
Yang, Sci. Adv. 2020; 6 : eaaz4037     27 May 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

1 of 11
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Transmission dynamics of and insights from the  
2018–2019 measles outbreak in New York City: 
A modeling study
Wan Yang*

In 2018–2019, New York City experienced the largest measles outbreak in the United States in nearly three 
decades. To identify key contributing factors, we modeled the transmission dynamics of this outbreak. Results 
indicate that delayed vaccination of 1- to 4-year-olds enabled the initial spread and that increased infectious 
contact, likely via “measles parties,” facilitated later transmission. We found that around half of infants were 
susceptible by age 1 and thus had many infections. Without the implemented vaccination campaigns, numbers 
of infections and hospitalizations could have been >10 times higher and would predominantly affect those 
under 4. These results suggest that a first vaccine dose before age 1 and the second dose before age 4 could 
allow parents to vaccinate and protect children more effectively should a high level of vaccine hesitancy persist. 
Enhanced public health education is needed to reduce activities that unnecessarily expose children to measles and 
other infections.

INTRODUCTION
Measles is a highly contagious and severe viral disease. Thanks to 
an effective vaccine and high coverage of vaccination, endemic 
transmission of measles—i.e., continuous transmission for more than 
12 months—in the United States was declared eliminated in 2000. 
However, because of vaccine hesitancy and declining vaccination rate, 
in recent years there have been an increasing number of large out-
breaks following introduction of measles infection (1). Because of 
long-term fluctuations in vaccine coverage and infection history, 
population susceptibility could vary substantially by age group. This 
susceptibility disparity by age can further interact with age-specific 
social connectivity (i.e., contact rate) to shape the epidemic trajectory. 
As such, understanding these detailed population characteristics and 
their impact on transmission dynamics in the recent outbreaks is 
important for devising timely and effective intervention strategies.

In the fall of 2018, several New York City (NYC) residents ac-
quired measles while traveling abroad and subsequently led to the 
largest measles outbreak in the United States in nearly three decades. 
The first case of this outbreak developed a rash on 30 September 2018, 
and by 3 September 2019 when the outbreak was declared over, there 
have been 649 confirmed cases, largely occurring in an Orthodox 
Jewish community (2, 3). To contain the outbreak, the NYC De-
partment of Health and Mental Hygiene (DOHMH) launched 
extensive vaccination campaigns and, on 9 April 2019, ordered 
mandatory vaccination of all individuals living, working, or going 
to school in the affected zip codes. As a result, over 32,000 individ-
uals under 19 years were vaccinated with the measles, mumps, and 
rubella (MMR) vaccine during October 2018 to July 2019, and the 
outbreak subsided (3, 4).

In this study, we model the transmission dynamics of this mea-
sles outbreak in the affected Orthodox Jewish community in NYC 
from 1 October 2018 to 31 July 2019, months with more than one 
measles cases reported. Using an age-structured model inference 
framework, we are able to estimate key epidemiological features, 

including the initial susceptibilities in five different age groups 
(i.e., <1, 1 to 4, 5 to 17, 18 to 49, and 50+ years) and the basic repro-
ductive number R0, infer key factors contributing to the spread of 
measles, estimate the proportions of infection attributable to each 
age group, and assess the impact of vaccination campaigns. We also 
discuss the implications of our findings to current measles vaccina-
tion policies.

RESULTS
Overview of the measles outbreak and model fit
The measles outbreak started on 30 September 2018, when a young 
child developed a rash. It evolved relatively slowly in the first 3 months; 
however, the outbreak took off quickly in early 2019, peaked in April 
after the city declared a public health emergence, and recorded a 
total of 649 cases by 31 July 2019. As shown in Fig. 1A, age-grouped 
incidence, estimated on the basis of health reports/alerts (3, 5), peaked 
first in March 2019 among 1- to 4-year-olds—the age group with 
the largest number of infection (275 cases or 42.8% of the total, as of 
6 August 2019 at the time of this study; same as below), followed by 
<1-year-olds (100 cases or 15.6%) and 5- to 17-year-olds (138 cases 
or 21.5%) in April 2019, and 18+-year-olds (129 cases or 20.1%) 
in May 2019. It is also evident from Fig. 1B that infants <1 year 
and young children 1 to 4 years were the most affected during this 
outbreak.

As shown in Fig. 2 and table S1, our model inference system (see 
Materials and Methods) was able to recreate the overall incidence 
curve during October 2018 to July 2019, estimate the overall age 
distribution of measles cases, and recreate the estimated age-grouped 
incidence curves for all age groups. Note that while our model 
(Eq. 1) divided 18+-year-olds into two subgroups (i.e., 18 to 49 and 
50+ years) given their differences in contact rates and interactions 
with other age groups, we present the combined results here because 
data were only available for the entire age group. The estimated 
reporting rate was around 90% throughout the study period and 
slightly lower in April 2019, at the peak of the outbreak [mean, 
89.1%; 95% credible interval (CrI), 79.4 to 99.2%; same as below, 
unless stated otherwise; fig. S1].
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Fig. 1. Epidemic curve. (A) Monthly incidence and (B) incidence rate (i.e., cases per 100,000 population) for all ages and by age group. The solid line (y axis on the right) 
shows monthly numbers for all ages, reported as of 6 August 2019. For comparison, bars (y axis on the left) show monthly numbers for <1-year-old (blue), 1- to 4-year-olds 
(red), 5- to 17-year-olds (yellow), and 18+-year-olds (gray), respectively, estimated on the basis of health reports. The x axis shows time in month (yy/mm).

Fig. 2. Model fit. Box plots show estimates of monthly incidence for all ages (A), percentage of cases reported in each age group (B), and monthly incidence for <1-year-olds 
(C), 1- to 4-year-olds (D), 5- to 17-year-olds (E), and 18+-year-olds (F). Results are pooled over all 10 model inference runs (each with 10,000 and in total 100,000 model 
realizations). Horizontal thick lines show the median of model estimates; box edges show the 25th and 75th percentiles; whiskers show the 2.5th and 97.5th percentiles; 
and dots show outliers. Stars (*) in (A) and (B) show monthly incidence for all ages and the age distribution, reported as of 6 August 2019; crosses (×) in (C) to (F) show 
age-grouped monthly incidence estimated from health reports. The x axis shows time in month (yy/mm).
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Inference of key epidemiological characteristics
The model inference system estimated that, at the beginning of 
the outbreak (i.e., September 2018), susceptibility was the highest in 
infants, at approximately 53.2% (95% CrI, 49.0 to 57.5%; Fig. 3A). 
This pattern was expected because maternal immunity wanes within 
3 to 9 months after birth and, as a result, by their first birthday—the 
age eligible to receive the first dose of MMR vaccine in the United 
States—almost all infants have lost their maternal immunity and 
are susceptible to measles. Young children aged 1 to 4 years had the 
second highest susceptibility; approximately 24.9% (95% CrI, 20.4 
to 29.7%) were susceptible. In comparison, susceptibility was lower 
among both 5- to 17-year-olds (6.0%; 95% CrI, 4.1 to 7.9%) and 
18+-year-olds 6.0% (95% CrI, 4.4 to 7.6%; Fig. 3). These estimates 
were consistent with the observation that all cases recorded in 
October 2018 were children ranging from 11 months to 4 years 
(2). Sensitivity analysis on assumptions related to the vaccination 
campaigns showed that estimated susceptibilities were slightly higher 
for 5- to 17-year-olds (7.5%; 95% CrI, 5.1 to 9.9%) and 18- to 
49-year-olds (7.9%; 95% CrI, 5.2,to 9.9%) if more vaccine doses were 
given to the Jewish Orthodox community or to 5- to 17-year-olds; 
however, the estimates were in general consistent with the baseline 
scenario (table S1).

The initial vaccination campaigns launched promptly afterward 
lowered susceptibility to 40.3% (95% CrI, 36.4 to 44.0%) in in-
fants and 13.9% (95% CrI, 9.7 to 18.7%) in 1- to 4-year-olds by 
the end of December 2018 (Fig. 3). These efforts, along with other 
transmission and infection controls (2), appeared to effectively 
contain the outbreak at the time. The effective reproductive number 

(Re) is a key epidemiological parameter reflecting the potential of an 
infection to cause an epidemic in a partially immune population; an 
epidemic is possible when Re > 1. The estimated Re was 1.5 (95% CrI, 
0.7 to 2.9) in October 2018 and dropped to around 1 (95% CrI, 0.7 
to 1.5) in December 2018 (Fig. 4B).

The outbreak, however, took off again in early 2019 (Fig. 1). The 
estimated Re increased and remained above 1 in the first 3 months 
of 2019 (Fig. 4B). In a perfectly mixed model, Re is computed as 
the product of the basic reproductive number R0 and population 
susceptibility. In particular, the basic reproductive number R0 mea-
sures the transmissibility of an infection in a fully susceptible popu-
lation; for measles, while often reported in the range of 12 to 18, R0 
could vary from 1.4 to 770 (6). In this study, we estimated that R0 
was approximately 7 during the entire outbreak (Fig. 4A). If popu-
lation susceptibility, the other factor for Re, were to increase in a close 
population (i.e., without migration), it could only do so slowly as in-
fants lose maternal immunity. Thus, these two factors alone could 
not explain the sudden large increase in Re (Fig. 4B). In this study, 
we used an age-structured model that enables more detailed analysis 
of the transmission dynamics. Our model inference system detected 
an increase in contact rate among 1- to 4-year-olds during January 
to March 2019 (Fig. 4D); this increased contact rate along with 
the high susceptibility among 1- to 4-year-olds appeared to raise Re 
above unity (Eq. 5 in Materials and Methods) and contribute to the 
resurge of measles in early 2019. This finding was also consistent 
with reports of parents hosting “measles parties” to expose unvac-
cinated children at the time (7) (see further analysis below in the 
“Estimated impact of measles parties on outbreak magnitude” section). 

Fig. 3. Estimated changes in population susceptibility. Red lines and surrounding regions (y axis on the left) show the mean and 50 and 95% CrIs of estimates pooled 
over all 10 model inference runs (100,000 model realizations in total) for <1-year-olds (A), 1- to 4-year-olds (B), 5- to 17-year-olds (C), and 18+-year-olds (D), respectively, 
at the end of each month from September 2018 to July 2019. The initial susceptibilities, estimated at the end of September 2018, were computed by adding the total 
numbers of individuals immunized by the vaccination campaigns in October 2018 to the posterior estimates at the end of October 2018. For comparison, the gray bars 
(y axis on the right) show estimated numbers of individuals immunized during the vaccination campaigns; note that the vaccination campaigns targeted individuals 
under 19 years and thus is not shown for 18+-year-olds.
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In contrast, estimated contact rates were relatively stable for other 
age groups (e.g., Fig. 4, E and F, for 5- to 17-year-olds and 18- to 
49-year-olds, respectively). As a result, infections increased quickly 
among 1- to 4-year-olds (Figs. 1 and 4D), reaching a peak of around 
80 cases in March 2019. Meanwhile, infections also increased in 
other age groups including 5- to 17-year-olds and 18+-year-olds 
despite their low overall susceptibilities, due to interactions between 
age groups (fig. S1) and the high contact rates in these groups 
(Fig. 4, E and F).

The outbreak began to decline in April 2019, following more 
stringent public health interventions (3, 4). In particular, the model 
estimated that, thanks to extensive vaccination campaigns, suscep-
tibility was reduced to 22.8% (95% CrI, 19.3 to 26.0%) in <1-year-
olds, 4.3% (95% CrI, 0.5 to 8.9%) in 1- to 4-year-olds, and 2.4% 
(95% CrI, 0.4 to 4.4%) in 5- to 17-year-olds at the end of May 2019. 
Consequently, the effective reproductive number Re dropped below 
1 from April 2019 onward.

Who acquired infection from whom?
Table 1 shows the estimated proportions of infections caused by 
each of the five age groups based on the estimated who-acquires-
infection-from-whom (WAIFW) contact matrix (Eq. 2 in Materials 
and Methods). Children aged 1 to 4 years not only had the largest 
number of infections (42.8%) but also appeared to cause the 
largest number of infections in other age groups. Tallied over the 
entire study period (October 2018 to July 2019), an estimated 51.6% 
(95% CrI, 39.3 to 63.1%) of the total cases were infected by 1- to 

4-year-olds, compared with 25.2% (95% CrI, 15.8 to 35.5%) by 5- to 
17-year-olds, 17.7% (95% CrI, 10.4 to 26.5%) by 18- to 49-year-olds, 
4.5% (95% CrI, 3.0 to 6.4%) by <1-year-olds, and 1.0% (95% CrI, 
0.4 to 1.8%) by 50+-year-olds. In particular, 1- to 4-year-olds 
caused around half of the infections in infants (44.6% or 45 cases) 
and the largest proportions of intergroup transmission to other 
age groups (ranging from 12.9% to 5- to 17-year-olds to 40.1% to 
50+-year-olds; Table 1). 

Estimated impact of “measles parties” on  
outbreak magnitude
As reported above, our model inference suggests that increases in 
infectious contact among 1- to 4-year-olds in early 2019, likely 
linked to parents hosting “measles parties” to expose unvaccinated 
children at the time (7), could have led to the second, larger wave 
of the measles outbreak. To examine this impact further, we used 
the model and parameter estimates to simulate potential outbreaks 
should there be no increases in the contact rate among 1- to 4-year-olds 
(i.e., if there had been no measles parties) in early 2019. Figure 5 (A 
to E) shows the simulated outbreak outcomes. The model was able 
to recreate the outbreak trajectories during the first 3 months (i.e., 
October to December 2018) using parameters estimated for the out-
break. However, the simulated numbers of cases (Fig. 5A for all ages 
combined and Fig. 5, B to E, for individual age groups) were much 
lower than those observed in spring 2019, when setting the con-
tact rate among 1- to 4-year-olds alone to the same level as esti-
mated for 2018. In particular, the simulations showed that the high 

Fig. 4. Estimates of key model parameters. (A) the basic reproductive number, (B) the effective reproductive number, (C) infectious period, (D) relative contact rate 
among 1- to 4-year-olds, (E) relative contact rate among 5- to 17-year-olds, and (F) relative contact rate among 18- to 49-year-olds. Red lines and surrounding regions 
(y axis on the left) show the mean and 50 and 95% CrIs of estimates pooled over all 10 model inference runs (100,000 model realizations in total) made at the end of each 
month from October 2018 to July 2019. For comparison, the gray bars (y axis on the right) show monthly incidence for all ages (A to C) or the related age groups (D to F).



Yang, Sci. Adv. 2020; 6 : eaaz4037     27 May 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

5 of 11

incidence in 1- to 4-year-olds as observed in February and March 
2019 would be unlikely without the increased contact in this age 
group—the observed numbers were outside the 95% confidence 
interval (CI) of the simulated (Fig. 5C). Similarly, it would be 
unlikely to observe the high incidence in spring 2019 in other age 
groups without the increased contact among 1- to 4-year-olds (e.g., 
the observed numbers were outside the 95% CI of the simulated 
for <1 year-olds in March 2019 as shown in Fig. 5B and for 5- to 
17-year-olds in April 2019 as shown in Fig. 5D). Tallied over the 
entire outbreak period, had there been no increased infectious 
contact among 1- to 4-year-olds, the total number of cases would 
be 152 [median; interquartile range (IQR), 12 to 492; 95% CI, 5 to 
1246], less than a quarter of the observed (i.e., 642 cases reported as 
of 6 August 2019; Table 2 and table S2). 

Estimated impact of vaccination campaigns
Figure 5 (F to J) shows the estimated outbreak outcomes had there 
been no vaccination campaigns. Without the vaccination campaigns, 
the model estimated that the outbreak could continue to the end of 
2019 and infect a total of 7871 [median; IQR, 7104 to 8137; 95% CI, 
5 to 8478] people by then or 7810 (median; IQR, 6480 to 8089; 95% 
CI, 5 to 8433) during the observed outbreak period (i.e., October 2018 
to July 2019), compared with 642 cases reported as of 6 August 2019. 
In addition, these infections would largely occur in infants under 1 
and young children aged 1 to 4 years. During the observed outbreak 
period, there would be 1302 (median; IQR, 1062 to 1358; 95% CI, 
0 to 1430) infections in infants and 3914 (median; IQR, 3596 to 
4000; 95% CI, 2 to 4096) infections in 1- to 4-year-olds, more than 
13 times of the reported numbers in these two age groups (i.e., 100 
and 275, respectively, as of 6 August 2019; Table 2 and table S2). 
Children aged 5 to 17 years would have the third largest number 
of infections, with 1412 (median; IQR, 897 to 1534; 95% CI, 
1 to 1692) cases, 10 times of the reported number (i.e., 138 as of 
August 6, 2019).

Measles infection can lead to severe complications requiring 
hospitalization. According to data by 24 April 2019, among 390 
individuals with measles, 29 were hospitalized, of which 6 needed 
intensive care (8). Assuming the same ratios among all cases, with-
out the vaccination campaigns, during the observed outbreak period, 
there would have been 581 (median; IQR, 482 to 601; 95% CI, 0 to 628) 
hospitalizations, including 120 (median; IQR, 100 to 124; 95% CI, 
0 to 130) needing intensive care, and the majority of such hospital-
izations would be in young children under 4 (Table 2 and table S2).

DISCUSSION
Using a model inference system, we have reconstructed in detail the 
transmission dynamics of the measles outbreak in an Orthodox 
Jewish community in NYC during October 2018 to July 2019. We 
have estimated the population characteristics (e.g., age-specific 
susceptibilities) and epidemiological parameters (e.g., reproductive 
numbers) as well as subtle changes in key parameters (e.g., contact 
rates) that are critical to the transmission of measles. In particular, 
our analyses indicate that, in addition to delayed vaccination, in-
creased infectious contact among young children likely due to “mea-
sles parties” was a key factor behind this large measles outbreak and 
thus should be avoided in the future. Using model simulation and 
the posterior estimates from the model inference system, we are also 
able to estimate the impact of vaccination campaigns implemented 
during the outbreak, including numbers of infections and hospital-
izations averted, for each age group. These latter findings echo 
those from previous studies (9–11) and again highlight the severity 
of measles disease should there be no effective infection and trans-
mission controls (in particular, vaccination).

Our analyses estimate that around a quarter of young children 
aged 1 to 4 in the affected community were susceptible at the onset 
of the outbreak, likely due to delayed vaccination. Ninety-four percent 
(101 of 108) of the early infections in children were unvaccinated (12). 
In contrast, vaccination rate remained high in older children 5 to 
17 years, with an estimated 94% immune to measles. This difference 
may be due to better compliance with vaccination regulation at school 
entry or a result of vaccination campaigns in response to previous 
outbreaks [e.g., a large outbreak occurred in the same community 
in 2013 (13)]. Nevertheless, the large number of unvaccinated chil-
dren under 4 was sufficient to cause many infections in late 2018, 
predominantly in the same age group [Fig. 1 and (2, 12, 14)]. This 
observation highlights the importance of vaccination compliance with 
both MMR vaccine doses, especially given the long lag between the 
two vaccine doses. In addition, recommending the second MMR dose 
earlier than the currently scheduled age 4 to 6 years could allow 
parents to fully vaccinate their children sooner and reduce the number 
of susceptible children overall.

Our study also reveals the intricate interplay of population dynamics 
and measles transmission. While the high susceptibility in children 
under 4 was likely responsible for the early spread of measles, our 
estimates suggest that the second and more severe part of the out-
break in 2019 was likely due to increased infectious contact among 
this age group, likely facilitated by parents hosting “measles parties” 
that intentionally bring unvaccinated children together and expose 
them to those sick with measles (7). As shown in Fig. 4, the increase 
in infectious contact interacting with the high susceptibility in 1- to 
4-year-olds was able to raise the effective reproductive number Re to 
above unity—the threshold for an epidemic to occur—and aggravate 

Table 1. Estimated proportion of infections caused by each age 
group. Rows show the receiving (i.e., infectee) age groups, and columns 
show the sources of infection (i.e., infector age groups). The numbers are 
the mean (95% CrI) estimates in percentage. For instance, for <1-year-olds 
(top row), on average, 16.3% of cases were infected by the same age 
group, 44.6% by 1- to 4-year-olds, 20.9% by 5- to 17-year-olds, 15.2% by 
18- to 49-year-olds, and 3% by 50+-year-olds. 

Infectee 
age 
groups

Infector age groups

<1 year 1–4 
years

5–17 
years

18–49 
years

50+ 
years

<1 year 16.3 
(12.3–21.0)

44.6 
(35.5–53.5)

20.9 
(13.9–28.4)

15.2 
(9.6–21.6)

3.0 
(1.4–5.0)

1–4 years 1.8 
(1.0–3.0)

85.8 
(77.0–91.9)

7 
(3.2–12.9)

5 
(2.2–9.3)

0.3 
(0.1–0.6)

5–17 years 1.5 
(0.9–2.4)

12.9 
(6.9–21.3)

80.9 
(70.4–88.4)

4.4 
(2.0–8.0)

0.3 
(0.1–0.5)

18–49 years 2.4 
(1.5–3.7)

18.6 
(10.9–28.0)

9.1 
(4.8–14.9)

69.5 
(56.2–80.8)

0.4 
(0.2–0.8)

50+ years 15.5 
(11.6–19.9)

40.1 
(31.1–49.3)

19.7 
(13.0–27.0)

15.6 
(9.7–22.4)

9.1 
(3.8–16.3)
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the outbreak in 2019, despite earlier public health efforts that had 
reduced Re to below 1 in late 2018. Model simulations (Fig. 5, A to E) 
further support this finding, showing that the high incidence as 
observed in spring 2019 would be unlikely had there been no in-

creases in infectious contact among 1- to 4-year-olds (i.e., if there 
had been no measles parties). Similar disease-related gatherings have 
been noted in previous measles outbreaks (15) and other disease 
outbreaks (16). These activities create further challenges to the 

Fig. 5. Estimated negative impact of measles parties and positive impact of vaccination campaigns. Top row: Simulated estimates of monthly incidence, should 
there be no measles parties, for all ages (A), <1-year-olds (B), 1- to 4-year-olds (C), 5- to 17-year-olds (D), and 18+-year-olds (E). Bottom row: Simulated estimates of monthly 
incidence, should there be no vaccination campaigns, for all ages (F), <1-year-olds (G), 1- to 4-year-olds (H), 5- to 17-year-olds (I), and 18+-year-olds (J). Results are pooled 
over 10,000 model simulations. Horizontal thick lines show the median of model estimates; box edges show the 25th and 75th percentiles; whiskers show the 2.5th and 
97.5th percentiles; and dots show outliers. For comparison, stars (*) in (A) and (F) show monthly incidence for all ages, reported as of 6 August 2019; crosses (×) in (B) to 
(E) and (G) to (J) show age-grouped monthly incidence estimated from health reports.

Table 2. Estimated negative impact of measles parties and positive impact of vaccination campaigns during October 2018 to July 2019. Column 2 
shows the observed numbers of cases, reported as of 6 August 2019. Column 3 shows the estimated numbers of cases if there had been no measles parties. 
Columns 4 to 6 show the estimated total numbers of cases (fourth column), hospitalizations (fifth column), and individuals in intensive care unit (ICU) for 
different age groups (rows 3 to 6) and overall (last row), if there had been no vaccination campaigns. Columns 7 to 9 show the estimated numbers of cases, 
hospitalizations, and ICU cases averted by the vaccination campaigns. Numbers are the median (IQRs) of 10,000 simulations. See table S2 for the median and 
95% CIs of the simulated estimates. 

Age 
group

No. of cases 
reported

No. of cases, 
if no measles 

parties

No. if no vaccination campaigns No. averted by vaccination campaigns

Cases Hospitalizations ICU cases Cases Hospitalizations ICU cases

<1 100 26 (2–81) 1302 
(1062–1358) 97 (79–101) 20 (16–21) 1202 

(962–1258) 89 (72–94) 18 (15–19)

1–4 275 62 (5–193) 3914 
(3596–4000) 291 (267–297) 60 (55–62) 3639 

(3321–3725) 271 (247–277) 56 (51–57)

5–17 138 26 (1–110) 1412 
(897–1534) 105 (67–114) 22 (14–24) 1274 

(759–1396) 95 (56–104) 20 (12–21)

18+ 129 29 (2–102) 1141 
(907–1218) 85 (67–91) 18 (14–19) 1012 

(778–1089) 75 (58–81) 16 (12–17)

All 642 152 (12–492) 7810 
(6480–8089) 581 (482–601) 120 (100–124) 7168 

(5838–7447) 533 (434–554) 110 
(90–115)
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control of measles spread and stress the need for enhanced public 
health education.

In addition, the intensified measles outbreak affected not only 
children with delayed vaccination but also a large number of infants 
under 1, who were too young to receive their first dose of MMR 
vaccine in the United States. At least 100 infants under 1 were in-
fected with measles during the 10-month outbreak period, despite 
extensive infection and transmission control efforts, including 
vaccinating infants 6 months or older and postexposure prophylaxis 
with immune globulin given to those under 6 months (2, 14). This 
was largely a result of the high susceptibility in infants. Our model 
inference system estimates that about half of infants were susceptible 
by age 1 and that nearly half of the 100 infant cases were infected 
by 1- to 4-year-olds (Table 1). In addition, our simulations suggest 
that, without the vaccination campaigns, the number of infections 
in infants could have been over 10 times higher than observed 
(Table 2). These findings demonstrate the rippling effects of vaccine 
hesitancy beyond the risk posted to age-eligible children with de-
layed vaccination. These findings also suggest that administration 
of the first dose of routine MMR vaccine earlier than the current 
1-year age limit in the United States may be necessary to protect 
infants should high level of vaccine hesitancy persist. Of note, the 
World Health Organization recommends administering the first 
dose of measles vaccine at 9 to 12 months of age for routine vacci-
nation programs and as early as 6 months for settings such as during 
an outbreak (17).

Our model simulations, consistent with many previous studies 
(11, 15, 18), demonstrate the significant public health impact of vac-
cination in controlling measles outbreaks. Without the implemented 
vaccination campaigns, the severity of the measles outbreak—including 
number of infections, hospitalizations, and severe infections needing 
intensive care—could have been over 10 times worse than observed 
(Table 2). These estimates, however, did not include the long-term 
health impacts on affected individuals, particularly young children 
(10, 19, 20), nor the enormous economic burdens (13, 21, 22).

We note several limitations of our study. First, we did not ex-
plicitly model the impact of public health interventions other than 
the vaccination campaigns, because of a lack of data. During the 
outbreak, such efforts included prescreening patients before pres-
ence for treatment, postexposure prophylaxis, and closing schools 
out of vaccination compliance (2, 12, 14, 23, 24). Of note, however, 
here the estimated basic reproductive number R0 was around 7, 
lower than the 12-to-18 range based on epidemics in the prevaccine 
era (25), and the estimated infectious period was around 4 days 
(Fig. 4C), at the lower end of the commonly used range of 4 to 
6 days (26). The lower R0 and shorter infectious period could be 
a result of the aforementioned public health interventions. Second, 
there were uncertainties in the accuracy of case reporting. Because 
the incidence data used here were published on 6 August 2019, a 
later revision of case reports, we used a relatively high but broad 
prior range for the reporting rate (i.e., 80 to 100%). In addition, our 
model inference system explicitly accounted for observational errors 
(Eqs. 7a and 7b). Third, because of a lack of contact data and for 
simplicity, we set all terms related to group 1 (i.e., <1-year-olds) in 
the WAIFW matrix to the same as the contact rate within the group 
(Eq. 2). This model formulation may have led to underestimation of 
the proportions of infection in <1-year-olds attributable to the same 
age group and/or 1- to 4-year-olds, given the likely more frequent 
contact within the same age group and with similar ages (i.e., 1 to 

4 years here) due to more shared settings such as daycares and 
pediatric hospitals. Fourth, there were uncertainties regarding the 
settings of vaccination campaigns. Nevertheless, sensitivity analysis 
showed that our main estimates were robust to a wide range of as-
sumptions (table S1). Fifth, because of data sparsity (i.e., monthly 
incidence was used), there were uncertainties in our parameter esti-
mates as indicated by the wide 95% CrIs. Future studies may refine 
these estimates should data with finer time resolution (e.g., weekly 
data) become available. Last, while our analyses support that measles 
parties during the outbreak increased infectious contacts among young 
children and worsened the outbreak outcomes, we did not have de-
tailed data to directly assess this impact. Future studies may further 
examine the impact of “measles parties” should relevant data become 
available.

In summary, using a comprehensive model inference system, 
we have reconstructed transmission dynamics of the recent measles 
outbreak in NYC in great detail. Our estimates highlight the impor-
tance of vaccination in protecting children and public health educa-
tion to reduce activities that unnecessarily expose children to the risk 
of measles infection. Further, in light of the persistent vaccine hes-
itancy, revising current vaccination recommendations may allow 
parents to vaccinate and protect their children more effectively.

MATERIALS AND METHODS
The measles outbreak occurred predominantly among members of 
the Orthodox Jewish community in Williamsburg and Borough Park, 
two neighborhoods located in Brooklyn, NYC. As such, we focused 
on modeling the outbreak in this subpopulation. Estimated on the 
basis of the Jewish Community Study of New York (27), approxi-
mately N = 165,970 Orthodox Jews live in these two NYC neighbor-
hoods, of which 4552 (2.7%), 18,208 (11%), 59,176 (35.7%), 60,445 
(36.4%), and 23,589 (14.2%) are <1, 1 to 4, 5 to 17, 18 to 49, and 
50+ years, respectively.

Estimating monthly incidence by age group
Monthly measles incidence aggregated over all ages from Septem-
ber 2018 to August 2019 and the age distribution of case patients 
over the entire outbreak were published on the NYC DOHMH 
website (3). Of note, one case was reported in September 2018 (i.e., 
the initial case), and none were reported in August 2019. In addi-
tion, the numbers of reported cases were subsequently revised by the 
DOHMH (often adjusted upward, presumably from retrospective 
case identification) and, as such, varied over time. In this study, the 
data used for all analyses were accessed on 6 August 2019, with a 
total of 642 cases reported (compared with 649 cases in the final 
reports). To estimate the monthly incidence for each age group, we 
used the age distribution of cases reported in earlier health reports/
alerts (5) to apportion the total incidence for each month. For months 
without age information, we used estimates either from the preced-
ing month or the following month back-calculated from the overall 
age distribution.

Transmission model
The transmission model used here was similar to the one described 
in our previous study (28). As illustrated in fig. S2, the model rep-
resents the susceptible-exposed-infectious-recovered (SEIR) disease 
dynamics with five age groups (i.e., <1, 1 to 4, 5 to 17, 18 to 49, and 
50+ years) to account for population differences by age group (e.g., 
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susceptibility and contact rate), routine two-dose vaccination at 
ages 1 and 5, and immunization during the vaccination campaigns 
as per Eq. 1
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for i = 1,..,5 (Eq. 1), where Si, Ei, Ii, Ri, and Ni are, respectively, the 
numbers of susceptible, exposed (i.e., latently infected), infectious, 
recovered (and/or immunized) people, and population size in the 
i-th age group; M is the number of infants with maternal immunity, 
which decays exponentially with a mean duration of 180 days; and 
t is time in days. Vi(t) is the number of people in group i immunized 
by the vaccination campaigns on day t (described in detail in the 
next section). The exponents m1 and m2 describe the level of inho-
mogeneous mixing (29, 30), and m1 = m2 = 1 represents homogeneous 
mixing. Z and D are the latent and infectious periods, respectively.

To model the different contact rates within and between age 
groups, we used seven parameters for the WAIFW matrix as follows
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where 1 to 5 represent within-group contact for the five age groups, 
and 6 and 7 represent mixing between siblings and child-parent, 
respectively. For simplicity, we set all interactions with group 1 (i.e., 
<1 year) or group 5 (50+ years) to 1, the lowest contact rate. For 
group 3 (5 to 17 years), to capture the varying contact rate following 
school schedules, we adjusted 3 for each date per the school calendar 
in NYC as

	​​ ​ 3​​(t ) = ​  ​​ 3​​ ─ ​b​ term​​ ​ ⋅ [1 + ​b​ 1​​ term(t ) ]​	 (3)

where b1 is the amplitude of school term time forcing; term(t) is set 
to 1 for school days and −1 for non–school days; and bterm is the 
yearly average of 1 + b1term(t) (31).

The basic reproductive number R0, defined as the average number 
of secondary infections caused by a primary case patient in a naïve 
population, reflects the transmissibility of an infection. In an age-
structured model, R0 is computed as

	​​ R​ 0​​  = ​ eigen​ max​​(nD)​	 (4)

where eigenmax(·) denotes the function giving the largest eigenvalue 
of a matrix, and n is a diagonal matrix with elements ni = Ni/∑Ni 

(i = 1, …, 5 here), i.e., the fraction of population in group i. On the 
basis of this relationship between R0 and the  matrix, we reparame-
trized the model to include R0 as a model parameter by setting 1 to 
1 and estimating the relative magnitude of 2 to 7, all scaled to R0. 
In the current mass vaccination era, most people are immune via 
vaccination. To reflect the potential of an infection to cause an epi-
demic in a partially susceptible population, the effective reproductive 
number, Re, accounts for population susceptibility and is computed as

	​​ R​ e​​  = ​ eigen​ max​​(sD)​	 (5)

where s is a diagonal matrix with elements si = Si/Ni (i = 1, …, 5 here), 
i.e., the susceptibility in group i. For both R0 and Re, per (31), we 
further adjusted for the school term time forcing in group 3 (Eq. 3).

To model the demographic processes, k is the birth rate [2.7 per 
1000 person-year here (27)]; v is the immunity level in mothers, 
approximated by the susceptibility of the child-bearing age group 
(i.e., 18- to 49-year-olds); N is the total population size; and 1i = 1 is 
an indicator function, with value 1 for group 1 (<1-year-olds) and 0 
for all other groups. Thus, the term k(1 − v) 1i = 1 (first line in Eq. 1) 
is the number of susceptible newborns, and kvN (last line in Eq. 1) 
is the number of newborns with maternal immunity. The term li is 
the rate of aging for group i (i.e., the inverse of the sojourn time in 
each age group), with l0 set to 0 and l5 set to the death rate. The term 
vi (for i = 1 and 2) is the percentage of susceptible 1-year-olds (en-
tering group 2) immunized after the first vaccine dose and the per-
centage of susceptible 5-year-olds (entering group 3) immunized 
after the second vaccine dose, respectively, and vi is set to 0 for all 
other age groups. In this study, for days before May 2019, we set v1 
to the vaccination rate in group 2 (approximated by 1 − S2/N2) times 
0.9 (i.e., assuming a 90% vaccine efficacy) and v2 to 0.7, such that for 
a 25% susceptibility in group 2, the immunity level among 5-year-
olds would be 1 − (1 − (1 − 0.25)(0.9))(1 − 0.7) = 90%, a plausible 
level before the outbreak. For days afterward, we used 0.72 for v1 
and 0.9 for v2, corresponding to a 1 − (1 − 0.72)(1 − 0.9) = 97% im-
munity level among 5-year-olds.

On the basis of NYC health reports/alerts (2, 12, 14), we seeded 
the model, via the parameter i(t), with three cases in group 2 (i.e., 
1- to 4-year-olds)—one each with rash onset on 30 September, 
15 October, and 30 October 2018, respectively—and one case each in 
group 3 (5- to 17-year-olds) and group 4 (18- to 49-year-olds), both 
during the winter recess (from 24 December 2018 to 1 January 2019).

Modeling the vaccination campaigns
To contain the outbreak, the NYC DOHMH conducted extensive 
vaccination campaigns and administered 31,790 doses of MMR 
vaccine to children under 19 years in Williamsburg and Borough 
Park by July 2019 (3). However, information on the age and im-
mune status of vaccinees was not reported. In this study, per the 
health reports/alters (3, 12), we assumed that there were two phases 
of vaccination campaign: (i) October 2018 to February 2019, during 
which 7000 children, 90% Orthodox Jewish (15% were <1 year, 65% 
were 1 to 4 years, and 20% were 5 to 17 years), were vaccinated; and 
(ii) March to July 2019, during which 24,790 children, 60% Orthodox 
Jewish (10, 40, and 50%, respectively, were <1, 1 to 4, and 5 to 
17 years), were vaccinated. For reference, Orthodox Jews made up 
for approximately 30% of the total population in the two affected 
neighborhoods.



Yang, Sci. Adv. 2020; 6 : eaaz4037     27 May 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

9 of 11

For <1-year-olds, immunization could fail because of residual 
maternal immunity; thus, we assumed an 85% immunization suc-
cess rate for group 1. For those above 1 year, some vaccinees might 
have received one or two doses of vaccine previously, and the higher 
the population susceptibility, the less likely a vaccinee would have 
been immune before the additional vaccine dose. As such, we assumed 
that the immunization success rate was twice the group-specific 
susceptibility for 1- to 4-year-olds and three times that for 5- to 
17-year-olds or at a minimum of 25% and a maximum of 75%. That is, 
the vaccination campaign immunization success rate here accounted 
for vaccinees who had been immunized before the additional vac-
cine dose and thus differed from the vaccine efficacy measured among 
susceptibles (i.e., ~90% for one dose and 97% for two doses). We 
further assumed a 10-day delay in vaccine effect and computed the 
daily number of individuals vaccinated per a gamma distribution 
(mean = 30 days and SD = 21 days for phase 1, and mean = 56 
and SD = 15 days for phase 2, such that it peaked ~1 week after 
9 April 2019 when the city implemented a vaccination mandate). 
The estimated numbers matched with the reports [e.g., 1740 doses 
by our model versus ~1600 doses given to children under 5 as re-
ported (32), and 1142 doses by our model versus ~1000 doses given 
in March 2019 as reported (7, 33)]. These daily numbers were then 
included in the transmission model [i.e., Vi(t) in Eq. 1]. Sensitivity 
to model assumptions was tested, as described below.

Estimation of model state variables and parameters
To estimate the model state variables (i.e., Si, Ei, Ii, Ri, and M) and 
parameters (2 to 7, R0, b1, D, Z, m1, and m2), we fit the model to 
the reported monthly overall incidence and the estimated monthly 
age-grouped incidence using a particle filter (34). Briefly, we first ini-
tialized a suite of model realizations (termed “particles,” N = 10,000 
here) using Latin hypercube sampling (35) from the prior distribu-
tion of state variables and parameters (table S3). The particle filter 
then sequentially incorporated the monthly incidence to the model 
via repeated prediction-update cycles. In each cycle (i.e., each month 
here), the particles were stochastically integrated forward in time 
for a month per the model (i.e., Eq. 1; this generates the prediction). 
To update the model state, including all model variables and pa-
rameters, at the end of each month, the model-estimated incidence 
was aggregated for the month, adjusted by the reporting rate for 
that month (estimated simultaneously by the filter) and used to 
compute the likelihood of each particle (described below). The pos-
terior of model state was then computed using Bayes’ rule (34, 36) 
and the particles resampled and updated—those with high posterior 
probabilities were retained, and those with very low posterior prob-
abilities were discarded.

To allow for a wider observational variance than, e.g., the Poisson 
process, we heuristically modeled the observations using a multi-
variate Gaussian distribution (i.e., the likelihood function)
	​​ Y​ m​​ ∣ r, ​C​ m​​ ~ N(r ​C​ m​​, 𝚺)​	 (6)

where Ym is the vector of monthly incidence reported for month m, 
including the monthly incidence for individual age groups (i.e., <1, 
1 to 4, 5 to 17, and 18+ years; note that 18- to 49-year-olds and 
50-year-olds were combined because of a lack of data for these two 
groups separately) and all ages combined. Correspondingly, Cm is 
the vector of monthly incidence estimated by the model, and r is the 
reporting rate and, for simplicity, assumed the same for all ages. Σ is 
the covariance matrix, with the off-diagonal terms set to 0. To ac-

count for uncertainties in the estimated age-grouped incidence, the 
variance (Σii, i = 1, …,4) for each of the four aforementioned age 
groups was heuristically computed as

	​​ Σ​ ii,m​​  =  100 + ​ 
​​(​​​∑ m​ m−2 ​​ ​Y​ m​​ / 3​)​​​​ 

2
​
  ─ 3 ​​	  (7a)

That is, the observational variance is proportional to the average 
incidence in the preceding 2 months (if available) and the current 
month, plus a baseline constant. For the overall incidence with de-
tailed data, a smaller variance was used

	​​ Σ​ ii,m​​  =  100 + ​ 
​​(​​​∑ m​ m−2 ​​ ​Y​ m​​ / 3​)​​​​ 

2
​
  ─ 5 ​​	  (7b)

As there were great uncertainties in the susceptibilities of the 
younger age groups, we tested prior ranges from 5 to 45% for 1- to 
4-year-olds, 4 to 25% for 5- to 17-year-olds, and 4 to 20% for 18- to 
49-year-olds. For the basic reproductive number R0, we tested prior 
values ranging from 5 to 12 [note that these values were lower than 
the oft-reported 12-to-18 range (6, 25)]. To optimize the model in-
ference system, as in (28), we parsed these wide ranges into smaller 
segments and tested all combinations by permutation (5040 in total; 
see specific prior ranges in table S3). To account for model stochas-
ticity, we ran the model inference system 5 times for each prior 
combination and 10 times for the final prior select. We then selected 
the optimal priors based on the model goodness of fit to the data 
(minimal root mean square error and maximal correlation and like-
lihood) over the period of October 2018 to July 2019 as well as accuracy 
of the one-step-ahead predictions (recall that the particle filtering 
process comprises sequential prediction-update cycles) for the period 
of October 2018 to March 2019 (i.e., before the emergency vaccina-
tion mandate). Note here that we used multiple selection criteria in 
addition to the likelihood, as the likelihood was relatively flat due to 
the large observational variances used to account for observational 
uncertainties. We pooled all 10 final runs (10,000 particles each run 
and 100,000 model realizations in total) to compute the posterior 
mean estimates and the 50 and 95% CrIs.

Sensitivity analysis on vaccination campaigns settings
To test the sensitivity of model results to assumptions on vaccina-
tion campaign settings, we tested the model inference system using 
the following alternative scenarios:

(i) For the second phase (March to July 2019), 90% (versus 60% 
in the baseline scenario) of the vaccine doses were given to mem-
bers of the Orthodox Jewish community.

(ii) For the second phase, the age distribution of vaccinees was 
the same as the first phase (i.e., 15, 65, and 20%, respectively, for 
<1-, 1- to 4-, and 5- to 17-year-olds versus 10, 40, and 50% for the 
three groups in the baseline scenario).

(iii) For the second phase, 90% of the vaccine doses were given to 
Orthodox Jewish community, and the age distribution of vaccinees 
was the same as the first phase (i.e., 15, 65, and 20% for <1-, 1- to 4-, 
and 5- to 17-year-olds, respectively).

Because population susceptibility would be affected by the number 
of individuals immunized by the vaccination campaigns, we tested 
susceptibility ranges 5 to 45% for 1- to 4-year-olds, 4 to 25% for 5- 
to 17-year-olds, and 4 to 20% for 18- to 49-year-olds, divided into 
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small segments as for the baseline scenario (140 different combina-
tions for each alternative scenario; table S3). For simplicity, we used 
the same optimal prior ranges for the parameters under the baseline 
scenario in this sensitivity analysis.

Estimating the impact of “measles parties”
Our analysis suggested that increases in infectious contact among 
1- to 4-year-olds in early 2019, likely linked to parents hosting 
measles parties at the time, could have led to the second, larger wave 
of the measles outbreak in 2019. To examine the impact of measles 
parties, we used the model and parameter estimates to simulate out-
break outcomes should there be no increases in infectious contact 
among 1- to 4-year-olds in early 2019. Specifically, we ran the model 
(10,000 realizations) stochastically from October 2018 to July 2019 
using the posterior mean estimates of group-specific initial popula-
tion susceptibilities and model parameters for each month except 
for the contact rate among 1- to 4-year-olds (2); for 2, we used the 
mean posterior estimates for the first 3 months of the outbreak (i.e., 
October to December 2018) and the average over these 3 months 
for months afterward. We then computed the numbers of infections 
in each age group and overall from these counterfactual simulations 
and compared them to the reported values. Note that as the distri-
butions of simulated outbreak outcomes were skewed (see Fig. 5), 
we report the median (as opposed to the mean), in addition to the 
IQR and 95% CI for each estimate.

Evaluating the impact of vaccination campaigns
To estimate the impact of vaccination campaigns, we generated model-
simulated counterfactuals—i.e., outbreak outcomes should there be 
no vaccination campaigns implemented—using the posterior mean 
estimates of group-specific initial population susceptibilities and 
model parameters for each month but setting Vi(t) in Eq. 1 to 0. We 
ran the model (10,000 realizations) stochastically up to the end of 
2019 to test how long the outbreak could last without the vaccination 
campaigns; for months after August 2019, parameters estimated at 
the end of July 2019 were used. For this simulation analysis, we also 
report the median, IQR, and 95% CI for each estimate.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/22/eaaz4037/DC1

View/request a protocol for this paper from Bio-protocol.
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