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Abstract

Why does poor-quality sleep lead to atherosclerosis? In a diverse sample of over 1,600 indi-

viduals, we describe a pathway wherein sleep fragmentation raises inflammatory-related

white blood cell counts (neutrophils and monocytes), thereby increasing atherosclerosis

severity, even when other common risk factors have been accounted for. Improving sleep

quality may thus represent one preventive strategy for lowering inflammatory status and

thus atherosclerosis risk, reinforcing public health policies focused on sleep health.

Introduction

Sleep disruption is associated with atherosclerosis. Why is this? One potential pathway through

which fragmented sleep causally triggers cardiovascular disease is via the up-regulation of

inflammatory-associated white blood cells, which incite atherosclerosis [1,2]. However, the

proposition that sleep fragmentation in humans is associated with atherosclerosis through the

mediating influence of increased neutrophil and monocyte counts remains unexplored [3–5].

Moreover, that such a pathway is evident even when accounting for common contributing fac-

tors leading to atherosclerosis—such as age, sex, ethnicity, body mass index (BMI), smoking

status, blood pressure, use of antihypertensive medication, sleep apnea, and insomnia—is simi-

larly unknown.

Here, we address these unresolved questions. Specifically, we test the hypothesis that the

impact of fragmented sleep on atherosclerotic pathology is governed, in part, through the

novel mediating influence of increased neutrophil and monocyte levels and, furthermore, that

this sleep-related disease pathway is robust when multiple alternate cofactors (disease mecha-

nisms) are being controlled for.

To do so, we examined the association between sleep fragmentation (measured using 2

independent sources of objective data: polysomnography [PSG] and multiple nights of wrist-

based actigraphy), white blood cell count, and in vivo measures of subclinical atherosclerosis

in a diverse sample of the population (n = 3,305). The characteristics of the cohort, stratified

by atherosclerosis severity category, are shown in Table 1, and the sleep parameters of the

cohort are presented in S1 Table. The unadjusted bivariate correlations described in the fol-

lowing paragraphs are shown in S1 Fig.
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Results

Actigraphy

Focusing first on direct associations (prior to testing the mediation hypothesis and the inclu-

sion of cofactors), actigraphy-measured sleep fragmentation positively and significantly pre-

dicted Coronary Artery Calcification (CAC) score (r = 0.18, p< 0.001; Fig 1A and S1 Fig).

Second, this same objective measure of sleep fragmentation positively predicted higher neutro-

phil count (r = 0.08, p< 0.01) and was not significantly correlated with monocyte count

(r = 0.04, p = 0.17). Third, both neutrophil and monocyte counts were positively associated

with the CAC score (r = 0.12, p< 0.001 and r = 0.14, p< 0.001, respectively).

Having established each individual direct association, we next tested the central hypothesis

that the relationship between sleep fragmentation and atherosclerosis pathology (CAC score)

was not direct but, instead, statistically influenced through the indirect mediating impact of

fragmented sleep on raised neutrophil count, which in turn predicted CAC score. Supporting

this proposed pathway, the impact of sleep fragmentation on CAC scores was significantly

mediated through the indirect pathway of raised levels of neutrophils (n = 1110, β = 0.71, 95%

CI 0.18–1.65).

Thus, sleep fragmentation was associated with atherosclerosis risk, yet this relationship was

indirectly contributed to through the influence of fragmented sleep quality on increased neu-

trophil count. Consistent with the lack of a significant pairwise association between sleep frag-

mentation and monocytes, there was no indirect effect with monocyte count (β = 0.35, 95% CI

−0.11 to 1.14), potentially suggesting a greater mediating role of neutrophil activity.

Numerous factors to date have been demonstrated to increase atherosclerotic risk, includ-

ing age, sex, ethnicity, and BMI [6–8] as well as sleep-related features, including the presence

of sleep apnea [9] and insomnia [10]. Importantly, the aforementioned mediation effect

remained significant when controlling for the factors of age, sex, ethnicity, BMI, smoking sta-

tus, blood pressure, and use of antihypertensive medication, as well as sleep apnea and insom-

nia diagnoses (β = 0.44, 95% CI 0.02–1.27; Fig 1A and S1 Methods). The mediation also

remained significant when excluding participants with a CAC score of zero (n = 746, β = 1.05,

95% CI 0.27–2.52) and in this more select cohort, again showed a significant mediation after

controlling for all the aforementioned covariates (β = 0.85, 95% CI 0.11–2.36). Related, the

mediation similarly remained significant when excluding 104 participants diagnosed with

sleep apnea (β = 0.64, 95% CI 0.11–1.71, controlled for all aforementioned covariates).

Although in the same direction, the mediation effect was not statistically significant when

adjusting for sleep apnea using the apnea-hypopnea index (AHI) estimated from the PSG night

(β = 0.35, 95% CI −0.02 to 1.18). This indicates that sleep apnea cannot be excluded as a contrib-

uting factor in the mediation. However, post hoc analysis using AHI instead of sleep fragmenta-

tion as the exposure variable did demonstrate that there was no indirect effect of AHI on CAC

via an increase in monocyte/neutrophil counts (neutrophil: β = 0.12, 95% CI −0.02 to 0.44;

monocytes: β = −0.05, 95% CI −0.27 to 0.04). That is, sleep fragmentation, beyond AHI, appears

to have a specific relationship with inflammatory-related increases in atherosclerosis.

Polysomnography

Having quantified the association between atherosclerosis and home-based sleep, measured

using wrist actigraphy, we further tested these same relationships using PSG-recorded sleep.

Congruent with the actigraphy findings, the severity of PSG-measured fragmentation (arousals

during non-rapid eye movement [NREM] sleep) directly and positively predicted CAC score

severity (r = 0.14, p< 0.001). Once again, this association was indirect. Specifically, the impact
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of the PSG-measured arousal index in NREM fragmentation on CAC scores was mediated

through raised levels of neutrophils (n = 1046, β = 0.42, 95% CI 0.13–0.94) and raised mono-

cytes (n = 1046, β = 0.32, 95% CI 0.07–0.75). This effect was specific to NREM sleep, with no

such significant associations with the arousal index measured during REM sleep (r = 0.003,

p = 0.92).

The PSG-based mediation effect with neutrophils remained significant after controlling for

age, sex, ethnicity, smoking status, and blood pressure (β = 0.19, 95% CI 0.01–0.61; Fig 1B).

However, unlike the actigraphy-based measures, the effect did not remain significant after

adjusting for BMI, sleep apnea, insomnia, and use of antihypertensive medication. One inter-

pretation is that 1 week of wrist-based actigraphy sleep measurement, relative to a single night

of PSG sleep recording, is more capable of detecting the sleep-dependent link between neutro-

phils and atherosclerosis when considering relevant cofactors.

The indirect mediation effect with monocytes did remain significant after controlling for

age and ethnicity (β = 0.16, 95% CI 0.01–0.49), but not after adjusting for sex, indicating that

the atherosclerotic impact of sleep fragmentation on monocytes (but not neutrophils) is par-

tially regulated by sex.

It is noteworthy that the sleep-atherosclerosis mediation measured using PSG was signifi-

cant for both neutrophils and monocytes, while actigraphy-measured sleep only showed a sig-

nificant mediation effect with neutrophils (β = 0.36, 95% CI −0.11 to 1.14). This may suggest

greater sensitivity of PSG measures in quantifying this atherosclerosis disease pathway with

Table 1. Participant characteristics by atherosclerosis severity (CAC category).

Very low (CAC = 0) Low (CAC = 1–100) High (CAC = 101–400) Very high (CAC� 401) p-Value

Count 367 333 210 200 -
Age 64.4 ± 8.0 68.3 ± 9.2 71.6 ± 8.8 73.5 ± 8.0 <0.001

BMI 29.7 ± 5.7 29.2 ± 5.5 30.0 ± 4.9 29.4 ± 5.4 0.397

Male sex 29.7% 50.8% 51.9% 64.0% <0.001

Race, white 31.9% 35.4% 45.2% 52.0% <0.001

Race, African American 36.2% 29.4% 22.9% 18.5% <0.001

Race, Hispanic 31.3% 34.2% 31.4% 28.5% 0.580

Race, Chinese 0.5% 0.9% 0.5% 1.0% 0.873

Smoking, never 43.6% 44.4% 35.2% 30.0% 0.002

Smoking, former 48.2% 48.3% 55.2% 62.5% 0.004

Smoking, current 8.2% 6.6% 9.5% 7.5% 0.656

Any hypertension medication 43.9% 56.8% 66.2% 69.5% <0.001

SBP 122.0 ± 21 122.4 ± 19 126.1 ± 24 125.4 ± 20 0.045

DBP 68.4 ± 9.7 68.6 ± 9.4 68.3 ± 11.2 67.7 ± 10.1 0.769

WBC count 5.8 ± 1.7 5.8 ± 1.5 6.4 ± 2.0 6.6 ± 4.1 <0.001

Neutrophil count 3.4 ± 1.4 3.4 ± 1.2 3.8 ± 1.5 3.9 ± 1.6 <0.001

Monocyte count 0.4 ± 0.2 0.4 ± 0.2 0.5 ± 0.2 0.5 ± 0.2 <0.001

Sleep apnea 7.9% 6.9% 7.1% 5.0% 0.703

Insomnia 5.2% 3.9% 3.8% 3.5% 0.745

Data are shown as mean ± SD for continuous variables, and as percentages for categorical variables. p-Values were calculated using one-way ANOVA for continuous

variables and chi-squared test of independence for categorical variables. Significant p-values are denoted in bold. Only the characteristics of the participants included in

the complete-case mediation analysis (n = 1,110) are reported. The underlying data can be found in the BioLINCC repository at https://biolincc.nhlbi.nih.gov/studies/

mesa/.

Abbreviations: BMI, body mass index (kg/m2); CAC, Coronary Artery Calcification; DBP, seated diastolic blood pressure (mmHg); SBP, seated systolic blood pressure

(mmHg); WBC, white blood cell (10e3/uL)

https://doi.org/10.1371/journal.pbio.3000726.t001
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multiple inflammatory-related factors while still underscoring the aforementioned PSG results

concerning comorbidities.

Subjective sleep

Having examined the association between atherosclerosis and objective measures of sleep, we

tested for an equivalent relationship using subjective reports of sleep fragmentation. Self-

reported sleep fragmentation was not associated with neutrophil count (r = 0.009, p = 0.77),

monocyte count (r = −0.056, p = 0.08), or CAC score (r = −0.042, p = 0.11) and provided no

indirect mediation effect of the association between white blood cells and atherosclerosis (neu-

trophils: β = 0.73, 95% CI −4.5 to 6.3, monocytes: β = −4.3, 95% CI −10.7 to 0.11). In addition,

there was no direct or indirect effect of habitual daytime sleepiness (measured by the Epworth

Fig 1. Results. (A) Actigraphy-measured sleep fragmentation is positively associated with coronary artery disease risk (Very low = 0 Agatston units,

Low = 1–100, High = 101–400, Very high� 401). Mediation analysis demonstrated a significant association between actigraphy-measured sleep

fragmentation and increased absolute neutrophil count, which consequently predicted higher CAC scores. Thus, the link between fragmented sleep

and atherosclerosis risk is, in part, governed by the impact of fragmented sleep on elevated neutrophils. (B) PSG measured sleep fragmentation

(arousal index in NREM sleep) and the positive association with coronary artery disease risk. Here again, mediation analysis revealed a significant

association between PSG-measured sleep fragmentation in NREM and increased absolute neutrophil count, which in turn predicted higher CAC

scores. Cofactors controlled for in the mediation models included age, sex, ethnicity, BMI, smoking status, blood pressure, use of antihypertensive

medication, as well as sleep apnea and insomnia diagnosis, described in the main text. The underlying data can be found in the BioLINCC repository

at https://biolincc.nhlbi.nih.gov/studies/mesa/. BMI, body mass index; CAC, coronary artery calcification; NREM, non-rapid eye movement; PSG,

polysomnography.

https://doi.org/10.1371/journal.pbio.3000726.g001
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sleepiness scale [11]) on CAC score. These findings indicate that, unlike objective assessments,

self-reported sleep quality and daytime sleepiness may not offer statistically sensitive measures

in the predictive mediation pathway between sleep, inflammation, and atherosclerosis.

Exploratory analyses

Finally, we tested whether other objective sleep parameters, beyond sleep fragmentation, were

similarly associated with atherosclerosis via an elevation in neutrophil and/or monocyte

counts. Specifically, we looked at both actigraphy and PSG measures of sleep quantity and

quality. Consistent with the aforementioned findings, PSG-defined wake after sleep onset

(WASO) was indirectly associated with increased CAC through an increase in monocyte

count (β = 0.05, 95% CI 0.01–0.13). Similarly, higher sleep efficiency (averaged across 7 days of

actigraphy) negatively predicted a lower CAC score via a reduction in neutrophil count (β =

−1.12, 95% CI −2.83 to −0.13). However, neither of these relationships remained significant

after controlling for the earlier-mentioned cofactors. Thus, fragmented sleep, more than other

sleep features, appears to be a particularly sensitive predictor of white blood cell–mediated

atherosclerosis.

Discussion

Together, these findings affirm a pathway in which the quality of human sleep, specifically the

degree of fragmentation, raises inflammatory-related white blood cells, thereby conferring

increased risk for atherosclerosis. This was true of sleep fragmentation assessed across a week

or across a single night, which predicted increasingly higher CAC score through a mediating

association with increased neutrophils.

Our findings confirm recent seminal work in mice demonstrating that experimentally

induced sleep fragmentation, associated with increases in blood levels of monocytes and neu-

trophils, results in larger atherosclerotic lesions [1,2]. Furthermore, these rodent data added

mechanistic insight, with sleep fragmentation reducing hypocretin levels in the hypothalamus,

signaling bone marrow–related increases in the production of monocytes and neutrophils.

Advancing this research, we establish a sleep fragmentation—white blood cell—atheroscle-

rosis association in a population-based sample of human adults and demonstrate that these

effects remained robust when accounting for multiple other common atherosclerosis risk fac-

tors present in humans: age, sex, ethnicity, BMI, smoking status, blood pressure, and use of

antihypertensive medication, as well as sleep apnea and insomnia diagnoses. Finally, we show

that this indirect pathway can be quantified with objective sleep metrics, either using 1 week of

wristwatch actigraphy or a single night of PSG recording.

Importantly, however, we demonstrate that this same disease sensitivity is not observed

when using self-reported subjective sleep fragmentation or other metrics of sleep quantity

and/or quality. This may be pertinent for clinicians and researchers in determining which

sleep measures should be focused on in this disease context.

Though our statistical models remained significant after adjusting for age (in addition to

other cofactors), this does not challenge the well-established and independent links between

(i) aging and increases in monocytes and neutrophils [12,13], (ii) increases in atherosclerosis

risk [14], and (iii) decreases in sleep quantity and quality [15]. Rather, our findings simply

indicate that the mediation relationship between sleep fragmentation, white blood cells, and

atherosclerosis persist when chronological age is considered.

Decreasing sleep duration and fragmented sleep are independently associated with an

increased risk of atherosclerosis [16,17]. However, the pathways through which the impact of

sleep impairment operates have remained largely unknown. Building on rodent models [1],
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our findings suggest that one candidate pathway through which sleep fragmentation can raise

atherosclerotic risk in humans may be through raised levels of inflammatory-associated neu-

trophil and monocyte counts. This proposal is consistent with findings that insufficient sleep

(acute and prolonged) triggers low-grade inflammation [18], decreases and increases in dis-

crete immune factors, and enhanced upstream signaling mechanisms of inflammation, includ-

ing those regulated by monocytes [18]. Moreover, both monocytes and neutrophils have a

recognized role in atherosclerosis, including the modulation of proatherogenic reactive oxygen

species and neutrophil extracellular traps that encourage monocyte accumulation to the plaque

site [19–24].

What it is about fragmentated human sleep that triggers inflammatory blood cell pathway

continues to be defined. Beyond the inhibition of hypocretin production, sleep fragmentation

results in hypercortisolemia [25,26]. The state of raised cortisol can prevent the inhibition of

granulocyte macrophage colony-stimulating factor (GCSF) that otherwise limits neutrophil

levels [27], and may therefore further increase neutrophil production [28,29].

In the broader context of public health, these data suggest that improved sleep continuity

(i.e., lowering of sleep fragmentation) may offer a novel preventive strategy for lowering

inflammatory status and thus lowering relative atherosclerosis risk. More broadly, these find-

ings could help inform public health guidelines that focus on societal sleep health, one benefit

of which may be lowering atherosclerotic burden.

Limitations

A first limitation is that our analyses were constrained by the use of cross-sectional data, which

precludes definitive assessment of directionality of associations. For example, it could be that

cardiovascular disease (or associated treatments) may also drive sleep fragmentation in addi-

tion to, or rather than, the other way around. Although post hoc sensitivity analyses (S1

Results) indicated that incorporation of measures of cardiovascular disease did not substan-

tively alter the significance of mediation effects in our cohort, this possibility remains. Prospec-

tive longitudinal controlled studies will be needed to directly address the issue of reverse

causality.

Second, it is important to note that while the indirect mediation pathways were statistically

significant, the effect sizes of the pairwise associations were overall small. This suggests that

raised inflammation (our a priori study focus) is likely one of a number of possible mecha-

nisms through which insufficient sleep contributes to atherosclerosis. Other pathways include

altered autonomic nervous system activity, increased oxidative stress, impaired glucose metab-

olism, and endothelial dysfunction [26,30–32]. While we were unable to explore each of these

mechanisms, post hoc analyses revealed that the mediation pathway was also significant when

using heart rate variability (HRV) during sleep as the exposure variable in the mediation path-

way—a well-established marker of the autonomic nervous system—instead of sleep fragmenta-

tion (see S1 Results). Sleep disruption is also associated with raised levels of apolipoprotein B

(ApoB)—a strong predictor of cardiovascular disease [33] (though see [34]). Still, our findings

indicate that one atherosclerotic mechanism in humans may involve the influence of frag-

mented sleep on raised inflammatory-associated neutrophil and monocyte count.

The observed associations were not significant when adjusting for the AHI measured by

PSG. Sleep apnea is well known to cause sleep fragmentation, and these results are consistent

with sleep apnea as a factor contributing to sleep fragmentation. While our post hoc analyses

suggest that AHI per se (independently of sleep fragmentation) is not statistically significantly

associated with the inflammatory-related increases in atherosclerosis, it is likely that apnea-
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induced cortical and autonomic arousals play a mechanistic role in this indirect association

between sleep, leukocytes, and atherosclerosis.

Our reported mediation effect was stronger for neutrophils, relative to monocytes, support-

ing a recent study demonstrating significant indirect associations between overnight heart

rate, neutrophil count, and obstructive sleep apnea [32]. Nevertheless, the current study was

not powered or designed to differentiate these individual cell contributions. We propose 3

speculative, non–mutually exclusive explanations for this stronger neutrophil relationship that

may warrant future investigation. First, sleep disruption is linked to a larger relative increase

in neutrophils compared with monocytes [35]. Neutrophils may therefore be the more sleep

sensitive—and thus important—disease-related immune cell factor of this particular pathway.

Second, neutrophils are more numerous than monocytes, making up 60% to 70% of the total

white blood cell count. As such, a perturbation of white blood cells (e.g., by sleep disruption)

may lead to their influence being more pronounced. Third, the measure of neutrophil count is

encoded as a continuous variable, whereas monocyte count is encoded as a quasi-categorical

variable (see S2 Fig), which may reduce monocyte sensitivity.

While the current study accounted for common comorbidities and cofactors (e.g., insomnia

and sleep apnea diagnoses, obesity, sex, age, ethnicity, smoking status, blood pressure, hyper-

tensive medication), it must be recognized that this does not exclude the contribution of all

possible comorbidities. We also cannot rule out the chance that our findings may be influ-

enced by selection bias. The original cohort consisted of individuals free of known cardiovas-

cular disease. This may have led to an underrepresentation of individuals with early-onset

cardiovascular disease. Moreover, a small proportion (approximately 2%) of individuals were

excluded from the Multi-Ethnic Study of Atherosclerosis (MESA) sleep exam due to regular

continuous positive airway pressure (CPAP), oral appliance, or oxygen use, thus potentially

reducing representation of those with clinically significant sleep apnea. However, the partici-

pation rate in the MESA sleep study subset was high (approximately 44%), and health profiles

were generally similar between the participants who did enroll in the sleep study versus those

who did not [7].

Taken together, our findings are consistent with the emerging idea of a pivotal role of neu-

trophils in atherogenesis [36] and establish that this association is in part mediated by sleep

quality.

Methods

Ethics statement

Institutional review board approval was obtained at each study site, and written informed con-

sent was obtained from all participants. This study met the Declaration of Helsinki guidelines.

Procedure

The data were derived from the MESA Exam 5, [37], using information from its Exam 5 clinic

exam and the MESA Sleep Ancillary Study, which included 1 night of home PSG, 7 consecu-

tive days of wrist actigraphy (Actiwatch Spectrum, Philips Respironics, Murrysville, PA), and a

sleep questionnaire. All participants in the main MESA were invited to participate in the addi-

tional Sleep study at Exam 5, with the exception of those regularly using CPAP or an oral

device for sleep apnea. The demographic characteristics of this subset of individuals in the

sleep study relative to those of the overall full study cohort have been described elsewhere (see

S1 Table in [7]). Briefly, the subset of participants who enrolled in the sleep study were more

likely to be younger, of nonwhite ethnicity, a nonsmoker, and normotensive compared with

the MESA participants who did not enroll. Self-report doctor-diagnosed sleep apnea and other
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health characteristics (e.g., diabetes, obesity, myocardial infarction, asthma) were equivalent in

both groups. White blood cell counts were assayed from blood from a morning blood draw the

Exam 5 visit. CAC imaging from Exam 5 provided an in vivo assessment of atherosclerosis,

resulting in a standard Agatston score [38]. In-depth details of the study design, sleep evalua-

tions, blood evaluations, and CAC imaging can be found elsewhere [7,37–39].

Three validated markers of fragmented sleep were used as a priori predictor variables: (1)

fragmentation index, which reflects the proportion of total sleep epochs characterized by

movement, calculated separately for each night and then averaged across the 7 nights of acti-

graphy (see S1 Methods); (2) the number of arousals per hour of NREM sleep (the arousal

index, a measure that correlates with autonomic markers of arousal [40]), estimated during

the PSG night [41]; and (3) the participant self-reported sleep fragmentation (“Overall, was

your typical night’s sleep during the past 4 weeks”: 0 = very sound to 4 = very restless). Second,

we conducted exploratory analyses with other sleep parameters, such as actigraphy- and PSG-

defined measures of sleep quality and quantity (e.g., overall duration, WASO, and, for the PSG

night, percent time in each sleep stage and arousal index in REM sleep).

After removing participants with absent values on either the main predictor variables (i.e.,

objective and subjective measures of sleep fragmentation) and/or the main outcome variable

(CAC score, or atherosclerosis Agatston score), the final sample size was 1,630 participants

(752 males, mean ± SD age = 68.5 ± 9.2 years, BMI = 28.9 ± 5.5 kg/m2) of diverse ethnicities

(602 white, 451 black, 393 Hispanic, and 184 Asian). This sample represents 34.6% of all the

participants included in MESA 5 core exam (n = 4,716) and 72.1% of all participants that also

took part in the MESA 5 sleep exam (n = 2,261, of which 2,060 participants had successful PSG

data, 2,156 had actigraphy data, and 2,240 completed sleep questionnaires). For mediation

analyses, the sample size was further reduced by removing participants with absent values on

the mediator variable (e.g., the neutrophil count, final sample size, n = 1,110).

The hypothesis was tested using a formal mediation analysis with sleep fragmentation as

the independent variable, monocyte and neutrophil counts as the mediator variables, and

CAC score as the dependent variable. Specifically, the goal was to statistically determine

whether monocyte and neutrophil counts could be deemed mediators of the effect of sleep

fragmentation on CAC score. The relevant outcome of a formal mediation analysis is the indi-

rect effect, which quantifies the difference between the effect of the independent variable on

the dependent variable when the mediator is accounted for versus when it is not. Since both

the mediators and dependent variables were continuous (S2 Fig), ordinary least squares regres-

sion was used to model direct and indirect associations. Mediation analysis was performed

using the mediation_analysis function of the open source Pingouin statistical package for

Python [42], modeled on the mediation R package [43]. As recommended for mediation anal-

ysis reporting [44], all effects were considered significant only if the 95% bias-corrected boot-

strap confidence interval (of the indirect effect) was entirely above or below zero. Confidence

intervals were derived from 10,000 bootstrap samples. Consistent with current guidelines, we

do not report the ratio of the indirect effect over the total effect as a measure of effect size, as

this ratio can be any real number and is not bounded by 0 and 1 [44].
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