymer 

blends. (D) Schematic of sprayable pressure-sensitive tissue adhesive (PSTA) deposition, 

and (E) atomic force microscopy of the PSTA surface.
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Figure 2. 
(A) Cardiac-patch-to-cardiac-tissue adhesion strength of various blends of poly(lactide-co-

caprolactone) (PLCL) and poly (lactide-co-glycolide) (PLGA) and fibrin glue after 10 s, 1 

min, and 5 min of applied pressure. (B) Adhesion strength versus application time for 

pressure-sensitive polymer blends, showing the continued increase in adhesion when a blend 

of LMW and HMW polymers are used. (C) Ex vivo burst pressure on intestine using only 

the adhesive as a sealant, (D) with failure mode reported. (E) Factor increase in adhesion 

strength or burst pressure, showing the difference in effect of PLCL and PLGA as HMW 

blend components.
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Figure 3. 
(A, B) Shear rheology of polymer blends, showing the shift toward elastic, solidlike 

properties with HMW polymers. Storage (G′) and loss (G″) modulus (A) across a frequency 

range encompassing long time scales relevant for pressure-sensitive bond formation (0.1–5 

Hz) and short time scales relevant for high bond strength and adhesion after application (5 

Hz–100 Hz). (B) Plot of tan(δ) highlights the frequency-dependent shift at 1 Hz in 

viscoelasticity necessary for pressure-sensitive tissue adhesion. (C) Creep compliance of 

polymer blends in compression. The combination of viscosity and elasticity present in the 

polymer blends allows for pressure-sensitivity (D) and strong adhesion (E), respectively.(F) 

Strain recovery in tension for various polymer blends.
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Figure 4. 
Gel permeation chromatography (GPC) (A), mass loss (B), tensile stiffness (C), and failure 

strain (D) of polymer blend adhesives during in vitro degradation. (E) Three-dimensional 

regression plot of time, adhesion strength, and tan(δ) showing the interplay between 

degradation, rheology, and pull-off tissue adhesion.
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Figure 5. 
Application strategy for sprayable pressure-sensitive tissue adhesive (PSTA) and immune 

response toward PSTA components. PSTA can be sprayed directly onto a biopsy site (Ai), 

forming a thin coherent layer in approximately 1 min (Aii). A cardiac patch can be secured 

to the biopsy site by applying pressure (Aiii). During patch removal, the adhesive produces a 

strong bond (Aiv) with high energy dissipation through material stretching and cracking 

prior to failure (Av). (B) Frequency of fibrotic adhesions to the fat pads and implant 

fragmentation for polymers implanted in the intraperitoneal space of a mouse model, at 3 

and 10 days postsurgery. Serum levels of tumor necrosis factor-α (TNF-α) (C) and 

interferon-γ (IFN-γ) (D) for the same model.
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