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Abstract

In recent years, biotechnological breakthroughs have led to identification of complex and unique 

biologic features associated with carcinogenesis. Tumor and cell-free DNA profiling, immune 

markers, and proteomic and RNA analyses are used to identify these characteristics for 

optimization of anticancer therapy in individual patients. Consequently, clinical trials have 

evolved, shifting from tumor type-centered to gene-directed, histology-agnostic, with innovative 

adaptive design tailored to biomarker profiling with the goal to improve treatment outcomes. A 

plethora of precision medicine trials have been conducted. The majority of these trials 

demonstrated that matched therapy is associated with superior outcomes compared to non-

matched therapy across tumor types and in specific cancers. To improve the implementation of 

precision medicine, this approach should be used early in the course of the disease, and patients 

should have complete tumor profiling and access to effective matched therapy. To overcome the 

complexity of tumor biology, clinical trials with combinations of gene-targeted therapy with 

immune-targeted approaches (e.g., checkpoint blockade, personalized vaccines and/or chimeric 
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antigen receptor T-cells), hormonal therapy, chemotherapy and/or novel agents should be 

considered. These studies should target dynamic changes in tumor biologic abnormalities, 

eliminating minimal residual disease, and eradicating significant subclones that confer resistance 

to treatment. Mining and expansion of real-world data, facilitated by the use of advanced computer 

data processing capabilities, may contribute to validation of information to predict new 

applications for medicines. In this review, we summarize the clinical trials and discuss challenges 

and opportunities to accelerate the implementation of precision oncology.
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Background

The rapidly expanding body of knowledge about the roles of genomics and the immune 

system in cancer has enabled the development of therapies targeted to specific molecular 

alterations or other biologic characteristics, such as those implicated in immune suppression. 

However, genomics has also revealed a complicated reality about malignancies that requires 

a major shift in the therapy paradigm: away from tumor type-centered and toward gene-

directed, histology-agnostic treatment, which is individualized for each patient on the basis 

of biomarker analysis. This paradigm shift is reflected by the emergence of precision 

medicine trials with innovative design.1–21 Next-generation sequencing (NGS) of advanced 

cancers has demonstrated that genomic alterations do not fall neatly into categories defined 

by the tumor organ of origin. Furthermore, metastatic tumors harbor tremendously complex 

and individually unique genomic and immune landscapes.22,23 Therefore, in order to target 

malignancies with “precision,” treatment needs to be personalized.

Historically, phase II and III oncology clinical trials have measured outcomes histologically, 

but histological assessment cannot always capture the effects of gene-targeted agents or 

immunotherapy. Precision medicine approaches analyze patients’ circulating DNA (liquid 

biopsy), as well as immune markers and other biologic features, to assess efficacy and make 

treatment decisions. Genomic biomarkers have been the most successful to date, but other 

biomarkers, including protein assays and transcriptomics, are being developed and tested.
13,24,25 Several molecular alterations have been identified using sequencing and high-

throughput technologies and have led to the approval of targeted agents by the Food and 

Drug Administration (FDA).26,27 Importantly, in recent years, the precision medicine 

paradigm has embraced immunotherapy and its interaction with genomics, as genomic 

characteristics, such as mismatch repair gene defects, are critical predictors of checkpoint 

blockade response.28–30

Herein, we review the rapid evolution of precision medicine in oncology and, in particular, 

the challenge and opportunity that genomic science has revealed vis-à-vis the need for “N-

of-1” treatments. This treatment model does not conform to either canonical trial design or 

clinical practice, which seek to find commonalities between patients and treat them alike; 
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instead, its goal is to provide optimized individualized treatment for each patient on the basis 

of biomarker analysis.

History

Survival improvement with gene- or immune-directed therapy was accelerated by several 

major discoveries. In particular, the introduction of imatinib mesylate (Abl tyrosine kinase 

inhibitor) for patients with Philadelphia chromosome [t(9;22)]–positive chronic 

myelogenous leukemia producing the enzymatically aberrant Bcr-Abl31,32 resulted in near-

normal life expectancy for patients with this previously fatal leukemia.

In 2001, the human genome was sequenced.33 Although this milestone represented an 

arduous and tremendously expensive endeavour, both the price and time required for 

sequencing have decreased precipitously, with technology advancing in a manner 

unparalleled in human history. A plethora of first- and second-generation precision medicine 

trials have since been conducted (Tables 1 and 2). They include, but are not limited to, the 

first pan-histology biomarker-driven trial using mostly protein markers,1 the prospective 

molecular profiling of patients with advanced cancer in the phase I clinical trials setting 

(IMPACT trial)2,4, the SHIVA randomized trial,5 trials assessing customized 

combinations6,12, and trials including transcriptomics.13

Innovative clinical trial designs for precision medicine

Traditionally, oncology trials are drug-centered, aiming to identify common attributes 

among patients (e.g., their tumor type or, more recently, a shared genomic abnormality) and 

fit them into a trial with a specific drug regimen. The large variability in genomic subgroups, 

microenvironment, baseline characteristics, comorbidities, and other covariates resulted in 

tumor-specific clinical studies encompassing a tremendously heterogeneous population in 

histology-specific, gene-agnostic trials. Phase III randomized trials were often critical for 

regulatory approval of a novel agent/regimen, especially since the antitumor activity of a 

new drug/regimen was frequently only marginally better than the comparator arm (usually, 

conventional therapy), perhaps because the regimen was effective in only a small subgroup 

of the diverse population represented by any specific histology.

Basket, umbrella, platform, octopus, and master protocols:

More recently, basket designs have emerged that target a common genetic defect27. The 75% 

objective response rate noted across tumor types with larotrectinib, which targets NTRK 
fusions, best exemplifies the potential of the basket gene-directed, histology-agnostic model, 

though other single-gene targets have proven much less responsive.27 Umbrella trials involve 

a single histology and different treatments based on the genomic alterations in patient 

subgroups.34 Other trial designs include platform trials, which use a single analytic 

technique, such as NGS, to identify genomic or other biomarkers in tumors with multiple 

histologies; octopus trials (also referred to as “complete phase I trials”) that have multiple 

arms testing different combinations featuring a particular drug; and master protocols, which 

encompass trials with several histologic arms (previously, “broad phase II trials”) or multiple 

platform, basket, or umbrella trials or sub-trials.2–4,6 Randomization has also evolved, with 
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the emergence of Bayesian adaptation, which allows dynamic modifications of 

randomization based on small numbers of patients and realtime outcomes.

From drug-centered to patient-centered studies:

The ultimate goal of precision medicine is an individualized, patient-centered (rather than 

drug-centered) trial based on the best available biomarkers. In “N-of-1” trials, each patient’s 

treatment is considered separately on the basis of molecular, immune, and other biologic 

characteristics. These trials involve customized drug combinations tailored to individual 

patients.12 Determining efficacy in “N-of-1” trials requires assessing the “strategy” of 

matching patients to drugs, rather than treatments, which differ from patient to patient.

Real-world data:

With advanced computer data “processing” capabilities, real-world registries and data 

mining are expanding. Two drug approvals by the FDA were based, at least in part, on such 

data: pembrolizumab for any solid tumor with a mismatch repair gene defect (https://

www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm56004”0.htm) and 

palbociclib for male breast cancer (https://www.fda.gov/NewsEvents/Newsroom/

PressAnnouncements/ucm635276.htm). The stunning possibility exists that real-world data, 

if confirmed to accurately portray the anticipated results of prospective trials, will 

dramatically accelerate the drug approval process.

Genomic and other biomarkers

Genomics has been the cornerstone of precision medicine studies. Beyond genomics, RNA 

and protein profiling, with proteins being the effectors of signaling, also appear to be 

important in mediating biologic impact. Interestingly, matching patients to drugs on the 

basis of genomics has proven more effective in improving outcome than matching on the 

basis of protein assays, perhaps for technical reasons24. Despite the current practical 

limitations, protein and transcript assays may provide essential information when integrated 

with genomics.13 Recently, panels that incorporate immune signatures, based on DNA, 

RNA, and/or proteins, have also gained clinical significance.35

Genomics:

Given the advances in NGS technologies and the large number of laboratories in the US that 

perform Clinical Laboratory Improvement Amendments (CLIA)-certified NGS, 

optimization of the accuracy, reproducibility, and standardization of sequencing methods; 

variant annotation; and data interpretation is critical. Guidelines for the validation of NGS 

panels36 and the interpretation and reporting of genomic variants have been developed37. 

Although whole-genome sequencing is not yet the standard practice in the clinic, the FDA 

has approved two NGS panels that include hundreds of genes.38

Most genomic sequencing involves tissue, but blood-derived circulating tumor DNA 

(ctDNA), circulating tumor cells39, and exosomes40 are increasingly used, with the latter 

two reflecting the contents of live cells.

Tsimberidou et al. Page 4

Cancer Treat Rev. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm56004
https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm56004
https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm635276.htm
https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm635276.htm


Blood-derived cell-free DNA analysis: Clinical-grade ctDNA testing, which is non-

invasive and reflects tumor heterogeneity (because tumor DNA may be leaked into the 

bloodstream from multiple metastatic lesions), is increasingly being used to select anti-

cancer therapy and to monitor subclone dynamics during treatment.41,42 The discordance 

noted in some cases between results of ctDNA testing and tumor tissue genotyping 

analysis43 could reflect technical issues but might be attributable to the following biologic 

reasons: (i) tumor NGS measures genomics in the small piece of tissue biopsied while 

ctDNA assesses shed DNA from multiple sites; (ii) ctDNA is associated with tumor load and 

can be detected at low levels.

Blood-derived circulating tumor cell (CTC) analysis: The presence of CTCs, which 

are epithelial tumor cells, has been independently associated with worse survival in several 

types of cancer.44–46 For example, in a prospective, multicenter, double-blind study, the 

number of CTCs in patients with untreated metastatic breast cancer correlated with shorter 

progression-free survival (PFS) and overall survival (OS).44 CTCs may also be a predictive 

biomarker for chemotherapy and immunotherapy.45,47 However, the use of CTCs in clinical 

practice has not been fully established.48 Finally, serial CTC analyses might enable real-time 

surveillance of the disease. A comparative study of five prospective randomized phase III 

trials in 6,081 patients with metastatic castration-resistant prostate cancer assessed the 

prognostic value of CTCs compared to prostate-specific antigen.49 CTC ≥0 at baseline and 

at week 13 from treatment initiation was associated with OS. The investigators demonstrated 

that CTC monitoring was a robust and meaningful response endpoint for early-phase clinical 

trials in this setting.49

Transcriptomics:

Transcriptomics refers to the study of RNA transcripts and their function. Transcriptomic 

analysis is performed using high-throughput technologies, including microarrays and RNA 

sequencing and it is a potentially valuable tool, particularly when there is discrepancy 

between genomic alterations and gene expression. Transcriptomics are utilized to identify 

prognostic and predictive gene expression signatures50,51, to explore miRNAs and their role 

in mRNA regulation52,53 and to identify the tissue of origin in cancer of unknown primary.
54–56 The first solid tumor precision medicine trial to use transcriptomics in the clinic--

WINTHER---compared RNA expression in tumors to that in adjacent normal tissue and 

demonstrated that transcriptomics increased the number of patients that could be matched to 

therapy.13 Comparing tumor to normal tissue from the same patient may be necessary 

because of the large inter-patient variability in normal RNA expression. Other investigators 

have also used transcriptomics to select targeted treatments in patients with advanced solid 

tumors.57,58 Challenges that prevent extensive use of transcriptomic biomarkers are 

degradation and fragmentation of RNA in formalin-fixed, paraffin-embedded tissue samples, 

complexity of required bioinformatic analysis of profiling data and low reproducibility of 

the results.

Proteomics:

Proteomic analysis using immunohistochemical and other assays of tumors from patients 

with refractory metastatic cancer led to the identification of molecular targets that could 
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guide therapeutic decisions and was associated with longer PFS compared to the patients’ 

PFS with their prior therapy (using patients as their own controls).1 Proteomic assays are 

used in clinical practice to identify prognostic or predictive biomarkers for targeted 

treatments (hormone receptor expression, HER2 overexpression, ALK expression). 

However, the weaker correlation of proteomic markers, compared to genomic markers, with 

clinical outcomes suggests that technical issues should be addressed.24 In a meta-analysis of 

phase 1 clinical trials of small molecules that used a genomic biomarker vs. those that used a 

protein biomarker, the median response rate was 41% vs. 25%, respectively (p = 0.05).24 

Ongoing studies with targeted therapies include correlative analyses using peripheral blood 

and tumor tissue to identify proteomic biomarkers of response or resistance to treatment 

(LEEomic, NCT03613220 and BABST-C, NCT03743428).

Immunotherapy and cellular therapy

By reactivating the innate immune antitumor response, immunotherapy has provided a major 

breakthrough in oncology treatment.28,59 Several novel approaches are currently being 

explored: checkpoint blockade, oncolytic viruses, cell-based products, modified cytokines, 

CD3-bispecific antibodies, vaccine platforms, and adoptive cell therapy.60

Checkpoint blockade:

There are seven FDA-approved checkpoint inhibitors: ipilimumab, pembrolizumab, 

nivolumab, avelumab, cemiplimab, durvalumab, and atezolizumab. Selected patients with 

advanced disease have remarkable response, including durable complete remission (CR). 

Despite the significant benefit noted in patients with diverse tumor types treated with 

checkpoint inhibitors, approximately 80% of patients across cancers do not experience 

beneficial effects. In the era of precision medicine, genomics, transcriptomics and other 

technologies are employed for the identification of biomarkers that predict benefit from 

immunotherapy. Interestingly, biomarkers predicting checkpoint inhibitor responsiveness are 

genomic: high tumor mutational burden (TMB)28,59,61, mismatch gene repair defects 

resulting in high microsatellite instability (MSI-H) (and, thus, high TMB)29,62, PBRM1 
alterations63,64, and PDL1 amplification.65 Specifically, TMB has been shown to predict 

clinical benefit from checkpoint inhibitors.66 In an analysis of 151 of 1,638 patients who 

were treated with immunotherapeutic regimens and had TMB evaluation, high (≥ 20 

mutations/mb) TBM was independently associated with significant improvement in PFS and 

OS compared to low to intermediate TMB.66 Other studies have however questioned the use 

of TMB as a biomarker.67,68

Given its strong association with response to immunotherapy, MSI-H is an established 

biomarker for response to checkpoint inhibitors.69,70 MSI-H tumors have high TMB, often 

accumulating >1,000 non-synonymous genomic mutations, leading to tumor-specific 

proteins, known as neoantigens. Due to high clinical benefit rates, immunotherapeutic 

regimens have been approved by the FDA for the treatment of patients with advanced MSI-

H colorectal cancer71–73 or MSI-H tumors, irrespective of the organ of origin.74 Finally, 

defects in DNA proofreading proteins polymerase δ (POLD1) and polymerase ε (POLE) 

lead to increased TMB and are associated with response to immunotherapy.75–77 For 
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instance, of 4 patients with non–small cell lung cancer with deleterious mutations in POLD1 

and POLE (whole-exome sequencing, [WES]), 3 patients with the highest TMB responded 

to pembrolizumab.75 Defects in other DNA repair systems might also be associated with 

response to immunotherapy. The predictive role of homologous recombination deficiency 

(HRD) is being evaluated in various tumors, including breast and ovarian cancer. Early 

phase clinical trials demonstrating that these patients may benefit from the addition of 

immunotherapy to poly ADP-ribose polymerase (PARP) inhibitors, should be confirmed 

with additional studies.78,79

Furthermore, PBRM1 molecular alterations are evaluated as genomic biomarkers predicting 

checkpoint inhibitor responsiveness. Specifically, PBRM1 alterations were evaluated in a 

study of 35 patients with metastatic renal cell cancer treated with anti-programmed death-1 

(PD-1) regimens.63 WES revealed loss-of-function (LOF) mutations in the PBRM1 gene 

that predicted response to immunotherapy. Notably, the PBRM1 gene encodes for a protein 

of the chromatin remodeling complex, possibly interfering with hypoxia, and immune 

signaling pathways.63

Another biomarker that predicts benefit from immunotherapy is PD-L1 amplification.65 In a 

retrospective analysis, this marker was identified in 0.7% (843 of 118,187) patients of 

various tumor types and it did not always correlate with PD-L1 expression. Six of 9 (66.7%) 

patients with PD-L1-amplified solid tumors had an objective response to checkpoint 

inhibitors, and their median PFS was 15.2 months.65 PDL1 expression, assessed by 

immunohistochemistry on tumor cells or immune cells can be used as a response marker, 

albeit a suboptimal one.80 Approximately 20% of FDA approvals of immunotherapeutic 

agents are based on companion PD-L1 diagnostic testing.81

Genomic markers may also predict resistance---loss of JAK2 and beta 2 microglobulin 

mutations82—or hyper-progression (accelerated progression) after checkpoint blockade---

MDM2 amplification and EGFR alterations.83 WES of tumor tissue from 4 patients with 

advanced melanoma whose disease was resistant to anti–PD1 therapy, demonstrated LOF 

mutations in genes involved in interferon-receptor signaling and in antigen presentation 

(JAK1/2, β2-microglobulin).82 Importantly, PTEN loss is associated with resistance to 

immunotherapy in patients with melanoma, suggesting that targeting the PI3K/AKT/mTOR 

pathway may overcome resistance to immunotherapy.84 In our opinion, it is plausible that 

when PI3K/AKT/mTOR pathway alterations or PTEN loss are the key drivers of the disease, 

immunotherapy may have limited, if any, antitumor activity. Similarly, STK11 mutations and 

β-catenin pathway alterations are reportedly associated with resistance to immunotherapy.
85,86

In summary, the available biomarkers are insufficient to adequately predict response to 

immunotherapy. Novel strategies may enhance our ability to identify biomarkers 

longitudinally, incorporating ctDNA analysis87 or tumor tissue immune, genomic, 

transcriptomic, and proteomic analysis.
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Adoptive cell therapy

Adoptive cell therapy (ACT) is an innovative personalized treatment approach that enhances 

a patient’s immune system leading to specific tumor cell killing. Immune cells derived from 

a patient’s blood or tissue are expanded in vitro and then reinfused into the patient. These 

immune cells may be reprogrammed to recognize tumor-specific antigens.60,88 Types of 

ACT include tumor-infiltrating lymphocyte (TIL) therapy, chimeric antigen receptor (CAR) 

T-cell therapy, engineered T-cell receptor (TCR) therapy and natural killer (NK) cell therapy.

TILs:

ACT of TILs is based on the use of T-cells that have infiltrated a patient’s tumor. Autologous 

cells are being harvested and administered to patients after their expansion and activation. 

This approach has shown promising results in metastatic melanoma89–92, nasopharyngeal, 

and cervical carcinoma.93,94 In three sequential clinical trials in patients with metastatic 

melanoma who had failed standard therapy, the use of autologous TILs was associated with 

objective response rates of 49%, 52%, and 72%, respectively; durable CRs were reported in 

22% (20 of 93) of patients; and clinical benefit was observed irrespectively of prior therapy.
89 Ongoing clinical trials assess the role of TIL therapy in various solid tumors 

(NCT03645928, NCT03935893, NCT03108495, NCT03083873).

CAR T-cells:

CAR T-cells are a type of adoptive T-cell therapy in which autologous T-lymphocytes are 

genetically engineered to recognize the antigens expressed on malignant cells.95 Adoptive T-

cell therapy has resulted in remarkably high rates of durable CR in hematologic 

malignancies, including in patients with refractory disease. Therefore, the FDA has approved 

CAR T-cells for the treatment of pediatric patients and young adults with relapsed/refractory 

B-cell precursor acute lymphoblastic leukemia (Kymriah™, https://www.fda.gov/drugs/

resources-information-approved-drugs/fda-approves-tisagenlecleucel-adults-relapsed-or-

refractory-large-b-cell-lymphoma) and adult patients with relapsed/refractory diffuse large 

B-cell lymphoma (Yescarta™, https://www.fda.gov/vaccines-blood-biologics/cellular-gene-

therapy-products/yescarta-axicabtagene-ciloleucel). CAR T-cells are currently being 

evaluated in solid tumors.96,97

TCR therapy:

This approach uses T-cell receptor (TCR) engineered T-cells, and involves retroviruses that 

enable integration of new TCR transgene targeting antigens, which are expressed at high 

levels on different cancers into the genome of T-cells.98 TCR therapy has been assessed in 

hematologic and solid malignancies.99–103 Current trials evaluate treatment-associated 

toxicity, binding affinity to tumor antigens and efficacy in carefully selected patients with 

increased tumor burden.

NK cell therapy:

Natural killer (NK) cells are cytotoxic lymphocytes that play a critical role in innate 

immunity. NK cells do not cause graft-versus-host disease, which makes them promising 

candidates for cancer treatment. Treatment of relapsed/refractory acute myeloid leukemia 
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with haploidentical NK cells and recombinant human interleukin-15 induced CR in 32% of 

patients.104 Clinical trials are currently evaluating CAR-NK cells in hematologic 

(NCT03056339, NCT00995137) and solid (NCT03656705, NCT03383978) malignancies.

Personalized vaccines (vaccinomics):

The accumulation of somatic mutations in cancer can generate cancer-specific neo-epitopes. 

Autologous T-cells often identify these neo-epitopes as foreign bodies, which makes them 

ideal cancer vaccine targets. Every cancer has its own unique mutations, but a small number 

of neo-antigens are shared between cancers. Theoretically, technological advances will soon 

result in rapid mapping of mutations within a genome, rational selection of vaccine targets 

such as neo-epitopes, and on-demand production of vaccines tailored to a patient2019s 

individual tumor. Alternatively, off-the-shelf vaccines for tumors with shared epitopes might 

also be exploitable.

Several personalized vaccines are currently being evaluated in clinical trials.105,106 For 

example, investigators used computational prediction of neo-epitopes to design personalized 

RNA mutanome vaccines for patients with metastatic melanoma.105 Two of the five patients 

treated had objective responses to the vaccine alone, while a third patient had a CR to 

treatment with the vaccine combined with PD-1 blockade.105 In another study of vaccine-

induced polyfunctional CD4+ and CD8+ T-cells targeting unique neoantigens in patients 

with melanoma106, four of six vaccinated patients had no recurrence at 25 months after 

vaccination.106

Sipuleucel-T, the first FDA-approved therapeutic cancer vaccine, is produced via ex vivo 
activation of autologous peripheral-blood mononuclear cells by a recombinant fusion protein 

comprised of prostatic acid phosphatase and granulocyte–macrophage colony-stimulating 

factor.107 Sipuleucel-T is used to treat metastatic castration-resistant prostate cancer on the 

basis of results of a randomized, double-blind, placebo-controlled phase III trial in which 

patients who received Sipuleucel-T had longer survival than those who received placebo 

(25.8 months vs. 21.7 months, respectively; p=0.03).107

Challenges and solutions for the optimal implementation of precision 

medicine

Genomic studies have unveiled the reality of tumors—they are tremendously heterogeneic 

and complex, and optimized therapy often does not result from classical clinical research 

and practice models.

Precision medicine studies (Tables 1 and 2) demonstrate the major challenges in designing 

trials for this new paradigm. First, the rate of matching patients to drugs in these trials ranges 

from 5% to 49% and is mostly in the 15% to 20% range. Failure to match patients is 

attributed to (i) enrollment of individuals with end-stage disease, who deteriorate or die 

early; (ii) use of small gene panels that yield limited actionable alterations; (iii) delays in 

receiving and interpreting genomic results; and (iv) difficulty accessing targeted therapy 

drugs and/or limited drug availability. Some solutions provided by trials with higher 

matching rates, e.g., I-PREDICT12 (matching rate, 49%), include: (i) use of clinical trial 
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navigators and medication acquisition specialists; (ii) application of a large NGS panel with 

>200 genes; (iii) creation of just-in-time electronic molecular tumor boards immediately 

upon physician request; and (iv) exploitation of biomarkers to match patients to 

chemotherapy, hormonal therapy, and immunotherapy (in addition to gene-targeted agents). 

The majority of these trials2,3,12,24 have shown improvement in clinical outcomes when 

treatments are matched to drugs compared to when they are not. Importantly, malignancies 

have complicated molecular biology, and use of personalized combinations of drugs that 

address a higher percentage of the aberrations present in an individual cancer is associated 

with better outcomes than more limited matching.6,7,12,13

Other major hurdles encountered in the implementation of precision medicine include the 

following: (i) Potential differences in response to matched therapy depending on histology 

and/or genomic co-alterations. In contrast to molecular abnormalities that predict tumor 

agnostic response to treatment (e.g., NTRK fusions, MSI-H)27,72,74, selected genomic 

biomarkers are predictive in specific tumor histologies.108,109 (ii) The heterogeneity, 

complexity, and constant evolution of genomic landscapes. Due to significant heterogeneity 

between primary tumor and metastatic sites, molecular profiling of tumor tissue obtained 

from a single lesion may not always be representative of the systemic disease.110,111 

Additionally, under the pressure of targeted treatments, tumor molecular profile constantly 

evolves, with emerging resistant clones and new molecular alterations driving disease 

progression.112,113 (iii) The need to screen large numbers of patients in order to find 

specific/rare genomic defects (for instance, NTRK fusions).27,108,109 (iv) Incomplete 

biologic/molecular profiles with which to select therapy; suboptimal technology and 

resources to understand completely the drivers of cancer in individual patients; (v) 

Considerable delays in the activation of clinical trials; (vi) differences in the metabolism and 

adverse effects of study drugs in various ethnic groups; (vii) lack of agreement between 

assays from different diagnostic companies/laboratories; and (viii) most importantly, lack of 

access to drugs for patients with limited resources as well as excessive eligibility criteria that 

rule out large swaths of patients with real-world co-morbidities. Approximately 3–5% of 

patients with cancer are enrolled on clinical trials and accrual is limited by overly restrictive 

eligibility criteria and limited access to drugs.114 ASCO, the Friends of Cancer Research, 

and the FDA recommended to broaden eligibility criteria to allow more patients to 

participate in clinical trials and gain benefit from novel investigational therapies;115 and 

consequently participants will be representative of the actual patient population, increasing 

generalizability of the results. Patient enrollment could be enhanced by national and 

worldwide collaborations, as shown in multi-institutional trials.116,117 Finally, the Clinical 

Trials Transformation Initiative (CTTI), has been developed to examine the challenges and 

propose solutions to improve trial recruitment.118

Several initiatives might help overcome the challenges introduced by our emerging 

understanding of cancer biology: (i) molecular profiling (tissue, blood) should be used at the 

time of diagnosis and during the course of the disease, the latter to monitor response and 

resistance; (ii) completion of molecular profiling should be expedited; and (iii) bioinformatic 

analysis should be optimized to include the key drivers of carcinogenesis.
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With the current excitement about the promise of immunotherapy, a large proportion of 

patients are assigned to immunotherapy trials without undergoing molecular profiling or 

immune marker identification. Although a significant minority of these patients will 

experience a clinical benefit and prolonged survival, the majority will have disease 

progression and/or significant adverse events. Therefore, the incorporation of biomarkers 

into the selection of patients for immunotherapy needs to be optimized.

Finally, the immense potential of real-world data needs to be addressed. Validation of 

database information can be performed by comparing outcomes of clinical trials that led to 

approval with those in the database; if outcomes are similar, real-world data can then be used 

to rapidly predict new applications for medicines.

Conclusions and future perspectives

Remarkable biotechnological advances are transforming cancer care. Tumor and cell-free 

DNA profiling using NGS, as well as proteomic and RNA analysis, and a better 

understanding of immune mechanisms are optimizing cancer treatment selection. A major 

challenge in the therapeutic management of patients with advanced metastatic cancer is the 

complexity of tumor biology. This complexity is attributed to highly variable patterns of 

genetic and epigenetic diversity and clonal architecture associated with spatial expansion, 

proliferative self-renewal, migration, and invasion. The complexity is amplified by the 

dynamic, Darwinian evolutionary character of cancer cells, which undergo sequential 

searches for mechanisms to escape environmental constraints. Such cellular evolution 

involves the interplay of advantageous “driver” lesions, neutral or “passenger/hitchhiker” 

abnormalities, molecular changes in the tumor cells that increase the rate of other genomic 

anomalies, and modifications to the microenvironment and immune machinery that alter the 

fitness effects of other variables.119 Strategies to address tumor complexity include targeting 

self-renewing cancer stem cells to overcome their plasticity and adaptability, impacting the 

microenvironment, and turning cancer into a chronic disease (using cytostatic drugs to 

suppress cell division and new mutations). The complicated nature of tumor biology is also 

the result of interactions between the tumor, host, and local ecosystem, including HLA type, 

genetic polymorphisms, microbiome, immune cell repertoire, and tumor microenvironment.
120 New strategies, some of which now have a proven track record, include gene-directed 

therapies and a host of immune-targeted approaches (e.g., checkpoint blockade, CAR T-

cells, personalized vaccinomics).120,121

An overarching theme is that optimized therapy may require the utilization of combinations 

of drugs and/or strategies that attack the tumor from multiple angles. It is time to recognize 

the possibility that advanced computer implementation could generate real-world data that 

expand our understanding of cancer, rapidly identify new treatments, and create personalized 

drugs or immune therapies.
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Highlights

• Genomic studies have revealed that tumors are significantly heterogeneous 

and complex and therefore optimized therapy does not often result from 

classical clinical research and practice models.

• Complete tumor and cell-free DNA profiling, exome sequencing, 

transcriptomics, proteomics, and exploration of the immune machinery hold 

the promise of complete characterization of drivers of carcinogenesis.

• Precision oncology focuses on gene-directed, histology-agnostic treatments, 

which are individualized for each patient on the basis of biomarker analysis, 

and immunotherapy, including adoptive cell therapy.

• Innovative trial designs, including “N of 1” models, will enable optimization 

of treatment for individual patients and to expedite drug discovery and 

approval.
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