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Abstract

The interstitial lung diseases (ILDs) are a group of progressive disorders characterized by chronic 

inflammation and/or fibrosis in the lung. While some ILDs can be linked to specific environmental 

causes (i.e. asbestosis, silicosis), in many individuals no culprit exposure can be identified; these 

patients are deemed to have “idiopathic interstitial pneumonia”, or IIP. Family history is now 

recognized as the strongest risk factor for IIP, and IIP cases that run in families comprise a 

syndrome termed “Familial Interstitial Pneumonia” (FIP). Mutations in more than 10 different 

genes have been implicated as responsible for disease in FIP families. Diverse ILD clinical 

phenotypes can be seen within a family, and available evidence suggests underlying genetic risk is 

the primary determinant of disease outcomes. Together, these FIP studies have provided unique 

insights into the pathobiology of ILDs, and brought focus on the unique issues that arise in the 

care of patients with FIP.
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Introduction

The diffuse parenchymal lung diseases (DPLDs, also commonly referred to as interstitial 

lung diseases, ILDs) are a group of disorders characterized by subacute or chronic 

inflammation and/or fibrosis in the lung.1 Patients with ILD typically present with 

symptoms of cough and/or dyspnea, which frequently progresses over time. There are 

numerous different risk factors that have been linked to different forms of ILD, including 

occupational and environmental exposures, systemic diseases, and more recently, genetic 

risk factors.2 Family history is now recognized as the strongest risk factor for ILD,3 and 

candidate gene-based, linkage, and next-generation sequencing-based approaches have now 

implicated mutations in more than 10 different genes as responsible for disease families with 

ILD. Studies of families with ILD (Familial Interstitial Pneumonia, FIP) have provided 
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unique insights into the pathobiology of ILDs, and brought focus on the unique issues that 

arise in the care of patients with FIP.

Epidemiology

The syndrome of FIP is defined by the presence of ILD among two or more closely related 

individuals, including at least one family member with an idiopathic interstitial pneumonias 

(IIPs).4,5 The earliest reports of interstitial lung disease clustering in families dates to the 

early 1950’s, with a report by Peabody and colleagues described idiopathic pulmonary 

fibrosis in twin sisters.6 Through the following several decades, there were scattered reports 

of familial ILD,7–10 but it was generally believed these families were quite rare. As of the 

early 2000’s, it was generally believed that FIP reflected a very small subset of patients with 

ILD, with most estimates ranging from 2–5%.11,12 Several more recent studies employing 

intensive ascertainment strategies have reported that approximately 20% of ILD patients 

report a family history of ILD at referral centers in Mexico,3 the United States,13 and 

Canada.14 An important limitation of studies to date is a focus on populations of European 

ancestry; while case reports of FIP in populations of non-European ancestry are common, 

there have been no large-scale studies estimating the prevalence of FIP in a non-European 

population.

Clinical considerations

Among unselected FIP patients, clinical features including age at diagnosis, histopathologic 

patterns, and disease progression are generally similar to those seen in patients with 

“sporadic” forms of ILD.4 While usual interstitial pnuemonia (UIP) is the most common 

ILD phenotype in FIP kindreds, 50% or more of families have more than one ILD phenotype 

among affected family members.4 In addition, imaging patterns may not conform to typical 

ILD patterns; in one report comparing HRCT images from FIP and sporadic ILD patients, 

more than 50% of FIP HRCT images did not fit UIP or nonspecific interstitial pnuemonia 

(NSIP) criteria, related in part to a relative increase in apical and mid-lung involvement.15

The evaluation of patients with suspected FIP should focus on features that may suggest a 

specific genetic diagnosis. While the majority of FIP cases occur in middle-aged and older 

adults, it has become clear through time that FIP presentations can occur across the lifetime, 

ranging from the neonatal period to late adulthood. As described below, mutations in genes 

related to surfactant biology in have been linked to diverse presentations of ILD in children 

and adults within a family.16,17 A focused family history specifically inquiring about 

neonatal respiratory distress or neonatal death is advised evaluating all suspected cases of 

FIP. A personal or family history of unexplained chronic liver disease, bone marrow disease, 

or early greying suggests a potential short-telomere syndrome.18,19 The presence of 

abnormal bleeding and/or ocular albinism in a family should raise suspicion for Hermansky-

Pudlak Syndrome.20,21 Hypothyroidism alone or in combination with movement disorders 

may suggest “brain-lung-thyroid syndrome” associated with mutations in the transcription 

factor NKX2–1.22,23 Interstitial lung disease associated with pulmonary hemorrhage and/or 

highly elevated autoantibodies may suggest a COPA mutation.24
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Genetics of FIP

Kindreds with FIP most commonly involve multiple affected individuals across successive 

generations, consistent with an autosomal dominant inheritance pattern with incomplete 

penetrance,4,25 although in rare cases, X-linked26 and recessive27,28 disease patterns have 

been described. An autosomal dominant inheritance pattern indicates that a single copy of a 

mutant allele (a heterozygous variant) may be sufficient to confer disease risk. Consequently, 

most familial studies investigating genetic risk for FIP have focused on rare variants (RVs) 

with very low frequency in the general population (minor allele frequency <0.001 or lower). 

Studies to date have implicated rare genetic variants in more than 10 genes in FIP kindreds 

(Table 1). FIP genes identified to date comprise into two distinct groups: 1) genes related to 

surfactant production or processing, and 2) telomere-related genes.

Surfactant-related genes

In 2001, Nogee and colleagues reported the first recognized genetic cause of FIP; in this 

case a heterozygous mutation in the gene encoding for surfactant protein-C (SFTPC) in a 

mother and infant with NSIP and desquamative interstitial pneumonia (DIP), respectively.17 

This was soon followed by a report of a different SFTPC mutation in a very large multiplex 

kindred including adults with UIP pattern.16 Subsequent studies indicated that SFTPC 
mutations are a rare cause of FIP29–31 outside selected populations influenced by founder 

effects,14,32 and very uncommon among ILD patients outside the context of FIP.31,33–35

The implication of SFTPC mutations in FIP led to a search for mutations in other genes 

related to surfactant biology in FIP kindreds. These studies have led to reports of mutations 

in the gene encoding for surfactant protein A2 (SFTPA2)36,37 and surfactant protein A1 

(SFTPA1)38,39 in FIP kindreds. There are also a number of reports of FIP kindreds 

heterozygous for rare genetic variants in the gene encoding for ATP-binding cassette 

subfamily member A3 (ABCA3).40,41 These findings are intriguing, although it is not yet 

certain that heterozygous ABCA3 variants alone are sufficient to confer FIP risk. Biallelic 

ABCA3 mutations cause severe and often fatal neonatal respiratory distress syndrome,42,43 

with severity of neonatal phenotypes closely associated with degree of retained ABCA3 

enzymatic activity.42 The reported ABCA3 variants are found at low, but detectable 

frequency in the general population, and studies to date have not yet been large enough to 

determine whether ABCA3 RVs are statistically overrepresented in FIP kindreds. It may be 

that penetrance of heterozygous ABCA3 variants is influenced by other genetic loci; for 

example, in one family, an ABCA3 RV appeared to influence disease natural history in a 

family carrying the I73T SFTPC mutation.44

Studies using heterologous cell lines and transgenic mouse models indicate that surfactant 

pathway mutations act predominantly through toxic gain-of-function mechanisms. The most 

common of the surfactant mutations, I73T SFTPC, leads to a trafficking defect wherein the 

proprotein is misprocessed, directed to the plasma membrane (rather than secreted), leads to 

alterations in protein quality-control associated with a block in the autophagy pathway.45 

Transgenic mice inducibly expressing this mutation develop a macrophage-rich alveolitis46 

and progressive parenchymal fibrosis.47 In contrast, mutations affecting the BRICHOS 

domain generally lead to failure of proprotein processing, retention and aggregation of the 
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misfolded proprotein in the endoplasmic reticulum, activation of the unfolded protein 

response (UPR).48–53 Severe or prolonged UPR activation then leads to AT2 apoptosis, 

patchy parenchymal inflammation, and fibrotic remodeling.54 A similar phenotype has been 

described in mice homozygous for an Sftpa1 mutation.55 A mouse model expressing an 

Abca3 mutation (Abca3E292V) also develop alveolar inflammation, although surprisingly, 

with aging this is associated with an emphysema-phenotype.56

There is considerable heterogeneity among the clinical features and phenotypes observed in 

families with surfactant-related mutations, ranging from neonatal/pediatric presentations to 

disease detection late in adulthood. The factors responsible for this phenotypic variability 

are not well understood. While there are exceptions, compared to “sporadic” interstitial lung 

disease in adults, adults with surfactant-related mutations tend to have earlier disease onset, 

but progress somewhat more slowly - over the course of decades in some cases. Together, 

these available data indicate while surfactant-related mutations are a rare cause of FIP 

(comprising 1–3% of families), studying these mutations has yielded important insights into 

disease mechanisms with relevance to broad groups of patients with pulmonary fibrosis.
25,51,57 It is not yet clear whether currently approved antifibrotic therapies58,59 have efficacy 

in patients with surfactant mutations, however recent studies demonstrating benefit of 

pirfenidone60 and nintedanib61 in broad groups of ILD patients suggest there is reason to 

consider antifibrotic therapy in the appropriate clinical context. Similar to the approach used 

in cystic fibrosis,62–64 in-vitro models indicate potential benefit of pharmacologic 

chaperones designed to improve trafficking of misfolded proproteins.53,65

Telomere-related genes

Dyskeratosis congenita (DC) is a syndrome characterized by abnormal skin pigmentation, 

oral leukoplakia, and nail dystrophy,66 often accompanied by bone marrow failure, chronic 

liver disease and other multisystem complications. Historically, it was recognized that 

pulmonary fibrosis occurred occasionaly in families with DC.67–70 In the late 1990’s into the 

early 2000’s, linkage studies identified mutations in the three genes related to telomere 

biology in families with DC: dyskerin (DKC1),71,72 telomerase RNA component (TERC),
73,74 and telomerase reverse transcriptase (TERT).70,75

These observations led several groups to test for mutations in telomere-related genes in FIP 

kindreds. In 2007, two independent groups reported heterozygous TERT or TERC mutations 

in 6/7376 and 7/4677 FIP families. These mutations were associated with short peripheral 

blood telomeres and reduced telomerase enzymatic activity, but notably were not exclusively 

found in families with classic DC features. Subsequent studies using candidate gene and 

next-generation sequencing approaches have implicated mutations in the genes encoding for 

DKC1,26,78 TERF1 interacting factor 2 (TINF2),79,80 regulator of telomere elongation 

helicase 1 (RTEL1),29,30,81 poly-A-specific ribonuclease (PARN),30,82 nuclear assembly 

factor 1 (NAF1),83, and zinc finger CCHC-type containing 8 (ZCCHC8),84 in FIP kindreds. 

In contrast to the surfactant pathway, mutations in telomere-related genes generally lead to 

alterations in cellular homeostasis through a haploinsufficiency mechanism. To date, it 

appears that nearly all of the mutations in telomere related genes converge upon a phenotype 

of reduced functional telomerase activity through a variety of different mechanisms. TERT 
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mutations directly lead to reduced catalytic activity of the reverse transcriptase enzyme,76,77 

while TERC mutations reduce levels or impair the function of the RNA template required 

for addition of telomere repeats. DKC1,26,85 PARN,86 NAF1,83 and ZCCHC884 regulate 

RNA stability and are associated with reduced TERC levels. RTEL1 mutations do not 

directly affect telomerase enzymatic activity, but impair unwinding of T-loops, a crucial step 

required for telomerase to physically interact with telomere DNA-sequences.87 In aggregate, 

estimates from across studies suggest that mutations in telomere-related genes are found in 

25–30% of FIP kindreds, and more than 50% of families with short peripheral blood 

telomeres.

While the genetic evidence implicating defects in telomerase to pulmonary fibrosis is strong, 

the mechanisms linking telomere dysfunction to chronic lung disease are not yet well 

understood. The prevailing hypothesis has been that telomerase dysfunction leads to stem 

cell failure in the lung, although direct evidence to support this hypothesis is limited. In the 

lung, telomerase expression and activity is low and cell turnover relatively slow under 

homeostatic conditions,18 and recent single-cell genomic studies have demonstrated only 

rare TERT expressing cells88–92 in control or disease lungs, consequently, it remains unclear 

which cell type(s) are central to mediating disease pathogenesis. Studies using global Tert 
and/or Terc null mice have reported contradictory results with regard to the development of 

spontaneous lung pathology and response to injury.93–98 Several groups have demonstrated 

that deletion of shelterin components (Trf1 or Trf2) in type II alveolar epithelial cells is 

sufficient to trigger a telomere DNA-damage response,95,99,100 leading to chronic 

inflammation and/or progressive fibrosis.

Compared to other FIP patients and ILD patients without a family history, families with 

mutations in telomere related genes appear to develop disease at a somewhat earlier age (5–

10 years younger than IPF trials populations).29,76,77,101,102 A family history of premature 

greying, cryptogenic cirrhosis, or bone marrow dyscrasias (aplastic anemia, myelodysplastic 

syndrome, acute myeloid leukemia) is suggestive of a “short-telomere syndrome.” However, 

it should be noted that some families with mutations in telomere-related genes lack other 

systemic manifestations of short telomere syndromes. Genetic anticipation may be one 

mechanism driving the phenotypic heterogeneity of disease manifestations in these families,
70 although genetic and/or environmental factors also likely contribute.

Diverse imaging and histopathologic disease patterns (ILD phenotypes) have been described 

in patients and families with mutations in telomere-related genes,101–104 and discordant ILD 

phenotypes are commonly observed within the same family.29,101,102 Importantly, the 

available data suggest that disease natural history among patients in these families is similar 

regardless of imaging or histopathologic ILD pattern.101 The efficacy of antifibrotic 

treatments in patients with telomere-related gene mutations is not known. A retrospective 

analysis of patients in the pirfenidone clinical trials suggested a similar, if not larger, effect 

size in IPF patients with the short-telomeres as estimated by whole-genome sequencing35 

compared to those with longer telomeres, however no studies to date have reported genotype 

stratified treatment effects. Due to the risk of occult chronic liver disease, careful monitoring 

of liver function is required in antifibrotic therapies are initiated.
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There are unique considerations around lung transplantation required for patients with 

telomere-related gene mutations. While lung transplant can be successfully performed, 

patients with mutations in telomere-related genes may be at increased risk for complications 

related to immunosuppresion,105,106 and at higher risk for acute rejection.106

Pulmonary fibrosis associated with other systemic disorders

In addition to short telomere syndromes, interstitial lung disease can be a feature of several 

other systemic disorders (Table 2).

Hermansky-Pudlak Syndrome (HPS) is an autosomal-recessive multisystem disorder related 

to defects in lysosomal biogenesis,20 leading to clinical manifestations related to dysfunction 

of lysosomal-derived organelles. HPS is characterized by platelet dysfunction, 

oculocutaneous albinism, and pulmonary fibrosis.20 In the appropriate clinical context, a 

diagnosis of HPS required demonstration of absent dense granules by platelet electron 

microscopy. There are at least 10 different subtypes of HPS caused by mutations in different 

factors related to lysosomal biogenesis and trafficking. Pulmonary fibrosis is highly 

penetrant in patients with HPS1, HPS2, and HPS4, but not other HPS subtypes.20,21 As a 

result, in patients with HPS, genetic testing provides important information as to risk for 

interstitial lung disease, the most life-threatening complication of this syndrome. Two 

clinical trials have tested the antifibrotic pirfenidone in HPS patients;107,108 while these 

studies did not detect differences in their primary endpoints, it is recognized that these 

studies were likely underpowered to detect clinically important effects, and there are now 

reports demonstrating safety and tolerability of long-term pirfenidone therapy in HPS-

associated pulmonary fibrosis.109 HPS has been considered a contraindication to treatment 

with nintedanib due to concern of excess bleeding risk.

“Brain-lung-thyroid syndrome”, a disorder caused by heterozygous mutations in the 

transcription factor NKX2–1,110 is characterized by hypothyroidism, chorea-form movement 

disorders, and respiratory disease. A spectrum of interstitial lung disease phenotypes have 

been described in families with NKX2–1 mutations. The majority of cases have been 

described in pediatric populations, and include neuroendocrine hyperplasia of infancy 

(NEHI),111 pathology similar to surfactant-related disease,112 and pulmonary alveolar 

proteinosis,22,112,113 however there are now multiple reports of interstitial lung disease in 

adults with NKX2–1 mutations.23,113 Corticosteroids, hydroxychloroquine, and 

azithromycin have been used to treat patients with NKX 2–1 mutations, but the efficacy of 

these therapies is not yet established.113

Diffuse lung disease has also been described in families with “COPA Syndrome”, a recently 

described disorder characterized by high-titer autoantibodies, inflammatory arthritis, and 

interstitial lung disease associated with mutations in the gene encoding for coatamer subunit 
alpha (COPA).24 While initial report described pulmonary hemorrhage and/or interstitial and 

ground-glass infiltrates primarily in children,24 several recent reports suggest there may be a 

broader spectrum of ILD-phenotypes associated with COPA mutations.114–117 

Immunsuppressive treatment with corticosteroids and/or other agents is generally 

recommended and beneficial in these patients.24
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Common genetic variation in FIP

Family-based cohort studies have focused primarily on rare genetic variants of large effect in 

families, however common genetic variation also contributes to FIP risk.118–120 The 

available data suggest that common genetic variants linked to IPF risk by linkage118 or 

genome-wide association studies,119 including the MUC5B promoter polymorphism and 

more than 15 additional loci119,121–123 have similar effect sizes in familial and sporadic IPF 

patients.119,120 As common genetic variants follow complex rather than Mendelian 

inheritance patterns, genetic testing for common genetic variants does not currently have a 

role in the clinical evaluation or care of patients with FIP.

Genetic testing

The role of genetic testing in the evaluation of patients and families with FIP is evolving, 

and at present there are no established guidelines for the use of genetic testing in adults with 

interstitial lung disease. There are two primary considerations when considering genetic 

testing in a patient with FIP: 1) What is the likelihood of finding a culprit variant, and 2) 

What, if any, action would result from a positive test?

Detection of a germline risk variant in a patient with FIP has implications not only for the 

patient, but also for siblings, children, and other family members, thus any consideration of 

genetic testing should be performed in coordination with experienced genetic counselors.19 

If testing is performed, testing an affected patient (rather than an unaffected relative) is 

highly recommended in order to determine whether a potentially pathogenic mutation 

segregates with disease within the family. Current estimates suggest that likely or definitely 

pathogenic rare variants are found in 20–30% of unselected FIP patients, thus in the majority 

of patients with FIP, a culprit variant will not be found. As a result, when considering a 

genetic test, it is important to recognize that only a positive result is informative. A negative 

genetic test does not indicate absence of genetic risk. One approach that maximizes the 

likelihood of an informative genetic test is to use clinical features and family history to 

identify patients with a high pretest probability of identifying a culprit variant,19 and to 

restrict testing to genes in which a culprit variant is anticipated. For example, in a 35 year 

old with ILD who has a child with unexplained chronic lung disease, testing for a surfactant-

related mutations would be appropriate. In contrast, this scenario is not suggestive of a short-

telomere syndrome, so testing for mutations in telomere-related genes would likely have low 

utility.

If a genetic test is performed, the American College of Medical Genetics offers guidance as 

to interpretation of variants that are identified.124 In broad terms, a variant may be reported 

as likely pathogenic, a variant of uncertain significance, or likely benign. Variants that lead 

to truncated proteins or null alleles (nonsense variants), variants altering splicing, or 

insertions/deletions may be considered pathogenic in the absence of prior reports of the 

same variant in disease, however missense variations (leading to changes in a single amino 

acid) are more challenging to classify. Many FIP-associated mutations reported to date are 

private (reported in only a single family), thus these variants would be considered variants of 

uncertain significance in the absence of data demonstrating the mutation alters protein 

function. In some cases, functional assays or corroborative measurements (such as 
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measurement of peripheral blood telomere length)19,125 can aid in the interpretation of 

variants of uncertain significance.

There are several scenarios where a genetic test is likely to yield clinically actionable results. 

Among patients with Hermansky-Pudlak Syndrome, genetic testing to determine HPS 

subtype can inform with high confidence whether or not a patient will develop pulmonary 

fibrosis. Patients with COPA mutations appear to respond to immunosuppression, which is 

not recommended for most ILD patients. Detection of a mutation in a telomere-related gene 

has prognostic implications, and may also inform immunosuppression strategies in patients 

who require lung transplantation. A positive genetic test also provides the opportunity for 

subsequent generations to undergo targeted testing. For children of FIP patients, knowledge 

of risk variant status may inform approaches to screening for ILD, and can also influence 

reproductive considerations.

Implications for relatives of FIP patients

It is clear that bloodline relatives of FIP patients are at markedly elevated risk for ILD 

compared to the general population4. With the availability of effective antifibrotic 

therapies58–61,126 that slow disease progression and appear to have similar efficacy in 

patients with relatively preserved pulmonary function,127–129 a compelling case can be made 

for screening and early disease detection strategies for individuals at high risk for disease. 

The timing, modality, and interval for such a strategy remains an area of active investigation.

Data from multiple studies have demonstrated that 10–25% of close relatives of FIP patients 

have detectable early interstitial changes on HRCT despite having no known lung disease,
130–132 and this prevalence increases with age. Among these individuals with early 

interstitial changes, pulmonary function tests (PFTs) including diffusing capacity for carbon 

monoxide are typically normal,130 indicating that PFT-based screening alone is not 

sufficiently sensitive to detect early disease. The MUC5B promoter variant has been 

associated with interstitial lung abnormalities in both families132 and population-based 

cohorts.133–135 A number of peripheral blood biomarkers have been associated with early 

interstitial changes in families131 or general-population based cohorts,136–139 however none 

of these biomarkers are currently approved or available for clinical use. The role of 

environmental exposures as a determinant of disease penetrance and phenotype has not been 

well-studied; identifying modifiable risk factors could enable preventive strategies in high-

risk individuals. Advanced machine-learning and artificial-intelligence-based image analysis 

techniques hold promise for defining high-risk features,132 but it remains to be seen whether 

the use of such techniques can detect subtle evidence of disease progression before 

symptoms or pulmonary function tests change. As longitudinal data become available, there 

will be opportunities to develop individualized models of risk for interstitial lung 

abnormaitiies (ILA) progression integrating genetic information, biomarkers, and 

physiologic measurements.
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Conclusion

It has become clear through the past two decades that pulmonary fibrosis is a heritable 

syndrome, and studies of FIP have yielded new insights into the pathobiology of ILD with 

broad relevance. With increasing evidence indicating that known genetic risk factors for 

sporadic and familial ILD are much more similar than different,35,118–120 considerations that 

inform the approach to and care of patients and families with FIP are likely to become 

increasingly relevant to broad groups of patients with ILD and their families.
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Table 1.

Rare genetic variants linked to FIP

Gene Percent of FIP References

TERT 8–15% 76,77,140

RTEL1 5–7% 29,30,81

PARN 3–5% 30,82

TINF2 <1% 79,80

TERC <1% 76,77

DKC1 <1% 26,78

NAF1 <1% 83

ZCCHC8 <1% 84

SFTPC 2–25% 14,16,32,141,142

SFTPA2 <1% 36,37

SFTPA1 <1% 38,39

ABCA3 <1% 40,41

Unknown 70–80%
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Table 2.

Monogenic syndromes associated with ILD

Syndome Genes associated Key Clinical Features

Surfactant-related SFTPC, SFTPA1, SFTPA2, ABCA3

Neonatal respiratory distress syndrome

Waxing-and-waning ground glass and 
reticulation

Diagnosis at <1 year to >70 years

Short telomere TERT, RTEL1, PARN, TERC, NAF1, TINF2, DCK1, 
ZCCHC8

Premature greying (early 20’s or younger)

Cryptogenic cirrhosis

Macrocytosis

Bone marrow dyscrasias (aplastic anemia, MDS, 
AML)

Brain-lung-thyroid NKX2–1

Movement disorders

Hypothyroidism

NEHI

COPA COPA

Inflammatory arthritis

Elevated autoantibodies

Pulmonary hemorrhage

Interstitial and ground glass infiltrates

Hermansky-Pudlak Syndrome HPS1, AP3B1, HPS3, HPS4, HPS5, HPS6, DNTBP1, 
BLOC1S3, BLOC1S6, AP3D1

Bleeding diathesis - platelet dysfunction

Oculocutaneous albinism

Pulmonary fibrosis (subtypes 1, 2, 4)

Bold indicates HPS genes associated with pulmonary fibrosis
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