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Abstract A powerful feature of adaptive memory is its inherent flexibility. Alcohol and other

addictive substances can remold neural circuits important for memory to reduce this flexibility.

However, the mechanism through which pertinent circuits are selected and shaped remains unclear.

We show that circuits required for alcohol-associated preference shift from population level

dopaminergic activation to select dopamine neurons that predict behavioral choice in Drosophila

melanogaster. During memory expression, subsets of dopamine neurons directly and indirectly

modulate the activity of interconnected glutamatergic and cholinergic mushroom body output

neurons (MBON). Transsynaptic tracing of neurons important for memory expression revealed a

convergent center of memory consolidation within the mushroom body (MB) implicated in arousal,

and a structure outside the MB implicated in integration of naı̈ve and learned responses. These

findings provide a circuit framework through which dopamine neuronal activation shifts from

reward delivery to cue onset, and provide insight into the maladaptive nature of memory.

Introduction
An organism’s behavior is guided by memories of past experiences and their associated positive or

negative outcomes. Long-term memory retention requires the strengthening of labile memory traces

so they are available for future retrieval. However, successful associations are also dynamic and mal-

leable providing opportunities for updating associations based on new information. Thus, in order

for organisms to adapt to their environment, they must find a balance between the persistence and

flexibility of memories (Richards and Frankland, 2017).

In substance use disorder (SUD), the balance between memory persistence and flexibility is often

absent or difficult to achieve (Font and Cunningham, 2012; Torregrossa and Taylor, 2013;

Hitchcock et al., 2015; American Psychiatric Assocation, 2013). Alcohol similarly disrupts memory

systems resulting in enduring preferences, attentional bias for associated cues, and habitual behav-

iors (Fadardi et al., 2016; Field and Cox, 2008; Everitt and Robbins, 2005; Corbit et al., 2012;

Gerdeman et al., 2003; Yin, 2008; Hyman et al., 2006; Robinson and Berridge, 2003;

Goodman and Packard, 2016; White, 1996). In alcohol use disorder (AUD), preference and crav-

ings for alcohol persist in the face of aversive consequences, leading to maladaptive drug seeking

behaviors and ultimately a devastating economic and social impact on individuals, communities, and

society as a whole (WHO, 2018). Understanding the circuitry mechanisms that underlie the encoding

and expression of alcohol-associated memories is critical to understanding why these memories are

resistant to change.
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A significant effort has been devoted to identifying and investigating circuitry changes as a conse-

quence of alcohol (Lovinger and Alvarez, 2017; Corbit and Janak, 2016; Corbit et al., 2012;

Keiflin and Janak, 2015; Dong et al., 2017; Stuber et al., 2010; Volkow and Morales, 2015;

Volkow et al., 2013). The neuronal, genetic, and physiologic diversity that exists within the mamma-

lian brain, however, has made this task challenging (Morales and Margolis, 2017). Drosophila mela-

nogaster is a powerful model organism to address these challenges because of its lower complexity

and the availability of neurogenetic tools that permit dissection of memory circuits with exact tem-

poral and spatial resolution. Further, the neural circuits underlying the Drosophila reward response

are remarkably similar to mammals (Scaplen and Kaun, 2016). Drosophila form persistent appetitive

memories for the pharmacological properties of alcohol that last up to 7 days post acquisition and

impel flies to walk over a 120V electric shock in the presence of associated cues (Kaun et al., 2011;

Nunez et al., 2018). This suggests that Drosophila and mammalian alcohol-associated memories are

similarly inflexible in the face of aversive consequences.

We sought to identify the circuits important for alcohol-associated memories using a multi-

pronged approach combining behavioral, thermogenetic, in vivo calcium imaging, and transsynaptic

tracing. We show that circuits required for formation of alcohol preference shift from population-

level dopaminergic encoding to two microcircuits comprising of interconnected dopaminergic, glu-

tamatergic, and cholinergic neurons. Circuits required for the expression of alcohol-associated mem-

ories converge onto a mushroom body output neuron (MBON) that regulates consolidation and the

fan-shaped body (FSB), a higher-order brain center implicated in arousal and modulating behavioral

response (Donlea et al., 2018; Pimentel et al., 2016; Troup et al., 2018; Qian et al., 2017;

Weir and Dickinson, 2015; Weir et al., 2014; Hu et al., 2018; Liu et al., 2006). Our results provide

an in vivo circuit framework for how drugs of abuse temporally regulate acquisition and expression

of sensory memories, which ultimately results in a shift in behavioral response from malleable to

inflexible.

Results

Dopamine neurons innervating the mushroom body are required for
alcohol reward associations
Dopamine has a long-standing role in addiction and a defined role in reward-related behavioral

learning that spans across species (Wanat et al., 2009; Yoshimoto et al., 1992; Hyman et al.,

2006; Robbins and Everitt, 2002; Torregrossa et al., 2011; Kaun et al., 2011; Scaplen and Kaun,

2016). In Drosophila, the establishment of alcohol-associated preference requires a central brain

structure called the mushroom body (MB) and dopamine neurons (DANs) (Kaun et al., 2011). It is

unclear, however, which population of DANs are necessary for alcohol-associated preference. A dis-

crete population of protocerebral anterior medial (PAM) DANs that innervate the MB have an identi-

fied role in detecting and processing natural rewards (Liu et al., 2012; Yamagata et al., 2015;

Huetteroth et al., 2015; Lin et al., 2014). PAM neurons are required for the acquisition of sucrose

and water reward memories, are activated by sucrose and water administration (Harris et al., 2015;

Liu et al., 2012; Lin et al., 2014), and artificial activation is sufficient to induce reward memories

(Burke et al., 2012; Yamagata et al., 2015). Thus, we first tested whether PAM neurons were also

required for alcohol-associated preference (Figure 1A).

For selective manipulations of PAM neurons, we expressed the dominant negative temperature

sensitive shibire (shits) using R58E02-GAL4 (Liu et al., 2012). To establish temporal requirements, we

temporarily and reversibly inactivated neurotransmission by raising the temperature to restricted lev-

els (30˚C) during memory acquisition, the overnight consolidation period, or memory retrieval.

Acquisition was defined as the time during which an odor was presented in isolation (unpaired odor)

for 10 min followed by a second odor that was paired with an intoxicating dose of vaporized ethanol

(paired odor + ethanol) for an additional 10 min. During acquisition, reciprocally trained flies

received three of these spaced training sessions. Post-acquisition, flies were given a choice between

the odor that was previously presented with an intoxicating dose of ethanol and the odor that was

presented in isolation (Figure 1A). Retrieval was measured in a Y-maze 24 hr post acquisition and

defined as the time during which the flies chose between the previously presented odors. Inactivat-

ing neurotransmission in PAM DANs during acquisition or retrieval, but not during the overnight
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Figure 1. PAM DANs are necessary for encoding alcohol-associated preference. (A) Schematic illustrating odor condition preference paradigm. Vials of

30 flies are presented with three sessions of 10 min of an unpaired odor, followed by 10 min of a paired odor plus intoxicating vaporized ethanol. To

control for odor identity, reciprocal controls were used. Flies were tested 24 hr later in a standard Y maze (B) PAM dopaminergic neurons activity is

necessary during acquisition (F(2, 66)=5.355, p=0.007) and retrieval (F(2,71)=5.707, p=0.005), but not consolidation. Bar graphs illustrate mean +/-

Figure 1 continued on next page
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consolidation, significantly reduced preference for cues associated with ethanol (Figure 1B). Further

decreasing dopamine-2-like receptors (D2R), which are thought to act as auto-receptors,

(Vickrey and Venton, 2011), in PAM neurons significantly reduced preference for cues associated

with ethanol suggesting that the regulation of dopamine release at the synapse is important for alco-

hol reward memory (Figure 1C).

Strikingly, despite dopamine’s established role in modulating locomotor and motor responses

(da Silva et al., 2018; Howe and Dombeck, 2016; Dodson et al., 2016; Syed et al., 2016;

Lima and Miesenböck, 2005; Romo and Schultz, 1990; Schultz, 2007), inactivating all PAM dopa-

minergic neurons did not disrupt ethanol induced activity (Figure 1—figure supplement 1).

Together, these results demonstrate that PAM neurons are required for encoding preference, but

not for the locomotor response to the acute stimulatory properties of ethanol, and dopamine regula-

tion at the synapse is important for memory.

Dopaminergic encoding of alcohol memory acquisition occurs at the
population level
To determine how alcohol influenced activity of PAM DANs, we first used a dopamine staining pro-

tocol to label dopamine within the brain following 10 min of air or alcohol. As expected, there was a

significant amount of dopamine labeled within the mushroom body and the majority of fluorescence

was limited to the horizontal lobes (Figure 1—figure supplement 2). We hypothesized that dopa-

mine fluorescence would increase within the horizontal lobes of the MB in response to alcohol.

Quantification of fluorescence revealed a trending increase in dopamine that was not statistically dif-

ferent from control (Figure 1—figure supplement 2). We reasoned that dopamine staining likely

could not distinguish between dopamine in the presynaptic terminals and dopamine in the synaptic

cleft. Thus, we turned to 2-photon functional calcium imaging to monitor circuitry dynamics of PAM

dopaminergic activity in the context of intoxicating alcohol.

We used R58E02-Gal4 to express GCaMP6m (Chen et al., 2013) and recorded from the PAM

presynaptic terminals at the MB while naı̈ve flies were presented with 10 min of odor, followed by

10 min of odor plus intoxicating doses of alcohol (Figure 1C). Interestingly, early in the respective

recording sessions (odor vs odor + alcohol), changes in calcium dynamics was greater in the odor

only group (Figure 1D), however with prolonged alcohol exposure, greater calcium dynamics started

to emerge in the odor + alcohol group (Figure 1E). Similar effects were not evident if the fly was

Figure 1 continued

standard error of the mean. Raw data are overlaid on bar graphs. Each dot is an n of 1, which equals approximately 60 flies (30 per odor pairing). One-

way ANOVA with Tukey Posthoc was used to compare mean and variance. *p<0.05 (C) RNAi knockdown of D2R within the PAM population targeted

using the R58E02 GAL4 driver significantly reduced alcohol-associated preference F(2,89)=6.441, p=0.002. (D) Schematic illustrating calcium imaging

paradigm. (E) Flies are exposed to odor followed by odor plus intoxicating vaporized ethanol while resting or walking on a ball. We used the same

odor for both conditions so we could better compare circuit dynamics in response to ethanol and control for odor identity. Fluorescence was captured

for 61 s recording epochs that were equally spaced by 2 min. (F). Average traces recorded during early odor and odor plus ethanol exposures. Middle

panels illustrate the binned DF/F0 and highlights a change in calcium dynamics as a consequence of ethanol exposure. Right panels illustrate the

average DF/F0 for each fly in each condition. Early Epochs of odor plus ethanol had significantly lower signal (F(1,5)=8.705, p=0.03). (G) Average traces

recorded during late odor and odor plus ethanol exposures. Middle panels illustrate the binned DF/F0 and highlights a change in calcium dynamics as

a consequence of ethanol exposure. Right panels illustrate the average DF/F0 for each fly in each condition. Late Epochs of odor plus ethanol had

significantly higher signal (F(1,5)=24.177, p=0.004). Within Subject Repeated Measures ANOVA was used to compare mean and variance across

condition and time. Scale bar = 50 mm *p<0.05 **p<0.01.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Although inactivation of PAM neurons increased group flies in an open field arena (n = 15), it did not affect alcohol induced

activity suggesting that a decrease in preference is encoded independently from the amount of activity animals exhibit while intoxicated (Figure 1G).

Figure supplement 2. Dopamine staining within the brain following 10 min of air or 10 min of ethanol.

Figure supplement 3. Calcium Imaging from terminals of PAM population of DANs in response to odors and ethanol.

Figure supplement 4. Requirement of PAM DANs and Kenyon cells in formation of alcohol-associated preference.

Figure supplement 5. Subsets of PAM DANs are dispensable for encoding alcohol-associated preference.

Figure supplement 6. Subsets of PAM DANs are required for retrieval, but not acquisition or consolidation.

Figure supplement 7. mRNA quantification of dopamine receptors (DRs) in all neurons following constitutive expression of DR-RNAi’s.

Figure supplement 8. Temperature controls for DAN inhibition experiments that showed decreases in retrieval of alcohol associated preference at the

restrictive temperature.
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presented with two different odors alone or alcohol alone (Figure 1—figure supplement 2), sug-

gesting that the reported effects are not merely a consequence of odor identity or the pharmacolog-

ical properties of alcohol, but perhaps unique to alcohol associations.

To address whether specific subsets of dopamine neurons within the PAM neuron population are

necessary for alcohol-associated preference, we blocked transmission in subsets of these neurons

using 18 highly specific split-Gal4 lines during both acquisition and retrieval. We found that prefer-

ence was disrupted when neurotransmission was blocked in DANs projecting to the medial aspect

of horizontal MB (Figure 1—figure supplement 4A). Similar disruptions were evident when neuro-

transmission was blocked in intrinsic MB Kenyon cells (Figure 1—figure supplement 4B). We there-

fore selected split-Gal4 lines that targeted the medial aspect of the horizontal lobe and determined

their role specifically in acquisition of alcohol-associated preference. Surprisingly, unlike 24 hr

sucrose memory (Ichinose et al., 2015; Yamagata et al., 2015; Huetteroth et al., 2015), thermoge-

netic inactivation of specific subsets of DANs, innervating compartments of the medial horizontal

lobe during acquisition did not disrupt 24 hr alcohol-associated preference (Figure 1—figure sup-

plement 5). It’s unlikely this is a result of the lines being split-Gal4 lines since HL9, a PAM-specific

Dopamine decarboxylase (Ddc) promotor-driven Gal4 (Claridge-Chang et al., 2009) shows a similar

effect (Figure 1—figure supplement 6). Cell counts of the broadest split-GAL4 lines (40B and 42B),

HL9, and R58E02 driver lines revealed that despite targeting nearly all of the horizontal lobes of the

MB, 40B, 42B, and HL9 expressed in significantly fewer cells, and thus do not engage the entire pop-

ulation of PAM DANs (Supplementary file 1—Table 1). Together these data suggest that alcohol

reward memories are encoded via a population of DANs involved in reward memory that progres-

sively increase their activity as the flies become intoxicated.

Memory expression is dependent on a sparse subset of dopamine
neurons
A hallmark of reward-encoding DANs is the gradual transfer in response from reward delivery during

learning to the cue that predicts a reward during expression of the associated memory (Keiflin and

Janak, 2015; Schultz, 2016; Schultz, 2015). However, the circuit mechanisms underlying this shift

and knowledge about whether all DANs respond to the predictive cue, or a selective subset of

DANs is unknown. We temporarily inactivated neurotransmission in subsets of DANs during retrieval

to determine which subsets are required for a behavioral response to the predictive cue. Strikingly,

only inactivating DANs innervating b‘2a compartment of the MB, using split-Gal4 line MB109B, sig-

nificantly reduced alcohol-associated preference, demonstrating that these neurons are important

for the expression of alcohol-associated preference during retrieval (Figure 2F).

A dopamine-glutamate circuit regulates memory expression
Our next goal was to map the circuits through which b‘2a DANs drive behavioral choice. We tested

the requirement of MB output neurons (MBONs) that align with b’2a DANs. Inactivating glutamater-

gic MBONs innervating similar compartments during acquisition using five different split-Gal4 lines,

did not significantly reduce alcohol-associated preference (Figure 3A–E). However, similar inactiva-

tion during retrieval identified a single b2 b‘2a glutamatergic MBON important for the expression of

alcohol-associated preference (Figure 3I) thereby defining a putative retrieval microcircuit that con-

sists of a subset of 8–10 dopamine neurons innervating the b‘2a MB compartment and a single gluta-

matergic MBON that also innervates the b‘2a MB compartment (b2 b‘2a; Figure 3L).

Previous work suggested that b‘2a DANs were anatomically connected with b‘2amp MBONs at

the level of the MB, however, it was unclear to which MBON b‘2a DANs were synaptically connected

(Lewis et al., 2015). To test connectivity between b‘2a DANs and b2b‘2a MBONs we used the

recently developed anterograde transsynaptic labeling method trans-Tango to label the postsynap-

tic targets of the b‘2a DANs (Talay et al., 2017; Figure 4A). Crossing split-Gal4 line MB109B with

trans-Tango flies revealed a‘b‘ MB neurons as postsynaptic (Figure 4Bi). Interestingly, b‘2mp

MBON, and not b2 b‘2a, MBON were labeled as post synaptic to b‘2a DANs (Figure 4Bii).

It’s possible that synaptic connectivity between b‘2a DANs and b2b‘2a MBON is not sufficient to

be picked up by trans-Tango tools. We thus tested functional connectivity between DANs and b2

b‘2a using dopamine receptor RNAi (Figure 4—figure supplement 1A and B). Reducing expression

of D1-like receptors (D1Rs) or D2Rs in b2b‘2a MBON did not disrupt alcohol-associated preference.
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Previous work from our lab reported the requirement of D2Rs in intrinsic MB neurons for alcohol-

associated preference (Petruccelli et al., 2018), suggesting an indirect D2R pathway that regulates

expression of alcohol memory.

A separate dopamine-glutamate circuit regulates memory consolidation
Transsynaptic tracing revealed a putative direct synaptic connection between b’2a DANs and b’2mp

glutamatergic MBONs in regulating alcohol-associated preference (Figure 4Bii). We tested whether

this connection was functionally important in regulating alcohol-associated preference using dopa-

mine receptor RNAi lines. Decreasing levels of D2R, but not D1Rs, reduced alcohol-associated

Figure 2. Memory expression during retrieval is dependent on a sparse population of DANs. (A–H) A thermogenetic approach was used to inactivate

neurotransmission during retrieval, but not acquisition, in PAM DANs with varying expression patterns. (F) Inactivating b‘2a DANs during retrieval

significantly reduced preference for alcohol-associated cues. One-way ANOVA with Tukey Posthoc was used to compare mean and variance. F(2,65)

=14.18, p=7.78�10̂�6. Bar graphs illustrate mean +/- standard error of the mean. Raw data are overlaid on bar graphs. Each dot is an n of 1, which

equals approximately 60 flies (30 per odor pairing). (I) Chart illustrating the expression pattern of each split-GAL4 tested with intensity ranges of 2–5

(Aso et al., 2014a). (J) Model of circuits responsible for expression of alcohol-associated preference during retrieval, which highlights the importance of

sparse subsets of dopaminergic activity during retrieval for the expression of alcohol-associated preference. *p<0.01.
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Figure 3. Memory expression during retrieval, but not acquisition, is dependent on a sparse population of glutamatergic MBONs. (A–E) Thermogenetic

inactivation of glutamatergic MBONs innervating similar compartments to b‘2a PAM DANs during acquisition did not disrupt encoding of alcohol-

associated preference. (F–J) However, inactivating neurotransmission during retrieval revealed the specific importance of MBON b2b‘2a glutamatergic

neuron (I) for the expression of alcohol-associated preference F(2,59)=5.62, p=0.006. One-way ANOVA with Tukey Posthoc was used to compare mean

Figure 3 continued on next page
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Figure 3 continued

and variance. *p<0.01 Bar graphs illustrate mean +/- standard error of the mean. Raw data are overlaid on bar graphs. Each dot is an n of 1, which

equals approximately 60 flies (30 per odor pairing). (K) Chart illustrating the expression pattern of each split-GAL4 tested with intensity ranges of 2–5

(Aso et al., 2014a). (L) Updated model of circuits responsible for expression of alcohol-associated preference. Retrieval circuits require specific subsets

of DANs and a single MBON glutamatergic neuron innervating the b2‘a compartment.

Figure 4. MBON b‘2mp glutamatergic neuron is postsynaptic to b‘2a PAM DANs and important for memory consolidation. (A) Representative

maximum projection confocal stacks of MB109B > transTango. (B) trans-Tango reveal the a‘/b‘ MB lobe (i) and MBON b‘2mp neurons (ii) as

postsynaptic to b‘2a DANs. (C) Thermogenetic inactivation of MBON b‘2mp during consolidation using MB002B significantly increased alcohol reward

preference F(2,54) = 9.287, p=0.0003. Thermogenetic inactivation of b‘2mp during consolidation using MB074C significantly increased alcohol reward

preference relative to UAS controls F(2,71) = 3.51, p=0.04. (D) Knockdown of D2R in MBON b‘2mp using MB002B significantly decreased alcohol-

associated preference F(2,63)=12.77, p=2.22�10̂�05. Knockdown of D2R in MBON b‘2mp using MB074C significantly decreased alcohol-associated

preference relative to GAL4 controls F(2,71)=3.51, p=0.04. One-way ANOVA with Tukey Posthoc was used to compare mean and variance. Bar graphs

illustrate mean +/- standard error of the mean. *p<0.05 **p<0.01 (f) Circuits responsible for encoding alcohol-associated preference during retrieval.

Scale bar = 50 mm.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. RNAi knockdown of dopamine receptors in b‘2 MBONs in alcohol-associated preference.

Figure supplement 2. Temperature controls for lines that showed decreases in retrieval of alcohol-associated preference at a restrictive temperature.
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preference (Figure 4D, Figure 4—figure supplement 1C), providing functional evidence for a direct

D2R-dependent pathway that regulates alcohol memory.

Previous work in Drosophila reported that activating b‘2mp MBON promotes arousal

(Sitaraman et al., 2015). Thus, we hypothesized that inactivating b‘2mp MBON while flies normally

sleep would further decrease arousal and facilitate memory consolidation. To test this hypothesis,

we inactivated neurotransmission of b‘2mp MBON using two different split-GAL4 driver lines

(MB074C and MB002B) during the overnight consolidation period (Aso et al., 2014a). Despite hav-

ing no effect during acquisition or retrieval (Figure 3A,E,F,J), inactivating the b‘2mp MBON during

overnight consolidation period enhanced alcohol-associated preference (Figure 4C). Together these

data suggest that b‘2a DANs inhibit the b‘2mp glutamatergic MBON via D2R receptors which leads

to the expression of alcohol-associated preference. In the absence of dopamine (Figure 2F) or D2R

receptors (Figure 4D), preference is disrupted.

Convergent microcircuits encode alcohol reward expression
The central role for the b’2mp MBON in consolidation suggests that this region may integrate infor-

mation from several circuits required for memory expression. Previous anatomical studies predicted

that b‘2mp glutamatergic MBON and a‘two cholinergic MBON were synaptically connected

(Aso et al., 2014a). trans-Tango experiments demonstrate that b‘2mp MBON is indeed a postsynap-

tic target of the a‘2 MBON (Figure 5A). We previously showed that inactivating the a‘2 cholinergic

MBON throughout both memory acquisition and expression decreased alcohol-associated prefer-

ence (Aso et al., 2014b). To establish the specific temporal requirements of a‘2 MBON and deter-

mine whether its corresponding a2a‘2 dopaminergic input is necessary for alcohol-associated

preference, we thermogenetically inactivated neurotransmission during either acquisition or retrieval.

Inactivating a‘2 cholinergic MBONs or its corresponding a2a‘2 DANs during retrieval, but not acqui-

sition, significantly reduced alcohol-associated preference (Figure 5C–F). The involvement of a2a‘2

DANs is particularly interesting because it demonstrates a requirement of a separate population of

DANs in memory expression.

Interestingly, trans-Tango did not identify the a‘2 cholinergic MBON as a postsynaptic target of

a2a‘2 DANs. Of course, the possibility exists that there remains connectivity not identified by trans-

Tango, however, RNAi against D1Rs or D2Rs did not disrupt alcohol-associated preference (Fig-

ure 5—figure supplement 1), suggesting that, like the b’2 microcircuit necessary for retrieval of

alcohol-associated memories, direct connectivity of the a‘2 microcircuit is not required for alcohol-

associated preference.

Alcohol memory expression circuits converge on a higher-order
integration center
Emerging models in the MB field suggest that MBON activity is pooled across compartments and

that learning shifts the balance of activity to favor approach or avoidance (Owald and Waddell,

2015). It remains unclear where this MBON activity converges. In order to identify potential regions

that integrated MBON activity, we used trans-Tango to map postsynaptic partners of a‘2, b‘2mp,

and b2b‘2a MBONs. Interestingly, the dorsal regions of the FSB, specifically layers 4/5 or layer 6,

were consistently identified as postsynaptic targets of a‘2 MBON (Figure 6a,c). Both b‘2mp and

b2b‘2a MBONs also have synaptic connectivity with the dorsal regions of the FSB (Figure 6b,d).

Together these data reveal the dorsal FSB as an intriguing convergent region downstream of the

MB whose role in alcohol-associated preference should be investigated further (Figure 6e).

Discussion
In this study we provide novel insight to the circuit-level mechanisms underlying the acquisition and

expression of alcohol reward memories in Drosophila. We found that acquisition of appetitive

response for alcohol does not rely on subsets of DANs, but instead requires population level dopa-

minergic modulation of the MB via PAM DANs, which increases with prolonged exposure

(Figure 7A). The expression of alcohol reward memories, however, requires two discrete dopamine

microcircuits within the vertical and horizontal lobes, which converge at several points: a neuron that

regulates memory consolidation and the dorsal layers of the FSB (Figure 7B). We hypothesize that
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these convergent points provide multiple opportunities for memory to be updated or strengthened

to influence subsequent behavior.

Surprisingly, contrary to adaptive aversive or appetitive memories in flies (Liu et al., 2012;

Yamagata et al., 2016; Yamagata et al., 2015; Masek et al., 2015), encoding alcohol-associated

Figure 5. A microcircuit within the vertical lobe is important for alcohol-associated preference. (A) Representative maximum projection confocal stacks

of MB018B > trans-Tangorevealed that b‘2mp glutamatergic MBON is postsynaptic to a‘2 cholinergic neuron (B) Representative maximum projection

confocal stacks of MB058B > trans-Tangosuggests that that a‘2 cholinergic MBON is not postsynaptic a2a‘2 DAN (C) Thermogenetic inactivation of a‘2

cholinergic neurons during acquisition did not affect the expression of alcohol-associated preference F(2,63)=2.18, p=0.12. (D) Inactivation of a‘2

cholinergic neurons during retrieval significantly reduced preference F(2,116)=19.46, p=5.17�10̂�08. (E) Similarly, thermogenetic inactivation of a2a‘2

DANs during acquisition did not affect the expression of alcohol-associated preference F(2,85)=0.202, p=0.817. (F) Inactivation during retrieval

significantly reduced preference F(2,54)=5.103, p=0.009. (G) Updated model of circuits responsible for the expression of alcohol-associated preference

during retrieval. Scale bar = 50 mm.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Decreasing expression of dopamine receptors in the a‘2 MBON did not affect alcohol-associated preference.

Figure supplement 2. Temperature controls for lines that showed decreases in retrieval of alcohol-associated preference at a restrictive temperature.
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preference is not dependent on a single subset of DANs or MBON. Instead, acquisition appears to

depend on a population of DANs whose activity emerges over the course of exposure to intoxicat-

ing doses of alcohol and likely increase across odor-alcohol pairing sessions via the recruitment of

neurons. Although we cannot rule out the influence of other neurotransmitters or peptides that are

potentially co-released with dopamine, dopamine auto receptor knock-down experiments in PAM

neurons using the R58E02-GAL4 driver suggests that the regulation of dopamine release at the syn-

apse is important for alcohol reward memory.

Figure 6. Circuits important for memory expression at retrieval converge on the dorsal FSB. (A) Confocal stack of FSB highlighting the postsynaptic

signal of b2b‘2a MBON in the FSB. This MBON predominately targets layers 4, and 6. (B) Confocal stack of FSB highlighting the postsynaptic signal of

a‘2 MBON in the FSB. This MBON predominately targets layer 6. (C–D) Confocal stack of FSB highlighting the postsynaptic signal of b‘2mp MBON in

the FSB. This MBON predominately targets layer 4 and 5. (E) Schematic of the fly brain highlighting the FSB and its layers. The FSB is a 9-layer structure

(Wolff et al., 2015), of which 4,5, and 6 are targets. Scale bar = 50 mm.
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Previous work in Drosophila reports that increasing the number of encoding DANs enhances how

long aversive memory lasts (Aso and Rubin, 2016). Remarkably in an independent set of similar

experiments, Ojelade et al., 2019 demonstrate that previous alcohol exposure potentiates dopami-

nergic responses to subsequent artificial activation. Together these findings are consistent with what

is reported in mammalian models, where most drugs of abuse initially increase dopamine levels

beyond what is experienced during natural reward (Nutt et al., 2015; Volkow and Morales, 2015;

Kegeles et al., 2018) and suggest a general rule where stability of memory is encoded by the num-

ber of DANs involved during acquisition. We hypothesize that the recruitment of additional DANs

and the potentiation of their responses across sessions contributes to the stability of alcohol mem-

ory. Understanding the mechanism by which DANs are recruited may provide powerful insight into

why memories for an intoxicating experience are so persistent.

Surprisingly, despite the involvement of a1 PAM DANs in the acquisition of long-term sucrose

reward memory (Ichinose et al., 2015), the a1 DANs do not appear to play a role in alcohol- associ-

ated preference. Perhaps differences in the animal’s internal state and/or temporal dynamics of alco-

hol intoxication underlies the distinction in requisite circuits. It’s possible that the involvement of a1

is limited to internal states of hunger and thus not required when flies are sated. Unlike long-term

sucrose memory, alcohol-reward memory is present in both hungry and sated flies, offering a unique

opportunity to study how internal state might influence circuit selection for memory expression. Fur-

ther investigation and comparison of circuits important for alcohol-reward memory in hungry, sated,

and other internal states should prove to be a compelling line of research.

Systems memory consolidation suggests that there are different circuits for memory acquisition

and expression. Indeed, work in both fly and mammalian models suggest brain regions have a time-

limited role in systems consolidation (Trannoy et al., 2011; Zars et al., 2000; Blum et al., 2009;

Akalal et al., 2011; Qin et al., 2012; Cervantes-Sandoval et al., 2013; Krashes et al., 2007;

Krashes and Waddell, 2008; Perisse et al., 2013; Roy et al., 2017). Our data suggest that popula-

tion encoding during acquisition shifts to sparse representation during memory expression and dis-

tinct processes regulate consolidation and expression. The expression of alcohol-associated

preference is dependent on two separate microcircuits defined by a small subset of PAM DANs

Figure 7. Proposed circuits important for the acquisition and expression of alcohol-associated preference. (A) The proposed acquisition circuit

comprises population activity from DANs innervating the MB (B) The proposed retrieval circuit comprises two separate microcircuits, one in the vertical

lobe and one in the horizontal lobe that converge on b‘2mp MBON as well as layers with the dorsal FSB. The vertical lobe microcircuit includes a PPL1

a‘2a2 DAN that have indirect connections with an a‘2 cholinergic MBON via the MB. The horizontal lobe microcircuit includes a subset of PAM DANs

(b‘2a) that have direct connections with the b‘2mp glutamatergic MBON and indirect connections with the b2b‘2a glutamatergic MBON. Vertical and

horizontal microcircuits converge on the b‘2mp glutamatergic MBON which is important for arousal (Sitaraman et al., 2015) and layers 4, 5, and 6 of

the FSB.
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(b‘2a) within a larger population of reward encoding DANs and a single paired posterior lateral

(PPL1; a2a‘2) DAN (Figure 7B). Additionally, we found b‘2a DANs make direct connections with a

glutamatergic MBON (b‘2mp) implicated in arousal (Sitaraman et al., 2015). Converging microcir-

cuits emerge with time, and are not necessary for the acquisition of these long-lasting preference

associations (Figure 7B). Interestingly, blocking b‘2mp MBON when flies normally sleep enhanced

memory in a D2R-dependent manner. We propose that b‘2a DANs inhibit b’2mp MBONS neuronal

activity, thus permitting consolidation of alcohol-associated preference.

The involvement of PAM b‘2a DANs in the expression of alcohol-associated preference is particu-

larly interesting because these neurons (targeted by broader driver lines 104 Gal4 and R48B04-Gal4)

were previously implicated in the acquisition of 3 min sucrose memory in starved animals

(Burke et al., 2012), as well as naı̈ve water seeking in thirsty animals (Lin et al., 2014). b‘2a DANs

were also previously reported to inhibit b‘2amp MBONs to promote approach behaviors when flies

were presented with conflicting aversive and appetitive odor cues (Lewis et al., 2015). The effects

of b‘2a dopamine neuronal inhibition, however, were not long lasting. Instead, the appetitive food

odor, and consequently the activity of b‘2a DANs, appears to act as an occasion setter, or a discrimi-

natory stimulus that augments an animal’s response to a cue (Lewis et al., 2015). We speculate this

neuron resets the response to a cue associated with alcohol, which may be critical for overcoming

the initial aversive properties of alcohol. The involvement of PPL1 a2a‘2 DANs are also interesting

because PPL1 DANs are typically responsible for assigning negative valences to associated cues

(Aso et al., 2012; Waddell, 2013; Claridge-Chang et al., 2009; Kim et al., 2018; Boto et al.,

2019), suggesting that a microcircuit associated with negative valence directly interacts with a micro-

circuit associated with positive valence to regulate the decision to seek alcohol. We hypothesize that

repeated intoxicating experiences change the dynamics of b’2a DANs during acquisition or consoli-

dation in a way that creates long term changes to the responsivity of the b‘2mp MBON, perhaps to

the a‘2 MBON.

Because the b’2mp MBON is not required for expression of memory, it is likely that its output is

integrated elsewhere in the brain to drive goal directed behaviors. Indeed, there is a wealth of

examples in the literature of the systems balancing input from integrating neural circuits to drive

goal directed behavior (Buschman and Miller, 2014; Hoke et al., 2017; Knudsen, 2007;

Perisse et al., 2013; Owald et al., 2015; Owald and Waddell, 2015; Aso et al., 2014b;

Lewis et al., 2015; Dolan et al., 2018). Here we have identified one such structure: the dorsal layers

of the FSB, specifically layers 4, 5, and 6, that is an anatomical candidate for pooling MB output

activity to drive learned behaviors. Interestingly, although the FSB has an established role in arousal

and sleep, more recent work has defined its role in innate and learned nociceptive avoidance further

supporting its role in integrating MBON activity (Hu et al., 2018). We hypothesize that signals from

the b2b‘2a and a’2 MBONs are integrated at the FSB to shift naı̈ve response to cue-directed learned

response. Compellingly, the b’2mp MBON, which we show is required for consolidation of alcohol-

associated preference, also sends projections the FSB. This presents a circuit framework through

which memory could be updated to influence behavioral expression. There are likely other conver-

gent and or downstream structures that are important for reward processing and the emerging full

connectome will better shed light on these connections.

Alcohol is a unique stimulus, because unlike natural rewards and punishments, it has both aversive

and appetitive properties. Flies naively will avoid intoxicating doses of alcohol, but avoidance

switches to preference with experience (Shohat-Ophir et al., 2012; Peru Y Colón de Portugal

et al., 2014; Ojelade et al., 2019; Kaun et al., 2011). Previous work in starved flies have similarly

described the formation of parallel competing memories when rewards are tainted with bitter tast-

ants (Das et al., 2014). In this case, cue-associated avoidance switches to approach around the

same time that the nutritional value of sugar is processed (Musso et al., 2015; Das et al., 2014).

During memory acquisition, both bitter taste and shock memories require the MP1 DA neuron,

whereas sucrose memories, like alcohol memories, require the PAM neurons. Similar to our work,

Ojelade et al., 2019 show that the PAM population of DANs projecting to the MB are required for

acquisition of experience-dependent alcohol preference in a consumption assay. They also demon-

strate that activating layer six of dorsal FSB leads to naı̈ve alcohol preference. These data are partic-

ularly exciting because we also identified the dorsal FSB as a convergent structure to MBONs

important for the consolidation and expression of alcohol-associated preference. Perhaps the
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temporal nature of a valence switch from conditioned aversion to preference is a consequence of

system level interactions between the MB and FSB.

A classic hallmark of addiction is the enduring propensity to relapse, which is often driven by

drugs associated cues. We believe our work provides valuable insight to the mechanisms by which

drugs of abuse regulate acquisition, consolidation, and expression of pervasive sensory memories.

Here we establish a circuit framework for studying the neural mechanisms of alcohol reward memory

persistence in Drosophila and understanding how circuits change in drug-induced states.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Genetic reagent
(D. melanogaster)

y[1]w[*] Pfeiffer et al., 2008

Genetic reagent
(D. melanogaster)

UAS-shibirets1 Pfeiffer et al., 2012 FLYB: FBst0066600;
RRID:BDSC_66600

Genetic reagent
(D. melanogaster)

UAS-GCaMP6m FLYB: FBst0042750;
RRID:BDSC_42750

FlyBase symbol:
Dmel\PBac{20XUAS-IVS-GCaMP6m}VK00005

Genetic reagent
(D. melanogaster)

UAS-Dop2R-RNAi Dietzl et al., 2007 FLYB: FBsf0000079969;
VDRC ID: 11471

FlyBase symbol:
Dmel\dsRNA-GD11471
(currently unavailable)

Genetic reagent
(D. melanogaster)

UAS-Dop1R1-RNAi Keleman et al., 2009) FLYB: FBsf0000090794;
dsRNA-KK107258
VDRC ID: 100249

FlyBase symbol:
Dmel\dsRNA-KK107258

Genetic reagent
(D. melanogaster)

UAS-Dop1R2-RNAi Dietzl et al., 2007 FLYB: FBsf0000073893
dsRNA-GD3391
VDRC ID: 3391

FlyBase symbol:
Dmel\dsRNA-GD3391
(currently unavailable)

Genetic reagent
(D. melanogaster)

trans-Tango: UAS-myrGFP,
QUAS-mtdTomato
(3xHA); brp-SNAP

Kohl et al., 2014,
Talay et al., 2017

Genetic reagent
(D. melanogaster)

R58E02-Gal4 Liu et al., 2012 FLYB: FBtp0061564;
RRID:BDSC_41347

Flybase Symbol:
P{GMR58E02-GAL4}

Genetic reagent
(D. melanogaster)

R58E02; mcD8::GFP this paper FLYB: FBtp0061564;
RRID:BDSC_41347
FLYB: FBti0200979;
RRID:BDSC_79626,

Flybase Symbol:
P{GMR58E02-GAL4}
Flybase Symbol:
Dmel\P{10XUAS-
mCD8GFP-APEX2}attP40

Genetic reagent
(D. melanogaster)

HL9-Gal4 Claridge-Chang et al., 2009 FLYB: FBtp0073020
RRID:BDSC_69208

Flybase Symbol:
P{HL9-GAL4.DBD}attP2

Genetic reagent
(D. melanogaster)

MB058B-split-Gal4 Aso et al., 2014a FlyLight Robot
ID: 2135107

Genetic reagent
(D. melanogaster)

MB109B-split-Gal4 Aso et al., 2014a FlyLight Robot
ID: 2135157

Genetic reagent
(D. melanogaster)

MB040B-split-Gal4 Aso et al., 2014a N/A

Genetic reagent
(D. melanogaster)

MB042B-split-Gal4 Aso et al., 2014a FlyLight Robot
ID: 2135092

Genetic reagent
(D. melanogaster)

MB188B-split-Gal4 Aso et al., 2014a FlyLight Robot
ID: 2135236

Genetic reagent
(D. melanogaster)

MB032B-split-Gal4 Aso et al., 2014a FlyLight Robot
ID: 2135083

Genetic reagent
(D. melanogaster)

MB087C-split-Gal4 Aso et al., 2014a FlyLight Robot
ID: 2135135

Genetic reagent
(D. melanogaster)

MB301B-split-Gal4 Aso et al., 2014a FlyLight Robot
ID: 2135349

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Genetic reagent
(D. melanogaster)

MB002B-split-Gal4 Aso et al., 2014a FlyLight Robot
ID:2135053

Genetic reagent
(D. melanogaster)

MB011B- split-Gal4 Aso et al., 2014a FlyLight Robot
ID:2135062

Genetic reagent
(D. melanogaster)

MB-210B-split-Gal4 Aso et al., 2014a FlyLight Robot
ID: 2135258

Genetic reagent
(D. melanogaster)

MB018B-split-Gal4 Aso et al., 2014a FlyLight Robot
ID: 2135069

Genetic reagent
(D. melanogaster)

MB399B-split-Gal4 Aso et al., 2014a FlyLight Robot
ID: 2501738

Genetic reagent
(D. melanogaster)

MB074C-split-Gal4 Aso et al., 2014a FlyLight Robot
ID: 2135112

Antibody a-GFP
(Rabbit polyclonal)

Life Tech Cat#A11122 (1:1000)

Antibody a-HA
(Rat monoclonal)

Roche Cat#11867423001 (1:100)

Antibody Goat a-Rabbit AF488 Life Tech Cat#A11034 (1:400)

Antibody Goat a-Rat AF568 Life Tech Cat#A11077 (1:400)

Antibody a-dopamine
(Mouse monoclonal)

Millipore Cat#MAB5300 (1:40)

Antibody Goat a-mouse AF488 Thermo Cat#A11029 (1:200)

Sequence-
based reagent

CG13646F Petruccelli et al., 2018 PCR primers AGTTTGACATCCACCCCGTC

Sequence-
based reagent

CG13646R Petruccelli et al., 2018 PCR primers CTCACTGGCGATTCCGATGA

Sequence-
based reagent

Dop2RF Petruccelli et al., 2018 PCR primers CTGAACTGCACCAACGAGACGC

Sequence-
based reagent

Dop2RR Petruccelli et al., 2018 PCR primers CAGGATGTTGCCGAAGAGGGTC

Sequence-
based reagent

Dop1R1F this paper PCR primers CCGTCGTGTCCAGCTGTATCAG

Sequence-
based reagent

Dop1R1R this paper PCR primers CTTCTCGGCCACCTCACCTG

Sequence-
based reagent

Dop1R2F this paper PCR primers CCTGGCTCGGCTGGATCAAC

Sequence-
based reagent

Dop1R2R this paper PCR primers ATCGTGGGCTGGTACTTGCG

Fly strains
All Drosophila melanogaster lines were raised on standard cornmeal-agar media with tegosept anti-

fungal agent and maintained at either 18C or 21C. For a list of fly lines used in the study, see Key

Resources Table. All Drosophila melanogaster lines used for trans-Tango were raised and maintained

at 18C in humidity-controlled chambers under 14/10 hr light/dark cycles on standard cornmeal-agar

media with tegosept anti-fungal agent.

Behavioral experiments
Odor preference conditioning
For behavior experiments, male flies were collected 1–2 days post eclosion and were shifted from

21C to 18C, 65% humidity and placed on a 14/10 hr light/dark cycle. Odor conditioning was per-

formed similar to Kaun et al., 2011. In short, groups of 30 males were trained in perforated 14 ml

culture vials filled with 1 ml of 1% agar and covered with mesh lids. Training rooms were tempera-

ture and humidity controlled (65%). Training was performed in the dark with minimal red-light
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illumination and was preceded by a 20 min habituation to the training chambers. Training chambers

were constructed out of PlexiGlas (30 � 15�15 cm) (for details please refer to Nunez et al., 2018).

During habitation, humidified air (flow rate: 130) was streamed into the chambers. A single training

session consisted of a 10 min presentation of odor 1 (flow rate: 130), followed by a 10 min presenta-

tion of odor 2 (flow rate 130) with 60% ethanol (flow rate 90: ethanol 60: air). Reciprocal training was

performed simultaneously to ensure that inherent preference for either odor did not affect condi-

tioning scores. For the majority of experiments odors used were 1:36 isoamyl alcohol and 1:36 iso-

amyl acetate in mineral oil, however, screen behavioral experiments used 1:36 isoamyl alcohol and

1:36 ethyl acetate in mineral oil. Vials of flies from group one and group two were age matched and

paired according to placement in the training chamber. Pairs were tested simultaneously 24 hr later

in the Y maze by streaming odor 1 and odor 2 (flow rate 10) in separate arms and allowing flies to

walk up vials to choose between the two arms. A preference index was calculated by # flies in the

paired odor vial- # flies in the unpaired odor vial)/total # of flies that climbed. A conditioned prefer-

ence index (CPI) was calculated by the averaging preference indexes from reciprocal groups. All

data are reported as CPI. All plots were generated in RStudio.

Odor sensitivity
Odor sensitivity was evaluated at restrictive temperatures (30˚C). Odors used were 1:36 isoamyl alco-

hol in mineral oil and 1:36 isoamyl acetate in mineral oil. Groups of 30 naı̈ve males were presented

with either an odor (flow rate 10) or air streamed through mineral oil in opposite arms of the Y. Pref-

erence index was calculated by # flies in odor vial- # flies in air vial)/total # flies that climbed for each

individual odor.

Ethanol sensitivity
Ethanol sensitivity was evaluated in the recently developed flyGrAM assay (Scaplen et al., 2019).

Briefly, for thermogenetic inactivation, 10 flies were placed into arena chambers and placed in a 30˚

C incubator for 20 min prior to testing. The arena was then transferred to a preheated (30˚C) light

sealed box and connected to a vaporized ethanol/humidified air delivery system. Flies were given an

additional 15 min to acclimate to the box before recordings began. Group activity was recorded (33

frames/sec) for five minutes of baseline, followed by 10 min of ethanol administration and five

minutes of following ethanol exposure. Activity was binned by 10 s and averaged within each geno-

type. Mean group activity is plotted as a line across time with standard error of the mean overlaid.

All activity plots were generated in RStudio. trans-Tango immunohistochemistry and microscopy.

Experiments were performed according to the published FlyLight protocols with minor modifica-

tions. Briefly, either adult flies that are 15–20 days old were cold anaesthetized on ice, de-waxed in

70% ethanol dissected in cold Schneider’s Insect Medium (S2). Within 20 min of dissection, tissue

was incubated in 2% paraformaldehyde (PFA) in S2 at room temperature for 55 min. After fixation,

samples were rinsed with phosphate buffered saline with 0.5% Triton X-100 (PBT) and washed 4

times for 15 min at room temperature. Following PBT washes, PBT was removed and samples were

incubated in SNAP substrate diluted in PBT (SNAP-Surface649, NEB S9159S; 1:1000) for 1 hr at

room temperature. Samples were then rinsed and washed 3 times for 10 min at room temperature

and then blocked in 5% heat-inactivated goat serum in PBT for 90 min at room temperature and

incubated with primary antibodies (Rabbit a-GFP Polyclonal (1:1000), Life Tech #A11122, Rat a-HA

Monoclonal (1:100), Roche #11867423001) for two overnights at 4˚C. Subsequently, samples were

rinsed and washed 4 times for 15 min in 0.5% PBT and incubated in secondary antibodies (Goat a-

Rabbit AF488 (1:400), Life Tech #A11034, Goat a-Rat AF568 (1:400), Life Tech #A11077) diluted in

5% goat serum in PBT for 2–3 overnights at 4˚C. Samples were then rinsed and washed 4 times for

15 min in 0.5% PBT at room temperature and prepared for DPX mounting. Briefly, samples were

fixed a second time in 4% PFA in PBS for 4 hr at room temperature and then washed four times in

PBT at room temperature. Samples were rinsed for 10 min in PBS, placed on PLL-dipped cover glass,

and dehydrated in successive baths of ethanol for 10 min each. Samples were then soaked three

times in xylene for 5 min each and mounted using DPX. Confocal images were obtained using a

Zeiss, LSM800 with ZEN software (Zeiss, version 2.1) with auto Z brightness correction to generate a

homogeneous signal where it seemed necessary, and were formatted using Fiji software (http://fiji.

sc).
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Dopamine immunohistochemistry and microscopy
Groups of flies were exposed to either 10 min of air or 10 min of ethanol and dissected within 15

min of exposure on ice. Immunohistochemistry was performed according to Cichewicz et al., 2017.

With 15 min of dissection, tissue was transferred to fix (1.25% glutaraldehyde in 1% PM) for 3–4 hr

at 4˚C. Tissue was subsequently washed 3 times for 20 min in PM and reduced in 1% sodium borohy-

dride. Then the tissue was washed 2 times for 20 min before a final wash in PMBT. Tissue was

blocked in 1% goat serum in PMBT overnight at 4˚C and incubated in primary antibody (Mouse anti-

dopamine (1:40) Millipore Inc, #MAB5300) for 48 hr at 4˚C. Following primary antibody incubation,

tissue was washed three times in PBT for 20 min at room temperature and incubated in secondary

antibody (Goat anti mouse 488 (1:200 in PBT) Thermo #A11029) for 24 hr at 4˚C. The following day

tissue was washed 2 times for 20 min in PBT and then overnight in fresh PBT. Tissue was rinsed

quickly in PBS, cleared in FocusClear and mounted in MountClear (Cell Explorer Labs). Confocal

images were obtained using a Zeiss, LSM800 with ZEN software (Zeiss, version 2.1). Microscope set-

tings were established using ethanol tissue before imaging air and ethanol samples.

Dopamine fluorescence analysis
Fluorescence was quantified in Fiji (Schindelin et al., 2012) using Segmentation Editor and 3D Man-

ager (Ollion et al., 2013). In segmentation editor ROIs were defined using the selection tool brush

to outline the MB in each slice and also outside a background region immediately ventral to MB that

lacked defined fluorescent processes. 3D ROIs of the MB and control region were created by inter-

polating across slices. Geometric and intensity measurements were calculated for each ROI in 3D

Manager and exported to CSV files. Integrated density for each ROI was normalized by the inte-

grated density of control regions. Average integrated density for air and ethanol exposures are

reported. All fluorescence quantifications were performed by a blinded experimenter.

Calcium imaging protocol and analysis
To express GCaMP6m in PAM neurons, UAS-GCaMP6m virgin female flies were crossed to male flies

containing the R58E02-GAL4 driver. As previously mentioned, all flies were raised on standard corn-

meal-agar food media with tegosept anti-fungal agent and maintained on a 14/10 hr light/dark cycle

at 24˚C and 65% humidity.

Fly Preparation
Male flies were selected for imaging six days post-eclosion. Flies were briefly anesthetized on ice to

transfer and fix to an experimental holder made out of heavy-duty aluminum foil. The fly was placed

into an H-shaped hold cut out of the foil and glued in place using epoxy (5 min Epoxy, Devcon). The

head was tilted about 70˚ to remove the cuticle from the back of the fly head. All legs were free to

move, the proboscis and antenna remained intact and unglued. Once the epoxy was dry, the holder

was filled with Drosophila Adult Hemolymph-Like Saline (AHLS). The cuticle was removed using a

tungsten wire (Roboz Surgical Instruments Tungsten Dissecting Needle,. 125 mm, Ultra Fine) and

forceps #5. The prepared fly in its holder was positioned on a customized stand underneath the two-

photon scope. The position of the ball and the stream delivery tubes were manually adjusted to the

fly’s position in the holder.

Imaging paradigm
Calcium imaging recordings were performed with a two-photon resonance microscope (Scientifica).

Fluorescence was recorded from the PAM neurons innervating the mushroom body for a total dura-

tion of 80 to 95 min. The first 10 min the fly was presented an air stream, followed by 10 min of iso-

amyl alcohol. The fly was then presented with 10 min of isoamyl alcohol paired with ethanol

followed by 50 min of streaming air. To avoid bleaching effects and to match the higher resolution

imaging properties, the recording was not throughout the entire paradigm but spaced with imaging

intervals of 61.4 s. Recordings were performed using SciScan Resonance Software (Scientifica). The

laser was operated at 930 nm wavelength at an intensity of 7.5–8 mW. Images were acquired at 512

� 512 pixel resolution with an average of 30.9 frames per second. Recordings lasted 1900 frames

which equals 61.5 s. Recordings were performed at 18.5˚C room temperature and 59% humidity.
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Imaging analysis
Data were registered, processed, and extracted using a matlab GUI developed by C. Deister, Brown

University. Calcium image files (.tiff) comprising of 1900 frames taken at 30.94 frames per second

rate (61.4 s), were initially averaged every five frames to downsize the. tiff image files to 380 frames.

Image files were then aligned and registered in X-Y using a 15–50 frame average as a template.

ROIs were constructed over the MB lobes using non-negative matrix factorization to identify active

regions and then subsequently segmented to create the ROIs. Fluorescence values were extracted

from identified ROIs and DF/Fo measurements were created using a moving-average of 75 frames to

calculate the baseline fluorescence (Fo). Average fluorescence traces across flies (n = 6) were visual-

ized using ggplot in R Studio. Fiji (Schindelin et al., 2012) was used to construct heat-maps visualiz-

ing calcium activity. Calcium image files were summated across 1900 frames to create Z-projections.

A heat gradient was used to visualize calcium activity magnitude. qRT-PCR qRT-PCR methods have

been described previously (Petruccelli et al., 2018). In brief, total RNA was extracted from approxi-

mately 100 heads using Trizol (Ambion, Life Technologies) and treated with DNase (Ambion DNA-

Free Kit). Equal amounts of RNA (1 mg) were reverse-transcribed into cDNA (Applied Biosystems) for

each of the samples. Then, Biological (R3) and technical (R2) replicates were analyzed with Sybr

Green Real-Time PCR (BioRad, ABI PRISM 7700 Sequence Detection System) performed using the

following PCR conditions: 15 s 95˚C, 1 min 55˚C, 40x. Primer sequences can be found in

Supplementary file 1— Table 4. Across all samples and targets, Ct threshold and amplification

start/stop was set to 0.6 and manually adjusted, respectively. All target genes were initially normal-

ized to CG13646 expression for comparative DCt method analysis, then compared to control geno-

type to assess fold enrichment (DD Ct method).
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Lima SQ, Miesenböck G. 2005. Remote control of behavior through genetically targeted photostimulation of
neurons. Cell 121:141–152. DOI: https://doi.org/10.1016/j.cell.2005.02.004

Lin S, Owald D, Chandra V, Talbot C, Huetteroth W, Waddell S. 2014. Neural correlates of water reward in thirsty
Drosophila. Nature Neuroscience 17:1536–1542. DOI: https://doi.org/10.1038/nn.3827, PMID: 25262493

Liu G, Seiler H, Wen A, Zars T, Ito K, Wolf R, Heisenberg M, Liu L. 2006. Distinct memory traces for two visual
features in the Drosophila brain. Nature 439:551–556. DOI: https://doi.org/10.1038/nature04381, PMID: 16452
971

Scaplen et al. eLife 2020;9:e48730. DOI: https://doi.org/10.7554/eLife.48730 21 of 24

Research article Neuroscience

https://doi.org/10.1016/j.pbb.2012.01.009
http://www.ncbi.nlm.nih.gov/pubmed/22285323
https://doi.org/10.1016/S0166-2236(03)00065-1
https://doi.org/10.1016/S0166-2236(03)00065-1
http://www.ncbi.nlm.nih.gov/pubmed/12689769
https://doi.org/10.3389/fpsyt.2016.00024
http://www.ncbi.nlm.nih.gov/pubmed/26941660
https://doi.org/10.1016/j.neuron.2015.05.026
http://www.ncbi.nlm.nih.gov/pubmed/26051423
https://doi.org/10.1186/s13063-015-1029-y
http://www.ncbi.nlm.nih.gov/pubmed/26531124
https://doi.org/10.1093/icb/icx109
http://www.ncbi.nlm.nih.gov/pubmed/29048534
http://www.ncbi.nlm.nih.gov/pubmed/29048534
https://doi.org/10.1038/nature18942
http://www.ncbi.nlm.nih.gov/pubmed/27398617
https://doi.org/10.1016/j.celrep.2018.07.028
http://www.ncbi.nlm.nih.gov/pubmed/30089267
https://doi.org/10.1016/j.cub.2015.01.036
https://doi.org/10.1016/j.cub.2015.01.036
http://www.ncbi.nlm.nih.gov/pubmed/25728694
https://doi.org/10.1146/annurev.neuro.29.051605.113009
https://doi.org/10.1146/annurev.neuro.29.051605.113009
http://www.ncbi.nlm.nih.gov/pubmed/16776597
https://doi.org/10.7554/eLife.10719
http://www.ncbi.nlm.nih.gov/pubmed/26573957
https://doi.org/10.1038/nn.2805
http://www.ncbi.nlm.nih.gov/pubmed/21499254
https://doi.org/10.1016/j.bpsc.2018.03.018
https://doi.org/10.1016/j.neuron.2015.08.037
http://www.ncbi.nlm.nih.gov/pubmed/26494275
https://flybase.org/reports/FBrf0208510.html
https://doi.org/10.1073/pnas.1716612115
http://www.ncbi.nlm.nih.gov/pubmed/29339481
https://doi.org/10.1146/annurev.neuro.30.051606.094256
http://www.ncbi.nlm.nih.gov/pubmed/17417935
https://doi.org/10.1073/pnas.1411087111
https://doi.org/10.1073/pnas.1411087111
http://www.ncbi.nlm.nih.gov/pubmed/25157152
https://doi.org/10.1016/j.neuron.2006.11.021
https://doi.org/10.1016/j.neuron.2006.11.021
http://www.ncbi.nlm.nih.gov/pubmed/17196534
https://doi.org/10.1523/JNEUROSCI.5333-07.2008
http://www.ncbi.nlm.nih.gov/pubmed/18354013
https://doi.org/10.1016/j.cub.2015.07.015
http://www.ncbi.nlm.nih.gov/pubmed/26299514
https://doi.org/10.1016/j.cell.2005.02.004
https://doi.org/10.1038/nn.3827
http://www.ncbi.nlm.nih.gov/pubmed/25262493
https://doi.org/10.1038/nature04381
http://www.ncbi.nlm.nih.gov/pubmed/16452971
http://www.ncbi.nlm.nih.gov/pubmed/16452971
https://doi.org/10.7554/eLife.48730
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