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Summary

Producing an accurate atomic model of biomolecule-ligand interactions from maps generated by 

cryo-electron microscopy (cryoEM) often presents challenges inherent to the methodology and the 

dynamic nature of ligand binding. Here we present GemSpot, an automated pipeline of 

computational chemistry methods that take into account EM map potentials, quantum mechanics 

energy calculations, and water molecule site prediction to generate candidate poses and provide a 

measure of the degree of confidence. The pipeline is validated through several published cryoEM 

structures of complexes in different resolution ranges and various types of ligands. In all cases, at 

least one identified pose produced both excellent interactions with the target and agreement with 

the map. GemSpot will be valuable for the robust identification of ligand poses and drug discovery 

efforts through cryoEM.

eTOC Blurb

Robertson et al. develop GemSpot, an automated pipeline for modeling ligands in cryoEM maps. 

GemSpot incorporates GlideEM, a new tool for docking using map restraints, combined with 

refinement using the OPLS3e force field, quantum mechanics, and water prediction to provide a 

comprehensive platform for ligand modeling and evaluation.
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Introduction

CryoEM has emerged as a major methodology for structure determination of biological 

macromolecules. The number of deposited cryoEM structures in the PDB(Berman, 2003) 

with resolution better than 4 Å has increased from 48 in 2015 to over 2,000 at the end of 

2019. These structures include many macromolecular complexes and membrane proteins 

that have generally proven very challenging for traditional structural techniques, particularly 

X-ray crystallography. As an example, cryoEM has propelled structural studies of the highly 

druggable class of G protein-coupled receptors (GPCRs) that have been historically limited 

by difficulties associated with their crystallization. Accordingly, cryoEM now allows for 

unprecedented opportunities in structure-based drug discovery on a large variety of targets 

that were up to recently intractable.

Structure-based drug discovery is a rational drug design approach that takes into account the 

three-dimensional structure of the biomolecular target(Jorgensen, 2009) and aims to predict 

the binding characteristics of candidate ligands. Structures with sufficiently high resolution 

(typically <2.5 Å) will facilitate the identification of the correct ligands poses and also 

bound water molecules, which can play crucial roles in drug design(de Beer, Vermeulen, & 

Oostenbrink, 2010). Given the recent remarkable progress of cryoEM, with continuous 

advancement in sample preparation(Jain, Sheehan, Crum, Carragher, & Potter, 2012), 

automated data collection(Mastronarde, 2005), and improved availability of microscopes 
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capable of achieving high resolution, the methodology will become an invaluable tool for 

drug discovery efforts and will inevitably be employed in the lead optimization phase to 

obtain structures of intermediate compounds bound to their targets.

While the number of cryoEM maps of macromolecular complexes determined to date is 

relatively low, the existing structures suggest that there are some fundamental challenges 

associated with modeling protein-ligand complexes. Even with very high-resolution data for 

a biomolecule, the resolution of the map for a bound ligand is often significantly lower than 

its surrounding environment(Bartesaghi et al., 2018). Given that cryoEM structures derive 

from flash-frozen macromolecules in aqueous solution, it is perhaps not surprising to 

observe additional mobility for some ligands within protein active sites. In addition, cryoEM 

reconstructions determined with different software often yield noticeably different maps 

from the same dataset. This characteristic may arise from differences in projection angle 

assignments, in image defocus estimation and correction of the contrast transfer function at 

high resolution, as well as variability in masking and weighting schemes employed in 

different software platforms for processing cryoEM data. Collectively, these issues often 

present the modeler with the challenge of identifying the bound pose of a ligand even when 

the protein target can be accurately modeled.

Parallel to developments in cryoEM, computational chemistry methods for modeling 

protein-ligand complexes have improved significantly over time. Computational force fields 

have been successfully used for decades to describe the energy and forces of various 

conformations of proteins(Dauber-Osguthorpe & Hagler, 2019) and bound ligands(Harder et 

al., 2016; Roos et al., 2019). Such force fields, in conjunction with highly optimized 

sampling and refinement algorithms, enable the prediction of protein-ligand binding modes 

given only the conformation of the protein and the identity of the ligand(Pagadala, Syed, & 

Tuszynski, 2017). This molecular docking methodology has been extensively applied to both 

identify ligands that bind to specific proteins with high affinity and to predict their protein-

ligand binding conformations(Kitchen, Decornez, Furr, & Bajorath, 2004). For structure-

based drug design, significant emphasis has also been put on predicting the location of water 

molecules. Several approaches for predicting hydration sites, including grid-based 

approaches like JAWS(Michel, Tirado-Rives, & Jorgensen, 2009) and dynamics approaches 

like WATERMAP(Abel, Young, Farid, Berne, & Friesner, 2008), have been developed. 

Recent computational predictions yield impressive agreement with experimentally derived 

structures and further highlight the role of hydration in lead optimization(Luccarelli, Michel, 

Tirado-Rives, & Jorgensen, 2010). It should be noted however that, in the absence of 

experimental data, significant false positive and false negative rates can hamper purely 

computational methods.

It thus becomes apparent that employment of an array of well-established computational 

tools in combination with cryoEM data could address the challenge of modeling ligands into 

cryoEM maps. To this end, we have developed and validated ‘GemSpot’, a pipeline of 

computational chemistry methods that assists in obtaining the most probable bound ligand 

pose using a combination of ligand docking coupled with refinement, quantum mechanical 

(QM) calculations, automatic water placement and additional external information, all while 

taking into account the experimental cryoEM data. The GemSpot pipeline has been 
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validated against a varied set of 19 cryoEM structures from 1.9–4.3 Å resolution, consisting 

of both protein and RNA (Table S1), together with a diverse selection of ligands that include 

small molecules and peptides (Scheme of all ligands in Fig. S1).

Results

Overview of the GemSpot Workflow

In the first step using GemSpot (see Fig.1), the ligand is docked with a new modification of 

the popular software GLIDE(Friesner et al., 2004) by employing a combination of the 

traditional GLIDE docking score function and a real space cross-correlation score to the map 

(full details of the implementation can be found in the online methods section). This 

software, called GlideEM, is only moderately more computationally expensive than 

traditional GLIDE while producing poses with a better average real space cross correlation 

and fewer poses with substantial disagreement with the EM map (timing and post-

refinement cross correlation comparisons in Table S2). Several candidate poses for the 

ligand generated by GlideEM are subsequently subjected to real space refinement with 

PHENIX(Adams et al., 2010) including the state-of-the-art OPLS3e / VSGB2.1 force 

field(Roos et al., 2019),(Li et al., 2011). A combination of real space correlation coefficient 

and pre-refinement docking scores are then provided to assist the user in eliminating any 

poses that make little chemical sense or fit poorly into the experimental map.

Once the top poses are identified, further computational techniques can be used to generate 

enhanced confidence in the lead candidate pose, when necessary. For high-resolution EM 

maps, a free energy approach to hydrate the active site using JAWS(Michel et al., 2009) can 

be used to help differentiate potential water molecules from noise in the map and gain 

insight into ligand interactions. When there are still doubts about the conformation of the 

molecule, one can leverage quantum chemistry to examine the conformational strain 

associated with any bound poses, e.g. by using GAUSSIAN(Frisch et al., 2016) or 

Jaguar(Bochevarov et al., 2013). In situations where these computational methods alone may 

be unable to determine a single pose that unambiguously fits all of the data, it may be 

necessary to determine which of the top poses are also consistent with data from other 

experiments. Particularly valuable is a comparison to structure-activity relationship (SAR) 

data, i.e., whether the prospective pose can effectively explain the changes in binding affinity 

for analogues of that molecule(Wei et al., 2019). By combining the resulting data, a high 

degree of confidence can often be obtained even with a low resolution or problematic 

density for the ligand. GemSpot can be run in ‘pipeline mode’ where the only input is a 

prepared system file of the macromolecule with the ligand approximately placed in the 

binding site and the EM map in MRC format. The full pipeline mode will execute GlideEM, 

Phenix/OPLS3e refinement, and then run Jaguar QM on the resulting poses. A diagram of 

the process with the inputs used in each step is provided in Figure S6, along with commands 

for calling both the pipeline and the individual components. Users of the pipeline will need 

to specify parameters faceden and facrf to control how heavily the density is weighted 

(initial values of 1 and 1 are suggested) as well as the number of poses GemSpot will 

attempt to identify. GemSpot will also write out a ‘chopped’ pdb file carved around the 
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ligand at a specified radius that can be used with Python scripts to automatically set up and 

run water prediction JAWS calculations.

Using GemSpot for beta-galactosidase

The case of beta-galactosidase bound to phenylethyl β-d-thiogalactoside (PETG) provides 

perhaps the most striking demonstration of modeling protein-ligand complexes using 

GemSpot. Two published structures, PDB:5A1A(Bartesaghi et al., 2015) and 

PDB:6CVM(Bartesaghi et al., 2018), have been derived from the same data set by using 

different software packages to determine the three-dimensional maps. A 2.2 Å map 

associated with the PDB:5A1A structure was obtained using TOMOCTFFIND(Fernández, 

Li, & Crowther, 2006) for defocus determination and FREALIGN for map refinement and 

reconstruction(Grigorieff, 2007), whereas a 1.9 Å map associated with the PDB:6CVM 

structure was obtained with CTFFIND4(Rohou & Grigorieff, 2015) and CisTEM(Grant, 

Rohou, & Grigorieff, 2018), including new tools for dose weighting and motion correction. 

Despite derivation from the same data set, the map densities corresponding to the ligand 

display different features and, as a result, a significant change to the ligand pose was 

introduced. Thus, a methodology that could predict the same, correct pose, despite 

differences in features of ligand densities would be highly desirable. To begin processing 

ligand modeling in beta-galactosidase, we subjected both protein models with all water and 

ligand molecules removed (metal ions were retained) to PHENIX real-space refinement 

prior to docking with GlideEM. Interestingly, docking to both structures/maps yielded ligand 

poses with the pyranose ring of PETG in the same orientation as shown in PDB:5A1A, 

which corresponds to the 2.2 Å map (Fig. 2a,b). The cross-correlation of the top real-space-

refined docked poses against the 1.9 Å experimental map is actually higher than the 

associated PDB:6CVM deposited pose (0.73 compared to 0.71), further suggesting that the 

PDB:5A1A pose is the more probable one. Using traditional docking against the 

PDB:6CVM structure without the inclusion of the EM map also yielded this pose. However, 

docking against the PDB:5A1A structure without the map yielded predominantly poses with 

the ligand outside the corresponding EM density (Fig. S2), presumably due to subtle 

differences in the position of the sodium and magnesium ions, which can create steric issues 

in docking the best pose.

While no pose was obtained in any docking test that resembled the one deposited in 

PDB:6CVM, we performed quantum chemical optimizations on the conformation of PETG 

in the two structures. Both calculations converged to near-identical conformations (RMSD 

of 0.18 Å), presented in Fig. 2c. The optimized structure is very similar to that modeled in 

PDB:5A1A, with the exception of the phenyl group extending to a trans conformation. 

When the optimization began from the conformation deposited in PDB:6CVM, we observed 

a substantial shift in the saccharide ring, with the O-C-S-C dihedral angle shifting from −144 

to −71 degrees, the same value as the one in the PDB:5A1A structure. Of note, conformer 

optimization while maintaining the O-C-S-C dihedral angle fixed at −143 degrees results in 

a configuration very similar to that of PDB:6CVM. However, this state is roughly 4 kcal/mol 

higher in energy than the unconstrained state, providing further evidence that the pose 

modeled in PDB:5A1A is the more physically probable state.
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In the next step, we sought to determine water molecule positioning in the beta-

galactosidase-PETG structure. For this purpose, we ran JAWS calculations on the pose 

modeled in Fig. 2b bound to the protein structure from PDB:6CVM, the results of which are 

presented in Fig. 2d. An octahedral model for magnesium was used to enforce proper 

coordination of the magnesium ion, given that this is the expected coordination of Mg2+ and 

consistent with the features in the density (Fig. 2d). This approach enabled us to predict with 

high confidence a bound water molecule interacting with PETG and histidine 391. 

Strikingly, this water molecule resides in part of the density region previously attributed to 

the ligand alone in PDB:6CVM (Fig. 2d). It thus appears that the observed continuous 

density may have been the product of close proximity between the ligand and the water 

molecule, giving rise to uncertainty in modeling that was effectively addressed with the 

GemSpot workflow. In addition, three sites of hydration were predicted near the sodium ion 

(Fig. S3), with the strongest map features corresponding to the most tightly predicted water 

site from the triplicate JAWS calculations. By contrast, little consensus was found in the 

JAWS calculations for the solvent accessible side of the ligand.

In the example of beta-galactosidase, high-resolution crystal structures of the protein in 

complex with analogous ligands can provide additional data for determining the correct 

PETG pose. Several of these compounds have the same saccharide moiety but differ from 

PETG in the thiol group. This provides a clear opportunity to examine how this saccharide 

ring should be correctly modeled in the active site. Comparing the poses from GemSpot, 

PDB:5A1A, PDB:6CVM, and the 1.6 Å crystal structure of 4-nitrophenyl-beta-D-

galactosidase (PNPG) (Fig. 3) confirms the results of our modeling, which suggested that a 

pose much more similar to that of PDB:5A1A corresponds to the correct one. The high-

resolution crystal structure also shows the presence of a water molecule, as predicted by our 

JAWS simulations, which is responsible for the aberrant map feature that led to the modeled 

ligand pose in PDB:6CVM. Thus, all the evidence points to the top-scoring GemSpot pose 

as the most probable bound ligand conformation.

Using GemSpot with ~3.0 Å resolution maps

Beyond beta-galactosidase, we examined four other structures with a reported global 

resolution of 3.0 Å or better. At this resolution, in general, it is not uncommon for the human 

modeler to be able to discern the correct pose from the map alone. In the deposited 

structures for cannabinoid receptor 1 (CB1R)(Krishna Kumar et al., 2019), the eukaryotic 

voltage-gated sodium channel NavPaS(Shen et al., 2018), the small subunit of leishmania 
ribosome(Shalev-Benami et al., 2017) and the leishmania 20S proteasome(Wyllie et al., 

2019) the modeled poses were in excellent agreement with our top calculated pose (Fig. S4, 

Table S2). Using JAWS calculations, we were able to not just recapitulate the single water 

modeled in the NavPaS structure but also suggest two additional hydration sites in the 

vicinity of the tetrodotoxin ligand that are in fact observable in the EM map (Fig. 4).

The small subunit of the leishmania ribosome presents an interesting example where 

docking without the EM map yields predominantly poses that do not agree with the map 

density (Fig. 5). This is likely because the large number of positive charges on the 

paromomycin ligand can match well with the phosphodiester backbone in many locations, 
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with every pose scoring well. However, this problem was resolved when the map densities 

are included in the docking using GlideEM. While these structures provide a valuable test 

for the whole pipeline, it is crucial to also examine performance for lower-resolution 

structures where a human modeler may be challenged to obtain an accurate pose based on 

the EM map alone.

Using GemSpot with 3.0–4.5 Å resolution maps

The bulk of the cryoEM maps of liganded complexes in the PDB at the time of this 

publication fall into the range of 3.0–4.5 Å. This is unsurprising, as it is still challenging to 

achieve sub-3.0 Å EM maps, whereas maps worse than 4.5 Å are unlikely to present 

interpretable densities for the ligand. It is also within this resolution range that we expect 

modelers to encounter the greatest difficulty placing ligands interactively. Using GlideEM 

we were able to identify candidate poses in this resolution range with cross correlations that 

were comparable to the deposited poses for all of the structures that we studied. For GABAA 

in complex with three different ligands(Masiulis et al., 2019), the M2 muscarinic 

acetylcholine receptor in complex with two different ligands(Maeda, Qu, Robertson, 

Skiniotis, & Kobilka, 2019), the sodium channel Nav1.7 with one ligand(Shen, Liu, Wu, Lei, 

& Yan, 2019), ATP citrate lyase with one ligand(Wei et al., 2019), and the serotonin 

transporter with two different ligands(Coleman et al., 2019) the poses we identified with 

GlideEM largely agreed with what was deposited in the PDB (Fig. S5) (although it should 

be noted that for the deposited structures of the M2 receptor and serotonin transporter the 

ligands were docked with the traditional version of Glide). At this resolution it is extremely 

unlikely to resolve water molecules. Accordingly, although our JAWS calculations predicted 

tightly bound water molecules in these structures, no such water molecules were located in 

the deposited maps.

In the example of the TRPM8 channel, the modeled pose for the ligand in 6NR3(Yin et al., 

2019) agrees well with what we predicted by GlideEM, although this represents another 

example where docking without the EM map yields additional poses that fall elsewhere in 

the relatively large and open binding site. In contrast, the icilin/TRPM8 model in 6NR2(Yin 

et al., 2019) has significant strain energy in its ligand conformation. Using implicit solvent 

QM minimization, we found that the deposited conformation for icilin (Fig. 6a) is not a 

minimum energy conformation, but instead a much more linear conformation is 

energetically preferred (Fig. 6d). Comparison of the QM energy for the implicit solvent 

minimized ligand to that minimized with the strained dihedral fixed shows the restrained 

pose to be higher in energy by 5.2 kcal/mol. By employing GlideEM we were able to 

identify poses with significantly improved real-space cross correlations to the map (0.76–

0.79, compared to 0.67 for the deposited pose) and without the heavily distorted dihedral 

(Fig. 6 b,c).

As the results with deposited structures in the 3.0–4.5 Å range were favorable, we wanted to 

explore the low resolution limits of cryoEM maps where the GemSpot pipeline would still 

confidently perform. To this end we focused on the leishmania ribosome system, where as 

mentioned previously, traditional docking does not find the correct ligand pose if the EM 

density is not used. By taking a random subset of 15,000; 5,000; and 2,500 particles we 
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calculated, respectively, 3.6. 4.3, and 5.5 Å global resolution maps of the leishmania 
ribosome small subunit(Shalev-Benami et al., 2017). These lower resolution maps were then 

used to test the limits of the GlideEM method. With these maps, each pose was almost 

identical to its matched pose docked with the higher resolution map, with the exception of 

the most solvent exposed ring (Fig. 7), although at 5.5 Å some greater deviation in all rings 

was observed. It has been suggested previously that for methods of automatic protein model 

building with cryoEM maps, regions where there is greater divergence between 

automatically generated models may represent either regions of increased flexibility and/or 

greater uncertainty in the map, and this is most likely the case for our method(Herzik, 

Fraser, & Lander, 2019). Based on these results as well as the other systems studied in this 

work, it appears that the utility of GemSpot is limited largely by the confidence of modeling 

sidechain positions in the binding site.

Using GemSpot with peptide ligands

With a thorough understanding of how GemSpot performs for maps of various resolutions, 

we wanted to ensure that the pipeline has good coverage of chemical space, not just for 

small molecule ligands but also peptidic ligands. Peptides often present a challenging class 

of ligands for computational docking because they have significantly more degrees of 

freedom than most small molecules and thus require specialized protocols. Similarly, the 

standard implementation of GlideEM does not perform well on these molecules, and we thus 

developed a variant of the GlideEM based on the Glide peptide docking variant(Tubert-

Brohman, Sherman, Repasky, & Beuming, 2013) (details of the implementation are given in 

the methods). This methodology was applied to two liganded macromolecular complexes, 

that of the DAMGO (Tyr-D-Ala-Gly-NMePhe-Gly-ol) bound to the m-opioid receptor/Gi 

complex(Koehl et al., 2018) and that of JMV449 (Lysψ(CH2NH)Lys-Pro-Tyr-Ile-Leu-OH) 

bound to the neurotensin type 1 receptor/Gi complex(Kato et al., 2019) (Fig. 8). In both 

systems, we identified a pose nearly identical to the interactively modeled one, as well as 

other poses that are consistent with the EM map as assessed by cross-correlation. In the case 

of DAMGO, multiple very different poses were found that maximized the cross-correlation 

after refinement. However, SAR data across m-opioid ligands suggests a highly conserved 

protonated amine group that interacts with aspartate 3.32(Koehl et al., 2018). DAMGO also 

has a protonated amine, and of the three poses with high real-space cross correlations only 

one has a salt bridge with aspartate 3.32 (Figure 8b), as is the case in the deposited pose 

(Figure 8a). Thus, we would suggest this to be the most probable experimental pose for 

DAMGO even though it does not have the highest cross-correlation. While additional 

structures with larger peptides are necessary to more robustly validate GlideEM for peptides, 

this initial proof of concept provides a promising starting point.

Caveats and problematic cases

Although for most of ligand complex systems tested here the GemSpot pipeline works very 

well, some cases presented challenges that required special attention. While for the majority 

of structures the results were the same if the initial protein structure was refined with an 

empty ligand pocket or with some pose of the ligand present, in roughly 10% of systems an 

empty pocket would cause protein atoms to move into the map density corresponding to the 

ligand, thereby preventing a correct pose from being properly docked. One example of this 

Robertson et al. Page 8

Structure. Author manuscript; available in PMC 2021 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



was GABAA in complex with benzodiazepine ligands, where protein refinement with an 

empty ligand pocket leads to side chain atoms slipping into the ligand portion of the map 

during refinement (Fig. 9). It is thus important that the modeler checks the structure and map 

before using GlideEM to ensure the protein is modeled optimally. This could also perhaps be 

remedied with an induced-fit docking approach where protein motions are informed by the 

EM map, although this is beyond the scope of the current study.

Discussion

As cryoEM has started to provide near-atomic and even atomic level detail of 

macromolecular complexes that proved impenetrable to traditional structural biology, it is 

becoming increasingly important to develop new tools ensuring that the most accurate 

structures are modeled into the experimental maps. Here we have presented and validated 

GemSpot, an automated pipeline that combines computational chemistry methods with 

cryoEM maps to yield high-confidence models for the bound poses of ligands in 

macromolecular complexes. The novel GlideEM method will be made available in the 

newest version of the Schrödinger software package. We note, however, that the overall 

GemSpot approach described here should be implementable in any docking software 

package. We anticipate that GemSpot and its continuous evolvement will become an 

invaluable tool for the correct interpretation and modeling of ligand densities and will 

greatly aid in drug discovery efforts that are based on cryoEM.

STAR METHODS

RESOURCE AVAILABILITY

LEAD CONTACT—Further requests for resources and reagents should be directed to and 

will be fulfilled by the Lead Contact, Georgios Skiniotis (yiorgo@stanford.edu)

MATERIAL AVAILABILITY—No new reagents were generated in this study.

DATA AND CODE AVAILABILITY—All data generated in this work, including any of the 

models of protein-ligand complexes, is available by contacting the lead author. Scripts 

related to JAWS calculations can be found at https://github.com/mjrober101/GemSpot.

METHOD DETAILS

GlideEM—The GemSpot pipeline starts with preparing and refining structures and ligands, 

by loading each structure and ligand into Maestro where they are processed using the Protein 

Preparation Wizard panel(Madhavi Sastry, Adzhigirey, Day, Annabhimoju, & Sherman, 

2013) with default options, i.e. missing side chain atoms and added hydrogens, and the 

hydrogen bonding network optimized. For peptides an additional sampling step was 

performed to create a diverse set of backbone conformations using the Peptide Docking 

panel in Maestro, outputting 1000 conformations(Tubert-Brohman et al., 2013). Next, the 

ligands were docked with GlideEM, a version of Glide that takes into account the cryoEM 

potential map.
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Glide, similar to other docking algorithms(Trott & Olson, 2009; Verdonk, Cole, Hartshorn, 

Murray, & Taylor, 2003), starts by sampling the isolated ligand to determine an ensemble of 

low-energy conformations that could be biologically relevant. Each pose is rapidly scored on 

a grid with rewards for creating favorable protein-ligand interactions, such as hydrogen 

bonds and lipophilic interactions, and penalties for unfavorable ones, like steric clashes. 

Poses that score highly at this step are then refined by a combination of local sampling and 

minimization in a force field that includes ligand strain energy, as calculated by the force 

field, as well as protein-ligand interactions. For GlideEM we have added a simple real-space 

cross-correlation score used in both the sampling and refinement stages in order to help 

ensure that the docking function finds the correct binding mode given the experimental 

cryoEM data as follows.

The input cryoEM map is first normalized in the region around the binding site, by 

subtracting the mean and dividing by the standard deviation of intensities found over all 

voxels within a distance of 10 ångstroms plus the ligand’s radius of gyration, determined 

during the conformational sampling stage, from the center of the binding site. The 

normalized map is used in the sampling step by rewarding the placement of non-hydrogen 

atoms in areas with higher Coulombic potential in addition to its standard scoring function. 

During the refinement step, the protein-ligand energy function is augmented by the real 

space cross-correlation between the normalized map and a simple simulated potential map 

of the ligand where each atom is modeled as a single Gaussian function for computational 

efficiency. Each pose is ultimately ranked with a combination of the standard Glide energy 

function, the GlideScore, and the approximate fit to the experimental density, the DensScore, 
to determine the poses that will be evaluated with a more rigorous scoring function. Two 

parameters are exposed to the user to control the weight of scoring against the EM map, 

faceden and facrf. The facrf parameter controls the weight of the EM map during the initial 

sampling phase, and faceden during the refinement phase. While high values tend to increase 

the contribution of the EM map too much and generally lead to highly strained 

conformations of the ligand, at present there is an insufficient number of deposited structures 

to rigorously determine optimal parameters. Thus, both facrf and faceden were set to 1 for 

all systems studied in this work. As with traditional Glide, an Emodel is also provided for 

each pose. This value is the result of a scoring function designed to better rank different 

poses of the same compound, and may be useful in cases where Glide score and cross-

correlation alone provide more than one equally ranked pose.

PHENIX/OPLS3e Refinement—The next step in the pipeline consists of refining top 

scoring poses generated by GlideEM. For small molecules the top 5 poses with the best 

GlideScore were chosen. For our peptide protocol, poses were selected based on the 

DensScore, starting with the best scoring pose and adding additional poses that have a heavy 

atom RMSD higher than 0.5 Å compared to already selected poses up to a total set of 100. 

The chosen poses were refined with PHENIX real space refinement using an adjusted 

protocol where the OPLS3e /VSGB2.1 force field is used to calculate ligand energies. Here 

the macromolecule was processed separately from the ligand of interest with 

phenix.ready_set (default parameters), and recombined with the ligand poses coming from 

GlideEM. CIF files for the ligands were created using the hetgrp_ffgen Schrödinger utility. 

Robertson et al. Page 10

Structure. Author manuscript; available in PMC 2021 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Although the parameters of the ligands’ CIF files are unimportant for the energy model, they 

are essential for PHENIX to run correctly, and needed to provide the ligand’s topology for 

restrained B-factor refinement. During real space refinement with phenix.real_space_refine, 

the chemical energy components of the ligands were swapped with the OPLS3e / VSGB2.1 

force field energies with a weight factor of 10 to place the forces on the same order of 

magnitude of the default PHENIX restrained model. Otherwise, default parameters were 

used during refinement. All real-space cross correlations were calculated with 

phenix.cryoem_validation. GlideEM, PHENIX/OPLS3e, and GemSpot scripts are available 

in the Schrodinger software package.

JAWS and Quantum Mechanics Calculations—The final steps in the GemSpot 

pipeline, after docking and refinement, consist of further analyzing the generated ligand 

conformations using quantum chemical calculations, water placement simulations, and 

including known SAR if available. Quantum chemical calculations were performed with the 

GAUSSIAN software(Frisch et al., 2016). Ligand structures were minimized with the ωB97-

xd functional(Chai & Head-Gordon, 2008) and the 6–311+(2d,2p) basis set in SMD implicit 

water, optimizing all degrees of freedom.

JAWS Monte Carlo simulations(Michel et al., 2009) were set up as follows. The refined 

structures were culled at a 25 Å sphere centered around the ligand’s center of mass. The 

system was simulated in MCPRO(Jorgensen & Tirado-Rives, 2005) with the OPLS-AA/

M(Robertson, Tirado-Rives, & Jorgensen, 2015) force field for the protein and OPLS-AA/

CM1A for the ligands. The ligand was solvated with a 5 Å layer of TIP4P(Jorgensen, 

Chandrasekhar, Madura, Impey, & Klein, 1983) theta-water and a 25Å spherical cap of 

TIP4P water beyond that. Sidechains within 15Å of the ligand were allowed to sample 

flexibly. 5 million Monte Carlo steps were used for solvent equilibration, 10 million in 

hydration site identification, and 50 million for production. Three independent simulations 

were run for each system with the strong consensus water molecules (predicted binding 

affinity better than 3 kcal/mol) used to locate average positions for subsequent PHENIX real 

space refinement using the protocol outlined above.

Systems Studied—For this study, the systems chosen were phenethyl beta-d-

thiogalactoside (PETG)/beta-galactosidase (PDB:5A1A, EMD:2984)(Bartesaghi et al., 

2015); PETG/beta-galactosidase (PDB:6CVM, EMD:7770)(Bartesaghi et al., 2018); 

Tetrodotoxin/Voltage gated sodium channel NavPaS (PDB:6A95, EMD:6995)(Shen et al., 

2018); Fubinaca/Cannabinoid receptor 1 (PDB:6N4B, EMD:0339)(Krishna Kumar et al., 

2019); GSK 3494245/Leishmania 20S proteasome (PDB:6QM7, EMD:4590)(Wyllie et al., 

2019); Paromomycin/Leishmania ribosome (PDB:6AZ1, EMD:7024)(Shalev-Benami et al., 

2017); Menthol analogue WS-12/Ion channel TRPM8 (PDB:6NR2, EMD:0488)(Yin et al., 

2019); Icilin/Ion channel TRPM8 (PDB:6NR3, EMD:0487)(Yin et al., 2019); 

LY2119620/M2R (PDB:6OIK, EMD:20079)(Maeda et al., 2019); Iperoxo/M2R 

(PDB:6OIK, EMD:20079)(Maeda et al., 2019); Saxitoxin/Nav1.7 (PDB: 6J8G, EMD:9781)

(Shen et al., 2019); Biculine/GABAA (PDB:6HUK, EMD:0280)(Masiulis et al., 2019); 

Xanax/GABAA (PDB:6HUO, EMD:0282)(Masiulis et al., 2019); Valium, GABAA 

(PDB:6HUP, EMD:0283)(Masiulis et al., 2019); NDI-091143/ATP Citrate Lyase 
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(PDB:6O0H, EMD:0567)(Wei et al., 2019); paroxetine/serotonin transporter (PDB:6DZW, 

EMD:8941)(Coleman et al., 2019); ibogaine/serotonin transporter (PDB:6DZZ, EMD:8943)

(Coleman et al., 2019); ibogaine, serotonin transporter (PDB:6DZY,EMD:8942)(Coleman et 

al., 2019); DAMGO/Mu opioid receptor (PDB:6DDE, EMD:7868)(Koehl et al., 2018), and 

JMV449/Neurotensin receptor (PDB:6OS9, EMD:20180)(Kato et al., 2019).

QUANTIFICATION AND STATISTICAL ANALYSIS

Geometric mean was used to choose water positions from the triplicate JAWS calculations 

described in this work. No other statistical methods were used in this work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• GemSpot is a pipeline for automated modeling of ligands in cryoEM maps

• GemSpot employs GlideEM, a new method for computational docking using 

map information

• The GemSpot pipeline is validated using various existing cryoEM structures

• The pipeline can handle diverse ligands including peptides
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Fig 1. Schematic of the GemSpot pipeline.
a, Example of a ligand with the potential to make several hydrophobic, hydrogen bonding 

(orange), and halogen bonding (yellow) interactions. b, The EM density for the ligand in its 

binding site is shown in wireframe. c, Examples of poses with and without favorable 

interactions (Good/Bad Score) and/or cross correlation (CC) to the EM map. d, Further 

support for the ligand pose based on water placement, quantum chemistry, and structure-

activity relationship data.
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Fig 2: GemSpot results for PETG in beta-galactosidase.
a, PDB:5A1A with its associated map EMD:2984 (σ=2.0). The deposited PDB pose is 

shown in teal, and the best pose obtained from GlideEM is shown in orange. The green and 

purple spheres correspond to magnesium and sodium ions, respectively. b, PDB:6CVM with 

its associated map EMD:7770 (σ=3.0). In teal, the deposited PDB pose and in yellow the 

best pose from GlideEM. c, A comparison of the deposited poses from PDB:5A1A (blue) 

and PDB:6CVM (orange) with the overlaid QM optimized geometries (teal). The energies 

reported are the difference between that conformation optimized with the O-C-S-C dihedral 

angle fixed and that conformation optimized without any fixed dihedrals. d, e, Results of 

JAWS calculations performed on the best GlideEM pose for the PDB:6CVM structure. 

Predicted water sites from triplicate simulations are depicted as red spheres, while real-space 

refined waters based on those positions are presented as teal crosses, and the map shown is 

EMD:7770 (σ=3.0).
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Fig. 3: Comparison of the PETG poses from cryoEM and a high-resolution crystal structure of a 
PETG analogue.
All panels display map density from EMD:7770 (σ=3.0). Purple spheres, green spheres, and 

red crosses correspond to sodium ions, magnesium ions, and water molecules, respectively. 

a, PDB: 5A1A. b, Highest scoring GemSpot pose with PDB: 6CVM and EMD:7770 

(σ=3.0). c, PDB: 6CVM. d, The high-resolution crystal structure of analogous compound 

PNPG (PDB:1JYW).
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Fig. 4: Predicted water sites in the structure of tetrodotoxin bound to NavPaS.
The EM density map in wireframe corresponds to that of EMD:6995 (σ=11.0). Red spheres 

represent predicted sites of hydration from triplicate JAWS runs while teal crosses represent 

water molecule locations after real space refinement. a, The sodium ion (purple sphere) and 

its bound water molecule. b, Two additional probable sites of hydration.
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Fig. 5: Comparison of paromomycin poses docked with and without the EM map.
a, PDB: 6AZ1 with its accompanying map EMD:7024 (σ=1.0). b, c, Two of the top 

GlideEM poses with generated from PDB:6AZ1 and EMD:7024 (σ=1.0). d-f, Top poses 

from traditional docking into PDB: 6AZ1, overlaid with the map EMD:7024 (σ=1.0).
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Fig. 6: Comparison of poses for icilin bound to TRPM8.
a, Deposited pose of icilin, PDB: 6NR3 with map EMD:0488 (σ=4.0). b, c, Two of the top 

docked GlideEM poses for icilin. d, The icilin conformation from the pose in 6NR3 in teal 

overlaid with its QM implicit solvent optimized pose in orange; both molecules are aligned 

to their central ring.

Robertson et al. Page 21

Structure. Author manuscript; available in PMC 2021 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7: Comparison of poses for paromomycin bound to the leishmania ribosome in maps with 
global indicated resolutions of 2.6 Å, 3.6 Å, 4.3 Å, and 5.5 Å.
a, b, c Paromomycin pose from PDB: 6AZ1 with cryoEM maps at a, 2.6 Å b, 3.6 Å c, 4.3 Å 

d, 5.5 Å global resolution. e, i, The top two paromomycin poses from GlideEM using the 

original 2.7 Å map. f, j, The top two paromomycin poses from GlideEM using the 3.6 Å 

map from 15,000 particles. g, k, The top two paromomycin poses from GlideEM using the 

4.3 Å map from 5,000 particles. h, l, The top two paromomycin poses from GlideEM using 

the 5.5 Å map from 2,500 particles. All maps are contoured at σ=1.0.
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Fig. 8: Results of docking peptidic ligands with GlideEM.
a, Deposited structure of the μ-opioid-DAMGO complex, PDB:6DDE, EMD:7868. b, c, The 

two top poses for DAMGO from GlideEM. d, Deposited structure for the neurotensin type 1 

receptor-JMV449 complex, PDB:6OS9, EMD:20180. e, f, The two top poses for JMV449 

from GlideEM.
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Fig 9: Comparison of GABAA receptor refined with and without ligand present.
GABAA receptor structure PDB:6HUP shown in tan with Met 286 shown in red; the top 

GemSpot pose in orange, and the re-refined methionine in the absence of ligand is shown in 

blue. The map corresponds to the portion of EMD:0283 corresponding to the bound ligand.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

PHENIX v1.15 Adams et al., 2001 www.phenix-online.org

Maestro 2019–3, 2019–4 Schrödinger www.schrodinger.com

Schrödinger Suite 2019–3, 2019–4 Schrödinger www.schrodinger.com

Gaussian v16 Frisch et al., 2009 Gaussian.com

PyMol v2.3.0 Schrödinger www.schrodinger.com

MCPRO v2.3 Jorgensen and Tirado-Rives, 2005 Zarbi.chem.yale.edu

GlideEM v1.0 This Study www.schrodinger.com

GemSpot v1.0 This Study www.schrodinger.com

PDBtoZmat.py This Study https://github.com/mjrober101/GemSpot

ZmattoJAWS.py This Study https://github.com/mjrober101/GemSpot

Deposited Data Used

phenethyl beta-d-thiogalactoside (PETG)/beta-galactosidase Bartesaghi et al., 2015 PDB:5A1A, EMD:2984

PETG/beta-galactosidase Bartesaghi et al., 2018 PDB:6CVM, EMD:7770

Tetrodotoxin/Voltage gated sodium channel NavPaS Shen et al., 2018 PDB:6A95, EMD:6995

Fubinaca/Cannabinoid receptor 1 Krishna Kumar et al., 2019 PDB:6N4B, EMD:0339

GSK 3494245/Leishmania 20S proteasome Wyllie et al., 2019 PDB:6QM7, EMD:4590

Paromomycin/Leishmania ribosome Shalev-Benami et al., 2017 PDB:6AZ1, EMD:7024

Menthol analogue WS-12/Ion channel TRPM8 Yin et al., 2019 PDB:6NR2, EMD:0488

cilin/Ion channel TRPM8 Yin et al., 2019 PDB:6NR3, EMD:0487

LY2119620/M2R Maeda et al., 2019 PDB:6OIK, EMD:20079

Iperoxo/M2R Maeda et al., 2019 PDB:6OIK, EMD:20079

Saxitoxin/Nav1.7 Shen et al., 2019 PDB: 6J8G, EMD:9781

Biculine/GABAA Masiulis et al., 2019 PDB:6HUK, EMD:0280

Xanax/GABAA Masiulis et al., 2019 PDB:6HUO, EMD:0282

Valium, GABAA Masiulis et al., 2019 PDB:6HUP, EMD:0283

NDI-091143/ATP Citrate Lyase Wei et al., 2019 PDB:6O0H, EMD:0567

paroxetine/serotonin transporter Coleman et al., 2019 PDB:6DZW, EMD:8941

ibogaine/serotonin transporter Coleman et al., 2019 PDB:6DZZ, EMD:8943

Ibogaine/serotonin transporter Coleman et al., 2019 PDB:6DZY,EMD:8942

DAMGO/Mu opioid receptor Koehl et al., 2018 PDB:6DDE, EMD:7868

JMV449/Neurotensin receptor Kato et al., 2019 PDB:6OS9, EMD:20180
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