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Abstract

We continue our review of issues related to measurement error and misclassification in 

epidemiology. We further describe methods of adjusting for biased estimation caused by 

measurement error in continuous covariates, covering likelihood methods, Bayesian methods, 

moment reconstruction, moment-adjusted imputation and multiple imputation. We then describe 

which methods can also be used with misclassification of categorical covariates. Methods of 

adjusting estimation of distributions of continuous variables for measurement error are then 

reviewed. Illustrative examples are provided throughout these sections. We provide lists of 

available software for implementing these methods and also provide the code for implementing 

our examples in the Supporting Information. Next, we present several advanced topics, including 

data subject to both classical and Berkson error, modeling continuous exposures with 

measurement error and categorical exposures with misclassification in the same model, variable 

selection when some of the variables are measured with error, adjusting analyses or design for 

error in an outcome variable, and categorizing continuous variables measured with error. Finally, 

we provide some advice for the often met situations where variables are known to be measured 

with substantial error, but there is only an external reference standard or partial (or no) information 

about the type or magnitude of the error.

Keywords

Bayesian methods; Bias analysis; Distribution estimates; Likelihood methods; Moment 
Reconstruction; Multiple imputation

1. Introduction

In the first part of this paper we presented the basic concepts underlying the effects of 

measurement error and misclassification of variables, described validation and other types of 

studies that provide information regarding the statistical properties of the error involved in 

measurement, discussed study design and impact of measurement error on sample size, and 

presented some methods of adjusting inference for measurement error in simple but 

commonly occurring situations in epidemiology. In this second part, we present some more 

complex methods of adjusting estimates or inference for measurement error and 

misclassification (Section 2), discuss methods to estimate a distribution of an outcome 

subject to error (Section 3), review the software available for performing such analyses 
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(Section 4), and describe some recent developments regarding more advanced problems 

(Section 5). The methods described in both Parts 1 and 2 of our tutorial are based on 

knowledge of the type and magnitude of the measurement error. In Section 6, we provide 

advice on how to deal with the all-too-common situations in which such information is 

imperfect or not available for study participants.

2. Analysis of studies where one or more of the major covariates is 

measured with error – more complex methods of adjustment

In Section 6 of Part 1, we described two methods of adjusting estimates of association 

between exposure and outcome when a continuous exposure is measured with error – 

regression calibration and simulation-extrapolation (SIMEX). Each of these methods is 

conceptually simple. For regression calibration, the exposure measured with error is replaced 

by a predicted value of the true exposure and the main analysis proceeds as usual, albeit with 

adjustment for the standard errors of the estimated association parameters. With SIMEX, 

one repeatedly introduces more measurement error to approximate a curve for the 

relationship between the measurement error variance and the regression coefficient in order 

to estimate the value of that parameter in the absence of measurement error. Sections 2.1–2.4 

deal with some more complex but general methods for continuous variables that have 

measurement error. Some of these methods, such as the Bayesian approach or multiple 

imputation, can also handle covariate misclassification. Section 2.5 discusses approaches for 

categorical variables subject to misclassification.

2.1 Likelihood methods

Likelihood methods are pervasive in statistics. This section considers maximum likelihood 

estimation in measurement error problems. However, likelihood is also a building block for 

Bayesian inference, which will be discussed in Section 2.2. In the measurement error 

literature, discussion of maximum likelihood methods is given in the books by Carroll et al,1 

Buonaccorsi2 and Yi.3

Figure 1 illustrates the steps in obtaining the likelihood function in order to carry out 

measurement error adjustment and perform the likelihood analysis. For non-Berkson error 

(i.e. classical or linear measurement error model), these steps are as follows:

Step 1: Perform a likelihood analysis. One must specify a parametric model for every 

component of the data. Any likelihood analysis begins with the model one would use if X 

were observable. We denote the likelihood of this model as fY|X,Z(Y|X,Z,β), where β 
denotes the parameters of the model. For example, in logistic regression, with H(s) = 

exp(s)/{1 + exp(s)}, the likelihood function is: {H(β0 + XTβX + ZTβZ)}Y {1 − H(β0 + XTβX 

+ ZTβZ)}1−Y.

Step 2: Choose the error model. This could be a classical error model, a linear measurement 

error model, a Berkson model, etc. Presuming non-Berkson error, the likelihood of the 

model for X* given (X, Y, Z) can be denoted by fX*|X,Y,Z(X*|X,Y,Z,α), where α denotes the 

parameters of the model. In the case of non-differential classical measurement error, for 
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example, if the measurement error is normally distributed with constant variance σU
2 , then 

fX*|X, Y, Z(X* |X, Y, Z, σU
2 ) = (2πσU

2 )−
1
2exp −(X* − X)2/(2σU

2 ) . Note that this is a slightly 

stronger version of non-differential error, which in general only requires X* to be 

conditionally independent of Y given X. Here, X* is conditionally independent of Y and Z 

given X.

Step 3: If one has a classical or linear measurement error model, specify a distribution for 

the unobserved X given the observable covariates Z, which we call fX|Z(X|Z,γ). The need to 

estimate the distribution of the unobserved X given Z is described in detail in Chapter 8 of 

Carroll et al.1 For example, one might assume that X is normally distributed with mean γ0 + 

ZTγZ and variance σX
2 . In this example, 

fX|Z(X |Z, γ) = (2πσX
2 )−

1
2exp −(X − γ0 − ZTγZ)2/(2σX

2 ) .

Step 4: Form the likelihood. When X is not observed and is continuous, the likelihood 

function of the observed (Y,X*) given Z is 

∫ fY|X, Z(Y |X, Z, β)fX*|X, Z(X* |X, Z, α)fX|Z(X |Z, γ)dX. If X is discrete, the likelihood is 

∑fY|X, Z(Y |X, Z, β)fX*|X, Z(X* |X, Z, α)fX|Z(X |Z, γ).

Step 5: Find the values of the parameters (β,α,γ) that maximize the likelihood.

As a brief aside, note that Steps 2 through 4 are specific to non-Berkson error and the 

analogous procedures for Berkson error would be rather different. Typically, a non-

differentiality assumption would be needed, so that the Step 1 specification is in fact for (Y|

X, X*, Z). Then the other required specification is the Berkson model for (X|X*,Z), and the 

product of the two specified densities describes (Y,X|X*,Z). This is then integrated to yield a 

likelihood function based on (Y|X*,Z).

Steps 4 and 5 (or their counterpart in the case of Berkson error) involve the sometimes hard 

work of computing and maximizing the likelihood function to obtain parameter estimates. 

Because X is latent, that is, unobservable, these steps can be difficult or time-consuming, 

because one must integrate out the possibly high dimensional latent variable. Below, we 

provide a few details about computing and maximizing the likelihood function.

The overall likelihood based on a sample of n individuals is the product of each individual’s 

likelihood function. Typically, one maximizes the logarithm of the overall likelihood in the 

unknown parameters. There are two ways to maximize the likelihood function. The most 

direct is to compute the likelihood function itself, and then use numerical optimization 

techniques. The second general approach is to view the problem as a missing-data problem, 

and then use missing-data techniques; see for example Little and Rubin,4 Tanner,5 and Geyer 

and Thompson.6

Computing the likelihoods analytically is usually easier if X is discrete, as the conditional 

likelihoods are simply sums of terms. For likelihoods in which X is continuous, standard 

numerical methods for integration, such as Gaussian quadrature, can be applied. When 
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sufficient computing resources are available, the likelihood can be computed using Monte 

Carlo techniques.

There are many computer routines for minimizing functions. Since we want to maximize the 

log likelihood, it is typical to multiply the log likelihood by −1 and then minimize it: the 

inverse of the Hessian matrix in such a computation serves as an estimate of the joint 

covariance matrix of all the parameters. See Section 4.4 for further comments on software 

for performing likelihood-based analyses.

The above description covers cases where X is not observed. In cases where X is observed 

for a subset of individuals in an internal validation study, the likelihood of the observed (Y, 

X, X*) conditional on Z must be computed for those individuals separately from the 

remainder of the participants and then the two sets of likelihoods combined. Similarly, if the 

internal validation study involves measurement of, not X, but an unbiased measurement X** 

of X, then an additional measurement error model must be specified for X** and the 

likelihood of the observed (Y, X*, X**), conditional on Z, computed separately for the 

individuals having measurements of X**.

To illustrate the likelihood approach, we use an example already introduced in Part 1 of this 

paper (Section 6). To recap briefly, the Observing Protein and Energy Intake (OPEN) study7 

was a dietary intake validation study using unbiased reference measurements, conducted in 

484 adult volunteers. Participants reported on their dietary intake using a food frequency 

questionnaire (FFQ), provided two 24-hour urine samples for measuring potassium intake, 

and provided samples for measuring total energy intake through a technique known as 

doubly labeled water. The target dietary measure is considered to be average daily potassium 

density intake, i.e. the ratio of potassium intake to total energy intake. The questionnaire 

responses are considered to have linear measurement error and the urinary biomarker data 

are considered to have classical measurement error (since they measure only a single day’s 

intake). The issue to be addressed is the association of log potassium density intake with a 

person’s body mass index (BMI). The dataset is referenced as “Selected OPEN data” [2018].
8

In this analysis, although each participant provided urine samples to measure potassium 

intake, we assume, as in Part 1, that these were available in only the first 250 participants, so 

that the “reference” measure is available in only a subsample of the 484 participants. The 

analysis was performed using the CALIS procedure in SAS. The models required in Steps 

1–3, namely the BMI outcome model (model for Y), the FFQ log potassium density intake 

measurement error model (model for X*) and the log potassium density intake exposure 

model (model for X) are specified in the upper part of Table 1. Note that in this example X 

itself is not observed, even in the validation subset, and instead the biomarker log potassium 

density X**, an unbiased measure of X, is observed in a subset. The measurement error 

model for X** must also be included (see Table 1). Estimates of the regression coefficients 

in the outcome model are presented in the middle part of Table 1. These results are later 

compared with those of Bayesian methods (Section 2.2), moment reconstruction (Section 

2.3), multiple imputation (Section 2.4) and regression calibration (Part 1, Table 2) – see the 

discussions at the end of Sections 2.2, 2.3 and 2.4.
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2.2 Bayesian Methods

Arguably there are advantages and disadvantages to taking a Bayesian standpoint when 

addressing measurement error problems. Perhaps the biggest advantage of a Bayesian 

approach to measurement error correction is an inherent logical and conceptual simplicity. 

After specifying appropriate sub-models and prior distributions for the unknown parameters 

therein, the remaining steps are then a matter of computation. A joint posterior distribution 

of the unknown parameters ensues, and all inferences stem from this in a logical manner. 

However, this does require committing to specific prior distributions for all unknown 

parameters, and not all users will be comfortable with this.

As soon as it was recognized that Markov Chain Monte Carlo (MCMC) computational 

techniques greatly expand the “domain of applicability” for Bayesian methods,9 applications 

to measurement error adjustment quickly followed.10–12 An overview of the Bayesian 

approach to adjusting for measurement error is provided by Gustafson.13 Bartlett and 

Keogh14 make specific comparisons between Bayesian adjustments for measurement error 

and regression calibration (Part 1, Section 6.1), maximum likelihood (Part 2, Section 2.1) 

and multiple imputation (Part 2, Section 2.4).

To give a specific example, suppose one has a parametric exposure model fX|Z(X|Z,γ) for (X 

| Z) parameterized by γ, a parametric outcome model fY|X,Z(Y|X,Z,β) for (Y | X, Z) 

parameterized by β, and a parametric measurement error model fX*|X,Y,Z(X*|X,Y,Z,α) for 

(X* | Y, X, Z) parameterized by α. Note that these are the same specifications as required for 

a likelihood analysis, as described in Section 2.1. Further, assume there is a validation 

subsample, such that additionally the actual exposure X is observed for the first n of the N 

study subjects. Then the joint posterior density of all parameters (in this instance (α, β, γ)) 

and latent variables (in this instance X(n+1):N) can be expressed as

fpost α, β, γ, X n + 1 :N X1:n, X*, Y, Z 1:N ∝ fX Z X1:N Z1:N, γ × fY X, Z Y1:N X, Z 1:N, β ×
fX* Y, X, Z X*1:N Y, X, Z 1:N, α × fprior α, β, γ
,

where the four terms on the right-hand side are, in order, the exposure model density, the 

outcome model density, the measurement error model density, and the prior density of all the 

parameters. MCMC methods can be applied to draw simulated samples from this joint 

posterior density, hence the drawn (α, β, γ) values (upon ignoring the drawn X(n+1):N 

values) are representative of the posterior distribution of the unknown parameters given the 

observed data. Bayesian point and interval estimates are thereby computed as appropriate 

summaries of this MCMC output. Note that this approach frees the user from having to 

explicitly join together two likelihood functions, one for the unvalidated observations and 

another for the validated observations as described in Section 2.1. Arguably this is a 

simplifying feature of proceeding in a Bayesian fashion.

As was seen to be the case with likelihood methods, using the Bayesian paradigm to “glue 

together” three sub-models for exposure, outcome, and measurement has the appealing 

feature that uncertainty propagates across these sub-models in a manner that is both 

principled and automatic. For instance, reported uncertainties (say posterior standard 
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deviations or credible intervals directly computed from the MCMC output) about estimated 

outcome model parameters fully acknowledge the uncertainty about measurement error 

model parameters and exposure model parameters. So the data analyst is less burdened by 

issues of whether uncertainties are correctly propagated than is the case for, say, regression 

calibration (see Part 1, Section 6.1) or SIMEX (see Part 1, Section 6.2) approaches.

Against this coherence and logical simplicity, there are some challenges. General-purpose 

MCMC software for Bayesian analysis is available, including packages such as WinBUGS, 

JAGS, and STAN. However, some very specialized sub-model specifications may not be 

supported by some packages. There is also the more pervasive issue that MCMC works 

better for some models and datasets than others, such that there is a need to examine the 

sampled draws to rule out problems with convergence and/or mixing of the MCMC 

algorithm. (MCMC methods draw realizations of a Markov chain specially constructed to 

have the posterior distribution of parameters and latent variables as its stationary 

distribution, relying on the fact that a Markov chain converges to its stationary distribution 

under weak assumptions.) Bayesian computing is not yet at the level of an “automated black 

box”. Additionally, it can be more challenging to relax modeling assumptions when working 

under the Bayesian paradigm. That is, going from parametric to semi-parametric or 

nonparametric analysis becomes quite intricate, even though there has been much research 

on Bayesian nonparametric methods over the last decade. Papers by Sarkar et al15,16 and 

Sinha and Wang17 are recent examples that bring nonparametric Bayes technology into 

measurement error adjustment problems. Finally, as with all Bayesian analyses, some see the 

requisite specification of a prior distribution of the unknown parameters as a blessing, while 

others perceive it as a curse.

Much of the measurement error literature presumes a “hard” source of information about the 

measurement error magnitude, via observed replicates of a measurement X* that has 

classical measurement error, or data from a validation subsample. Implicit here is the notion 

that if the amount of data increases in the right way, then the values of all the parameters, 

including those describing the measurement error process, would be revealed, i.e., estimated 

consistently. However, Bayesian methods also offer the alternative possibility of using “soft” 

information. For instance, in the absence of replicates or a validation study, subject-area 

experts could assert a range of plausible measurement error magnitudes; a prior distribution 

that puts the vast majority of its mass on this plausible range could then be chosen. Of 

course, this sort of uncertainty would not diminish as more data are collected; so one must 

bear in mind that the final answer incorporates the usual statistical uncertainty arising 

because the sample size is finite, as well as the uncertainty in the experts’ opinions about the 

measurement error magnitude. Related, there is no “free lunch”. If one places a very diffuse 

(or even “improper”) prior distribution on the measurement error magnitude, a 

correspondingly diffuse (or even “improper”) posterior distribution will result. No useful 

measurement error correction can arise without either data or expert opinion to inform the 

magnitude of the measurement error.

We illustrate the Bayesian approach through the same example presented for the maximum 

likelihood analysis in Section 2.1. The analysis was performed in RJAGS. The exposure 

model, outcome model and measurement error models are the same models for the 
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likelihood approach in Section 2.1 and are specified in the upper part of Table 1. Prior 

distributions with minimal information were adopted for the parameters of the exposure 

model, outcome model and measurement error models; all regression coefficients were given 

normal priors (with mean zero and variance 1000) and precision (reciprocal of variance) 

parameters were given gamma priors (with shape and rate both set to 0.01). Estimates of the 

regression coefficients in the outcome model are presented at the bottom of Table 1. The 

results are rather similar to those of maximum likelihood presented in the middle of Table 1, 

and we will see they are also similar to those of the moment reconstruction and multiple 

imputation approaches to be discussed in the next section. The posterior standard deviation 

for the target parameter (describing the relationship between potassium intake and BMI) 

(1.43) is comparable to the standard error obtained for the maximum likelihood estimate 

(1.25).

2.3 Moment reconstruction and moment-adjusted imputation

Moment reconstruction (MR) and moment-adjusted imputation (MAI) are methods for 

handling covariate measurement error in which the goal is to construct a quantity XM(X*, Y) 

that has the same distribution as X, and such that (XM,Y) has the same joint distribution as 

(X,Y). If covariates Z are also to be included in the regression of Y on X, then the above 

distributions are conditional on Z. The quantity XM(X*, Y) is generally constructed by 

estimating moments of the joint distribution of (X, Y) from validation data, and then is 

substituted for X into the desired outcome regression model to produce an estimate βX. 

Standard errors that account for the extra variability in the resulting estimate of βX, which 

comes from the uncertainty in the parameter estimates used to construct XM(X*, Y), are 

necessary and can be obtained using the bootstrap. The bootstrap sample in this case is 

stratified on membership in the validation subset.

In MR18, XM(X*, Y, Z) is constructed by matching only the first two moments of the joint 

distribution for (X, Y). In the case of classical measurement error this is achieved by 

defining XM(X*, Y, Z) as:

XM(X*, Y, Z) = E(X*Y, Z) + G{X* − E(X*Y, Z)} (1)

where G = var(X | Y, Z)1/2{var(X* | Y, Z)}−1/2. This expression can be extended to the linear 

measurement error model by replacing the first E(X* | Y, Z) on the right hand side with E(X 

| Y, Z), keeping G as before.19 When the measurement error parameters are assumed known 

and the error is non-differential, MR is equivalent to regression calibration in linear 

regression, and is therefore consistent. When the measurement error is non-differential and 

the error model parameters are estimated in an ancillary study, MR is not equivalent to 

regression calibration, but both are consistent. MR is also consistent for logistic regression 

with normally distributed covariates, unlike regression calibration which is only 

approximately consistent [Carroll et al,1 p.91]. Under conditions of differential measurement 

error, MR is still consistent as the necessary moments are estimated conditional on Y, and in 

this it can prove advantageous compared to regression calibration, which is biased.

MAI is an extension of MR, in which the moments of (XM(X*, Y, Z),Y | Z) match more than 

the first two moments of (X, Y | Z). Thomas et al20 recommended matching the first 4 
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moments and observed that when X is normal, its performance is similar to regression 

calibration in linear and non-linear regression models. However, MAI has been shown 

superior to regression calibration for logistic regression where the distribution of X is far 

from normal. MR and MAI may also be used for several covariates measured with error.18,21

We illustrate MR with an example from the OPEN study, similar to the one in the previous 

two sections. We consider the regression of BMI on log sodium intake, while controlling for 

age and sex. We choose this example as there is evidence in the data that the measurement 

error in self-reported FFQ sodium intake is differential with respect to the BMI outcome 

variable, so that regression calibration is an inappropriate method of adjustment. The 

estimated regression coefficients of the unadjusted model, using FFQ-reported sodium 

intake, are presented in the second column of part A of Table 2. The estimated coefficient for 

log sodium intake is 1.13, and its z-value 1.97. However, the z-value (unlike for a single 

covariate with non-differential error) is invalid because the error is differential (see Part 1, 

Table 1). Parts B1 and B2 of Table 2 show the results of the models for E(X|Y,Z) and E(X*|

Y,Z), which are both needed for the construction of XM(X*,Y,Z) = E(X|Y,Z ) + G{X* − 

E(X*|Y,Z)}. The third column of Part A of Table 2 shows the MR adjusted estimated 

coefficients for log sodium intake, age and sex. The standard errors are obtained by 

bootstrap. One can see that the estimated coefficient for log sodium intake is 12.21, about 10 

times larger than the unadjusted estimate, with a z-value of 4.53. This means that a 30% 

increase in sodium intake (change in log sodium intake of 0.26) is associated with an 

increase of 3.2 BMI units (95% CI: 1.8–4.5), rather than 0.3 units obtained from the 

unadjusted model. (Note that this very large effect cannot be directly causal since sodium is 

a micronutrient, supplying no calories. However, it indicates that high sodium intake is 

associated with higher BMI, probably because sodium intake is strongly correlated with 

energy intake.) There is also a notable change in the coefficient for sex from a non-

significant negative association (z=−0.46) in the unadjusted analysis to a significant positive 

association (z=3.16), i.e. higher BMI in women than men for a given age and sodium intake 

(but see also the result for multiple imputation, given in Section 2.4).

MR can also be used as an alternative to regression calibration when measurement error is 

non-differential. In that case, it can be more efficient or less efficient than regression 

calibration depending on the type of data at hand. If we apply MR to the same problem as 

used in Part 1, Section 6.1.1, namely the regression of BMI on log potassium density, we 

obtain a remarkably improved result over that from regression calibration, in terms of the 

variance of the adjusted estimate. One can directly compare the estimates for regression 

calibration presented in Part 1, Table 2 with those obtained for MR here in the third column 

of Table 3. The estimated regression coefficient for log potassium density is −8.13 

(compared to −3.76 for regression calibration) with a bootstrap standard error of 1.77 

(compared to 2.49 for regression calibration). For the full result of the final model, see the 

third column of Table 3. In this case, MR is more efficient than regression calibration and 

reveals a significant negative association of potassium density with BMI. The circumstances 

that cause the greater precision of MR over regression calibration are (i) the quite strong 

association between outcome and exposure, and (ii) the availability of the biomarker in more 

than 50% of the participants. In many studies, the association between the outcome and 

exposure variable is much weaker (for example in studies of disease incidence) and the 
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validation data are available in a much smaller proportion of participants, causing regression 

calibration to be more efficient than MR (see Freedman et al19). We will further consider 

how MR compares to multiple imputation for this example in the next section.

2.4 Multiple imputation

When there is an internal validation subset, in which (X, X*, Z, Y) are all observed, then the 

case of measurement error is really just a problem of missing data.22 If individuals in the 

validation sample are a random sample of the main study population then the unobserved X 

is missing completely at random (MCAR); if the sample is dependent by design on 

covariates, then X is missing at random (MAR) [Little and Rubin,4 Chapter 1]. In either 

case, the distribution of X | X*, Z, Y is the same for those in the validation sample as those 

who are not; thus, the values of X can be imputed from a model for X | X*, Z, Y. Multiple 

imputation (MI), in which the unobserved values X are imputed m times, allows estimation 

of the coefficients in the outcome model and their standard errors [Little and Rubin,4 

Chapter 10]. Under a correctly specified model for X | X*, Z, Y, MI will produce consistent 

estimates for βX and consistent standard errors. Like MR and MAI, and unlike regression 

calibration, MI can handle differential measurement error, since Y is used for imputing the 

unknown X. The same procedure can be used if the error is assumed to be non-differential, 

and a more efficient version of MI may also be constructed under this assumption. Freedman 

et al19 found that in circumstances where regression calibration outperformed default MI, 

the “non-differential” MI method performed similarly to regression calibration. Here, we 

focus entirely on the default version, which accommodates differential error.

As with any setting, the success of MI relies on having sufficient data to build a reliable 

imputation model and on correct specification of that model. For this reason, MI is generally 

not recommended when only an external validation study is available, and coincident 

measures of Y are not available.19,23

It is also possible to use MI when there is an internal validation subset in which, instead of 

X, a measure of X that has classical measurement error is obtained, as well as X*, Y and Z 

(a calibration study – see Part 1, Section 4.2). However, in this case, implementation of the 

method is a little more involved than usual MI. Details are provided in Section A2 of 

Appendix A in Freedman et al.19 This method is the one used in the examples that follow. 

Note, Keogh and White24 described an MI approach for use in the setting of a replicates 

study, assuming availability of repeated measure of the error-prone covariate in some 

individuals, and assuming classical error. More recently, another approach for the setting of 

a validation or replicates study had been described25 based on a modification of the 

substantive model compatible imputation approach for missing data described by Bartlett et 

al (2015),26 and accompanying software is available in R.27

To illustrate MI, we use the same two examples as given for MR in Section 2.3. First, we 

consider the regression of BMI on log sodium intake, while controlling for age and sex. The 

results are presented in Table 2. Part C of the table shows the model that is used as a basis 

for imputing the unknown values of true log sodium intake. Note that this is based on a 

regression of the biomarker log sodium intake on the FFQ log sodium intake, BMI, age and 

sex. One can see that the main variables influencing the imputation are BMI and sex. Note 
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the strong effect of BMI in the imputation model does not imply differential error. The 

fourth column of Part A shows the estimated model of BMI on log sodium intake, age and 

sex, based on 500 multiple imputations. Generally, using a relatively large number of 

multiple imputations is recommended, since one is imputing 100% of the values for the 

unknown true log sodium intake, although no formal recommendations have been 

established on the number of imputations required in this context. The results are similar, 

although not identical, to those obtained from MR (third column, part A of Table 2). The 

coefficient for log sodium intake is again about 10 times the unadjusted estimate and is 

highly statistically significant. The coefficient for sex is large and positive but, unlike for 

MR, does not attain conventional statistical significance. Discrepancies between the results 

of the two methods are not very common, but a careful analyst would perform both methods, 

where possible, to check on the stability of results. What is clear from the results of both 

methods is that the association of BMI with sodium intake appears far stronger than that 

indicated in the unadjusted analysis.

As mentioned with MR, one may use MI also in cases of non-differential measurement error. 

We applied MI to the example of Part 1, Section 6.1.1, which was the analysis of the 

association of BMI with log potassium density. The results are shown in the final column of 

Table 3. The results are in accord with those of MR, indicating a strong negative association 

of BMI with potassium density intake. The same remarks made in Section 2.3, about the 

relative efficiency of MR compared to regression calibration, apply also to MI. The results 

of MR and MI presented in Table 3, showing a strong negative association between BMI and 

log potassium density, are rather similar to those for the likelihood method presented in 

Table 1. However, the standard error (1.25) of the regression coefficient for log potassium 

density intake is considerably smaller for the likelihood method than for the MR and MI 

analyses (1.77 and 2.03, respectively). A possible explanation for this is that the maximum 

likelihood analysis included all the data, whereas the MR and MI analyses, for simplicity, 

omitted 13 participants who provided one urine sample only (instead of two) for the 

measurement of potassium density. When the datasets are identical one would expect MI and 

maximum likelihood to yield very similar estimates and standard errors.

The performance of MI has been compared with other methods, including regression 

calibration and MR in settings of linear and logistic regression19,23,28 and Cox regression.
22,29 These authors found that the optimal method depends on the size of the validation 

subset and degree of measurement error. Shepherd et al28 noted MI worked well in the 

setting of correlated covariate and outcome measurement error in the linear model. With 

censored survival data, implementing MI can be especially challenging; Bang et al29 

recommended implementing multiple methods to compare sensitivity of results to 

assumptions since in reality one rarely knows the true model for the error structure. In the 

case of a linear outcome and linear non-differential measurement error model, a method of 

moments approach (MOM) can also be applied.2 In this case we expect the performance of 

MOM to be similar to that of regression calibration, as seen by Shaw et al. 2018.30
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2.5 Analysis of studies where one or more categorical covariates are subject to 
misclassification

Section 2 of this paper and Section 6 of Part 1 have addressed various methods that can be 

applied when a continuous covariate X is measured with error. The “methods menu” one can 

choose from when faced with a categorical covariate subject to misclassification is similar, 

but not identical.

Likelihood (Section 2.1) and Bayesian methods (Section 2.2) transfer directly and simply 

from the continuous covariate case to the discrete case. In fact, these methods are arguably 

more attractive in the discrete case, since concern about possible model misspecification (for 

the distribution of the unobservable X) is typically reduced. If X is binary and there are no 

precisely measured covariates, then X must follow a Bernoulli distribution, so that there is 

no concern about misspecification. If there are precisely measured covariates Z, then a 

model for X|Z is required, and misspecification could arise. For instance, a logistic 

regression relationship between X and Z might be posited, and might be wrong. But more 

fundamental concerns about the shape of the X distribution do not apply when X is 

categorical. So likelihood and Bayesian methods, as per Sections 2.1 and 2.2, can be applied 

as described. The variable type for X is not particularly consequential for these methods.

In some simple situations, notably when Y and Z (if applicable) are also categorical, closed-

form estimation of parameters is sometimes possible. This literature dates back to at least 

Barron31 who proposed the closed-form “matrix method” applicable when there are main 

study data in the form of a 2 by 2 table for binary (X*, Y) and validation data in the form of 

a 2 by 2 by 2 table for binary (X, X*, Y). Subsequently, Marshall32 proposed an alternative 

closed-form estimator, known as the “inverse matrix method”, by framing the classification 

in terms of predictive values rather than specificity and sensitivity. Later work, notably that 

of Morrissey and Spiegelman,33 Lyles34 and Greenland35 served to both (i), quantify the 

efficiency of these closed-form estimators relative to iteratively computed maximum-

likelihood estimators, and (ii), understand nuances of how the various methods work under 

differential and non-differential misclassification assumptions.

In more involved contexts, the expectation-maximization (EM) algorithm is quite 

straightforwardly applied to compute maximum likelihood estimates of parameters in the (Y 

| X, Z) model.36 Also, just as a categorical X variable is particularly amenable to the EM 

algorithm for likelihood estimation, it is also particularly amenable to MCMC methods (and 

Gibbs sampling specifically) for computing Bayesian estimates. See Joseph et al,37 

Gustafson et al,38 Johnson et al39 and Prescott and Garthwaite40 for examples.

Both regression calibration and moment reconstruction are less obvious strategies to pursue 

explicitly when X is categorical. However, some of the estimators discussed in Morrissey 

and Spiegelman,33 Lyles34 and Greenland35 indeed end up having a regression calibration 

spirit. That is, they can be viewed as replacing X with an estimate of E(X | X*, Z). Also, 

multiple imputation can certainly be applied to problems involving a categorical X. In fact, 

this approach will be rather similar to a Bayesian analysis using MCMC computation.
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The SIMEX method, described in Part 1, Section 6.2, has been extended to handle a 

categorical X variable that is subject to misclassification, using a method termed MC-

SIMEX. Suppose we have a regression model with a discrete covariate X which is subject to 

misclassification.41 The misclassification process is described by the matrix Π, which is 

defined by its components

πij = Pr(X* = i X = j), i = 1, ..., r; j = 1, ..., r . (2)

Π is a r x r matrix, where r is the number of possible outcomes for X. MC-SIMEX employs 

the function (s ≥ 0) defined by:

βX*(s) = βX*(Πs), (3)

where βX*(Πs) denotes the value of the coefficient β* when X* is subject to 

misclassification by Πs, defined as EΛsE−1, with Λ being the diagonal matrix of eigenvalues 

and E the corresponding matrix of eigenvectors. For integer values of s, Π1+s = Πs * Π, 

where * denotes matrix multiplication, and for s = 0, Π0 = Irxr. The central idea of the MC-

SIMEX method is to add extra misclassification to X*. Namely, if X* has misclassification 

probabilities Π in relation to variable X, and X*(s) is related to X* by the misclassification 

matrix Πs, then X*(s) is related to X by the misclassification matrix Π1+s, when these two 

misclassification mechanisms are independent. Thus, the SIMEX algorithm can be applied 

to misclassification in the same manner as the original SIMEX. For details, including the 

variance estimation, see e.g. Küchenhoff et al.42

As an example of adjusting for misclassification in a binary explanatory variable X, we 

consider the study reported by Kraus et al43 on risk factors for sudden infant death syndrome 

(SIDS). Here X is defined as an indicator of maternal use of antibiotics during pregnancy, as 

ascertained from medical record review, while X* indicates the mother’s self-report of 

antibiotic use on a questionnaire. The study employed a case-control design (though the 

same analysis would apply for a cross-sectional or prospective study), recruiting 797 

controls (Y=0) and 775 cases (Y=1) of SIDS. Since medical record review was only 

conducted for a subset of 217 of the controls and 211 of the cases, we are presented with a 

misclassified data problem with an internal validation study. The data are presented in Table 

4. If we ignore the X measurements available for the validated study subjects and simply 

focus on the (X*,Y) association, we estimate a log odds ratio (OR) of 0.35 (corresponding to 

OR=1.42), with a standard error of 0.13, indicating a positive association.

A number of authors have illustrated misclassification adjustment methods using data from 

this study, including Greenland44 and Chu et al,45 who contrast multiple methods, including 

maximum likelihood methods, Bayes methods, and SIMEX. Suspecting the possibility of 

differential misreporting, they applied a likelihood ratio test for the null hypothesis of 

conditional independence of X* and Y given X to the data on validated subjects, obtaining 

some evidence against the null (P = 0.096). Thus, we focus on an adjustment method that 

allows for differential misclassification. While Section 2.1 alludes to general implementation 

challenges for likelihood methods arising because X is latent, obtaining maximum likelihood 

estimates in the present context is actually quite straightforward. As detailed by Lyles,34 we 
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can re-parameterize the problem in terms of the (X*,Y) and (X|X*,Y) distributions, rather 

than the (X,Y) and (X*|X,Y) distributions, with all the study units contributing to estimation 

of (X*,Y) but only the validated study units contributing to the estimation of (X|X*,Y). 

Lyles34 shows that one can then work back to obtain closed-form estimates and standard 

errors of parameters in the original parameterization. Applying this method to the data at 

hand results in an estimated (X,Y) log odds-ratio of 0.19 (corresponding to OR=1.21), with 

a standard error of 0.22. Note that this adjustment for misclassification pushes the point 

estimate toward the null, as can arise when misclassification is differential. For comparison, 

if we presume non-differential misclassification, then the maximum likelihood estimate of 

the (X,Y) log odds-ratio, as determined by numerical maximization, is 0.40 (corresponding 

to OR=1.49), with a standard error of 0.19. As must arise when non-differential 

misclassification is presumed, relative to the naïve estimate, the adjustment moves the 

estimate away from the null, and increases the corresponding measure of uncertainty. 

Generally, this example is another where the medical conclusions to be drawn from the 

analysis are changed substantially by taking reporting error into account.

3. Analysis methods for estimating distributions

In Part 1, Section 3.4, we briefly discussed the impact of measurement error on estimating 

the distribution of a random variable Y. In this section, we consider methods for estimating 

the distribution of Y using error-prone observations Y*. In contrast to prior sections, here 

the error-prone variable measures the outcome of interest (Y) rather than a covariate (X). We 

focus on the case where Y is continuous. For example, it might be of interest to know 

selected percentiles of the distribution of Y, or related quantities such as the interquartile 

range. Alternatively, one might wish to know what proportion of the distribution falls above 

or below specific cut-points. In Section 3.4 of Part 1, we briefly considered how such 

distributional quantities can be biased if estimated by an error-prone Y*. Most of the 

methods presented here focus on the case where Y* follows the classical measurement error 

(model (1) in Section 2.1 of Part 1). Development of these methods has been most 

pronounced in the field of nutrition, where the desired random variable Y is the long-term 

average daily consumption (“usual intake”) of a food or nutrient, and Y* is typically the 

reported intake from a 24-hour dietary recall, which queries everything eaten or drunk 

during the previous 24 hours. Under this scenario, a substantial amount of the measurement 

error U is assumed to be due to day-to-day variation in diet that makes a single day an 

imprecise proxy for a long-term average.46,47 Other sources of systematic error are routinely 

assumed to be zero in these methods, although there are exceptions.48

3.1 A simple case

Consider the simplest case of model (1) (Part I), where E(Y) = μY, E(U) = 0, var(Y) = σY
2

and var(U) = σU
2 . Then E(Y*) = μY and var(Y*) = σY

2 + σU
2 . It follows that the distribution of

Y = E(Y*) +
σY

2

σY
2 + σU

2 (Y* − E(Y*)) (4)
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has the same first two moments (μY, σY
2 ) as the distribution of Y. This approach, applied to 

interval data, was used by the National Research Council (NRC),49 where replicated 

observations Y* were available to permit separate estimation of the required variance 

components in equation (4). In general, for this classical measurement error setting, one can 

estimate var(U) by the within-person variance when there are replicate measurements; 

var(Y) can then be estimated by subtracting the estimate of var(U) from var(Y*). If Y and U 

are normally distributed, then Y* is as well, and matching the first two moments of Y is 

equivalent to fully characterizing the distribution. Thus, the empirical distribution of Y may 

be used as an estimate of the distribution of Y. This approach of constructing a set of 

representative observations to be used as a basis for an empirical distribution estimator can 

be extended to the more complex cases discussed below.

3.2 Use of normality transformations

The NRC report49 highlighted the fact that 24-hour recall data (Y*) tend to be skewed, 

suggesting that the normality assumption is not tenable in the original scale. Therefore, 

transformations are routinely applied to observed data as a first step in distribution 

estimation. This is a complication that requires a careful choice of assumption about how Y 

and Y* are related. In the NRC analysis, formula (4) was applied to log transformed data, 

and each estimated percentile of the distribution of Y was exponentiated to obtain the 

corresponding percentile in the original scale. This approach is consistent with the model

g(Y*) = g(Y) + U (5)

where g(·) is an invertible transformation. That is, Y* is unbiased for Y on the transformed 

scale (and therefore biased for Y on the original scale). The transformation is also presumed 

to result in well-behaved (e.g., normally distributed) errors U.

We illustrate this approach with an example taken from data obtained in the OPEN study 

(for a short description of the study, see the example given in Section 2.1). Here we consider 

estimating the distribution of usual sodium intake in a population typical of those 

participating in the study. Besides the self-reported intakes (which have some bias), two 

measurements of 24-hour urinary sodium were available, a biomarker for sodium intake that 

is thought to be unbiased, but subject to random day-to-day variation and random assay 

error. Due to this random variation, these measurements (our Y*) have error when the target 

is to measure usual (i.e. long-term average) intake, Y. In addition, sodium intakes tend to 

have a skew distribution that is approximately log-normal in shape. We therefore assume 

model (5) where g is the logarithmic function. The value of the shrinkage factor 
σY

2

σY
2 + σU

2

shown in equation (4) (but applied on the logarithmic scale) was 0.72, indicating a relatively 

large day-to-day variation in sodium intake. Table 5 shows the percentiles of the distribution 

estimated from a single biomarker measurement Y* assuming it has no random error (the 

incorrect assumption) versus that based on model (5). The latter is calculated from applying 

the NRC method to the first measurement of log(Y*), estimating σY
2  and σU

2  from the repeat 

measurement, and followed by back-transformation. Figure 2 presents the density functions 

Shaw et al. Page 15

Stat Med. Author manuscript; available in PMC 2021 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



after smoothing. Both Table 5 and Figure 2 show the substantial shrinkage of the distribution 

obtained when using the adjustment for measurement error.

Later authors, beginning with Nusser et al50 assumed the model:

g(Y*) = μ + U (6)

where μ is the individual’s long-term average of the transformed Y*, and

Y = EU(Y*|μ) = EU(g−1(μ + U) |μ),

which assumes that Y* is unbiased for Y on the original scale. Because g(·) is typically 

nonlinear, estimating the distribution of Y now requires integration over the distribution of 

U. It is often impossible to decide from the available data which model, (5) or (6), is the 

more appropriate.

3.3 Model-assisted versus model-based approaches

The NRC method uses the empirical distribution of Y as the basis for estimating the 

distribution of Y. However, the routine use of normality transformations in later 

approaches50–53 permits the use of exact percentiles from a normal distribution as the basis 

for estimation. In small samples, the empirical distribution of Y can be quite granular, 

leading to a granular approximation of the distribution of Y. Using normal distribution 

percentiles allows smooth estimated distributions of Y, but at the expense of relying on the 

normality assumption (after appropriate transformation). The NRC approach, and extensions 

such as the Multiple Source Method (MSM) method54 have been characterized as “model 

assisted”, in contrast to the other, “model-based” approaches.55

3.4 Extensions for inclusion of covariates, semi-continuous data, and multivariate 
estimation

A more general version of model (6) is given by the mixed-effects model

g(Y*) = μ(Z) + r + U (7)

where μ(Z) is a function of observed covariates Z of an individual, r is a random effect that is 

constant across replicate observations on the same subject, and U is random within-subject 

error. Then,

Y = E(Y* r, Z) = E(g−1(μ(Z) + r + U) r, Z) . (8)

Under (7–8), the variation in the distribution of Y comes in part from the variation explained 

by covariates Z and in part from residual deviations r. Model (7) can be fit using standard 

software for (nonlinear) mixed models. The software typically requires assuming normality 

of the random effects, which favors the use of model-based approaches. To maintain the 

proper distribution of covariates, a Monte Carlo simulation approach is often used to 

generate a dataset for calculating the empirical distribution mentioned earlier. In this 
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approach, predictions of μ(Z) from sampled individuals are added to multiple randomly 

generated r values before integrating over the (presumed normal) errors U.

Many dietary components are “episodically consumed”, where the single-day reported 

intakes (Y*) can be zero, even if long-term intake (Y) is positive. The observed data Y* can 

therefore have a large proportion of zeros, as well as a skewed distribution of positive values. 

In these situations, simple transformations applied to Y* will not even approximate a normal 

distribution. Models for such semi-continuous data are motivated by writing the average 

value of Y* as a conditional expectation:

E Y* = E Y* Y* > 0 Pr Y* > 0 + E Y* Y* = 0 Pr Y* = 0
= E Y* Y* > 0 Pr Y* > 0 . (9)

This formulation expresses the average daily consumption as the product of the average 

consumption on consumption days E(Y* | Y* > 0) and the probability of consuming on a 

specific day Pr(Y* > 0). This approach led several authors51,53,54,56,57 to consider models 

that used binary indicators of zero vs. nonzero consumption Y* to inform estimation of the 

probability part of the model and used the transformed nonzero values of Y* to inform 

estimation of the amount part of the model. These methods were further extended [Freedman 

et al,58 Zhang et al,59] to allow flexible joint modeling of multiple components, which 

permits analysis of ratios and high-dimensional indices. A detailed description of these 

extended models is beyond the scope of this work.

3.5 Nonparametric Estimation of Distribution Functions

There is a very large literature on nonparametric estimation of distribution functions. The 

papers concentrate on estimating the density function, and this is often called density 
deconvolution. This literature has two major themes. The first uses kernel density functions, 

while the second usually uses infinite mixtures of normal and/or Bsplines. For the first, see 

Carroll and Hall,60 Stefanski and Carroll,61 and Fan,62 while for the case of heteroscedastic 

measurement error, see Delaigle and Meister.63 For the second, see Staudenmayer et al,64 

and Sarkar, et al.15 For multivariate density deconvolution, see Masry65 and Sarkar, et al.66 

The articles by Sarkar et al.15,66 are very general, allowing heteroscedastic measurement 

error with unknown distributions for that measurement error, as well as of course unknown 

distributions for the latent variable. There is substantial software available for these 

estimation methods. References to online sources of the available code, which cover 

methods for kernel-based deconvolution and Bayesian semiparametric density 

deconvolution, are provided in Table 6. Non-parametric maximum likelihood is another 

approach considered by several authors.67,68

4. Software for analysis

One of the main barriers in the past to the use of the analysis methods described in Sections 

2 and 3 was the lack of specific software for implementing them. The situation is now 

gradually improving. Here, we describe software programs, macros or packages that are now 

available for performing some of the methods described in those sections. Note that software 

for performing regression calibration and SIMEX was described in Part 1, Section 7. We 

Shaw et al. Page 17

Stat Med. Author manuscript; available in PMC 2021 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



also provide the code that conducted our analyses of the OPEN data at https://github.com/

PamelaShaw/STRATOS-TG4-Guidance-Paper.

4.1 Software for Bayesian methods

Over the last several decades, the most common software used for applied Bayesian work 

has been BUGS.69–71 Fitting a Bayesian model to data using BUGS involves specifying 

model and prior distributions within the BUGS language, and then using both a BUGS 
interface and a BUGS engine to get the work done. In particular, the engine carries out 

MCMC sampling of the posterior distribution of parameters and latent variables given 

observed data. The interface serves to deliver the model and prior specifications and the data 

to the engine, and to then process the Monte Carlo output from the engine into inferential 

quantities. While the BUGS language is unique, a common point of confusion is that there 

are multiple possible engines and interfaces. Commonly used engine/interface combinations 

include WinBUGS/R2WinBUGS,72 and JAGS/rjags.73 A worked example of 

implementation using R and JAGS is provided in supplementary materials to the paper of 

Bartlett and Keogh 2018.74

Generally, and for measurement error modeling specifically, using BUGS is intermediate 

between a completely “do-it-yourself” workflow and a fully automated macro. The user 

need not have in-depth knowledge of MCMC algorithms, i.e., the user is not required to 

select, code, and tune a particular algorithm. However, the user must express the chosen 

model and prior distributions in the BUGS language. On balance this seems a plus, as these 

specifications are then much more customizable than would be the case with a fully 

automated macro having a “hard-wired” model specification. Three specific examples of 

measurement error models expressed in the BUGS language appear in Section 9.3 of Lunn 

et al.71 Many problems could be approached by extending one of these examples.

Regardless of how the workflow is implemented, and as alluded to in Section 2.2, using 

MCMC to compute point and interval parameter estimates requires somewhat more scrutiny 

and oversight than with other statistical methods. Issues of sampler “burn-in” and “mixing” 

arise, so that some level of human judgment is needed to assess whether the amount of 

Monte Carlo sampling utilized is indeed sufficient to numerically approximate posterior 

quantities well. This process is streamlined, but not automated, with the BUGS interfaces 

mentioned above. Simple summaries and diagnostic plots are readily provided to attest to the 

trustworthiness of the computational output.

Recently, the Stan probabilistic programming language has been developed, along with an R 
interface.75 Compared to BUGS engines, Stan makes use of rather different MCMC 

algorithms, with excellent performance reported in many contexts. Chapter 11 of the Stan 
Reference Manual76 illustrates the coding of a measurement error model in Stan.

One package that is specifically written for Bayesian analysis of measurement error 

problems in R is BayesME, available at http://www.stat.tamu.edu/~carroll/matlab_programs/

software.php. This package is based on Sarkar et al15 and Sarkar et al,16 and deals with 

nonparametric density and regression estimation when the measurement error is 

heteroscedastic, unknown and may depend on X.
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4.2 Software for moment reconstruction, moment-adjusted imputation and multiple 
imputation

When a validation substudy is available (Section 4.2), i.e. in which the true X is observed, 

MI may be implemented using standard multiple imputation packages. Available packages 

include mice,77 and smcfcs in R,27 mi impute and smcfcs in Stata,78 and PROC MI in SAS. 

The smcfcs package in R has been extended to accommodate measurement error correction 

in the settings of a validation substudy or a replicates substudy, and allows measurement 

error and missing data to be addressed simultaneously.27

No packages are available for the implementation of MR or moment-adjusted imputation 

(MAI). Thus, MR and MAI require a program to construct the “predicted” values of X. 

However, from thereon those predicted values may be used in standard regression programs 

to yield the measurement error adjusted estimates of the regression coefficients. Valid 

standard errors of these estimates may then be obtained by bootstrap methods.

4.3 Software for estimating distributions

As mentioned in Section 3, several packages or macros are available for estimating the 

distribution of a variable Y, using measurements Y* that have classical measurement error. 

Most, but not all, of these packages have been developed for nutritional data but may be 

used for other types of data. All packages require that all individuals have at least one 

measurement of Y* and that a substantial number have one or more repeat measurements. 

The user will note that some of these programs deal not only with continuous Y* variables, 

but also with semi-continuous Y* that have a positive probability of a zero value. 

Nevertheless, most of them assume that Y is continuous even when Y* is semi-continuous, 

and they yield an estimated continuous distribution. Standard errors are typically obtained 

via replication methods such as the bootstrap (or under specific survey designs, balanced 

repeated replication). The packages and macros are summarized in Table 6. The resources 

listed in Table 6 include software for methods relying on a variety of necessary assumptions, 

including the semiparametric and nonparametric methods described in Section 3.5.

4.4 Software for other methods

Section 2.1 includes some comments on what is needed to program likelihood methods. 

These methods are often implemented though custom-built programs. Rabe-Hesketh et al79 

describe how to conduct maximum likelihood estimation in Stata when X is normally 

distributed. In many problems of measurement error, the SAS procedures MIXED, 

NLMIXED and CALIS can be used, and were used for the NCI Method SAS macros (see 

Table 6). The SAS manual has a nice introduction illustrating how CALIS can be used for 

measurement error modeling (see: https://support.sas.com/documentation/cdl/en/statug/

63033/HTML/default/viewer.htm#statug_calis_sect001.htm), and the procedure can be used 

for nonlinear modeling as well.

The R software package SIMEX, introduced in Part 1 for error in a continuous exposure, 

also includes the mcsimex function, which implements the MC-SIMEX adaption for 

misclassified categorical exposures described in Section 2.5.80,81 There is also a web site 

that has R and Matlab programs (http://www.stat.tamu.edu/~carroll/matlab_programs/
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software.php), to deal with measurement error that is a mixture of classical error and 

Berkson error, as often occurs in radiation research and in other fields (see Section 5.1 for 

this topic).

5. Special topics

In Part 1 and in previous sections of this second part we have provided information 

regarding the effects of measurement error and misclassification on estimates obtained from 

some standard analyses, how to adjust for these effects and the software available to 

implement such adjustments. However, there is much that can be added to this basic 

information. In this section, we present a few selected more advanced topics. The first two 

topics concern situations where the data are affected by a mixture of types of errors. The 

third topic involves model building and variable selection in the presence of measurement 

error, the fourth topic involves the design and analysis of studies whose main outcome 

variable is measured with error, and the fifth topic involves categorization of continuous 

exposures that are measured with error.

5.1 Analysis of data subject to both Berkson and classical measurement error

We focus on epidemiologic projects involving an exposure that is measured by two or more 

methods, some of which involve Berkson errors and some classical-type measurement 

errors, which are then combined into a single measure. This occurs for example in radon 

studies,82 and in radiation studies, such as at Hiroshima,83 the Nevada Test Site Thyroid 

Disease Study,84,85 the Hanford Thyroid Disease Study86–88 and studies of the Chernobyl 

nuclear accident.89–91 There is a similar literature in occupational epidemiology, where 

direct measurements of exposure are taken on individuals, but other measurements of the 

same exposure are “grouped”, for example, the time spent in the location of the specific 

exposure (e.g. in a uranium mine), with an overall estimate of exposure at that location being 

derived from the combined information. In environmental epidemiology, exposure to 

pollutants might be based partly on a spatial model of pollution in that region and the 

amounts of time spent by the individual in different locations within the region, and partly 

on some direct measurements taken from an individual.

In all these types of problems, there is then a calculated dose X*, a true dose X that is 

unobserved, and exactly measured covariates Z that are included in the outcome model and 

that are potentially related to X. We assume that, other than X, the covariates in the outcome 

model are measured exactly.

Analysis of such data is based on the statistical idea of linking the direct and indirect 

measurements via some version of a latent variable. Specifically, a latent intermediate 
variable, L links the true and calculated doses through a model such as

X = L + UBerk;
X* = L + UClas;
L = f(Z, θ) + ε
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L can be hard to interpret; in some settings, it might be useful to think of L as an average 

underlying dose for a given set of covariates. Here, UBerk is the component of Berkson error 

with mean zero and variance σBerk
2 , UClas is classical error with mean zero and variance 

σClas
2 , f(Z,θ) describes the relationship of L to the covariates Z, and ε is the remaining 

variability not explained by the covariates or the measurement errors, with mean zero and 

variance σε2. In the Nevada Test Site example, X= the true radiation dose, X* = the derived 

radiation dose, which relied on participant characteristics such as age, sex and self-reported 

milk consumption; and we assume X and X* are related via a latent variable L, where L may 

be a function of other precisely measured covariates Z determining exposure such as age, 

sex, distance from test site, etc. If UBerk has zero variance, then the above model is a purely 

classical measurement error model; if UClas has zero variance then the above model is a 

purely Berkson model. Carroll et al1 [pp. 193–6] provide more details on the analysis of 

such joint models, giving examples of the use of regression calibration (see also Reeves et 

al;82 Mallick et al84) and maximum likelihood. In practice, knowledge of the sizes of the 

measurement error variances σBerk
2  and σClas

2  is critical to analysis. This can be particularly 

difficult for Berkson errors (see Part 1, Section 4.2). In case of such difficulty, sensitivity 

analyses can be conducted.

The impact of a mixture of Berkson and classical errors depends critically on the ratio of 

σBerk
2  to σClas

2 . When this ratio is very large and Berkson error dominates, the impact is close 

to that expected from purely Berkson error. When the ratio is small, the impact is close to 

that expected from classical error; and when the ratio is near one, and the Berkson error is 

non-differential, then the impact is an average of the impacts of both – in other words 

estimated regression coefficients are attenuated, although to a lesser degree than with purely 

classical error, and loss of power is similar to that found with either classical error or 

Berkson error.

The literature given above includes a host of variations on the model given above, often 

specific to the application. For example, Li et al85 consider the same model as above, but 

give reasons to allow the Berkson errors to be correlated among groups of individuals. For 

the Chernobyl accident, Masiuk et al91 argue that a better model has classical additive 

heteroscedastic measurement errors as well as Berkson multiplicative measurement errors.

5.2. Analysis of exposure variables subject to both measurement error and 
misclassification

In previous sections, we have described methods for dealing with two distinct cases: (a) a 

continuous variable measured with error; and (b) a categorical variable subject to 

misclassification. What can be done, though, if data have a combination of both?

The only work we are aware of that combines issues of measurement error and 

misclassification in a single analysis is that of Spiegelman et al,92 White et al93 and Yi et al.
94 Each of these papers considers a main study/validation study design, where the validation 

study includes both the true and the error-prone observations of the variables subject to 

measurement error and misclassification, while the much larger main study has only the 
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error-prone versions. Additionally, White et al93 considers a main study/replicates study 

design.

White et al93 proposed a regression calibration approach for a continuous outcome when 

there is both a continuous covariate and binary covariate subject to measurement error, and 

discuss the necessary supportive data for an identifiable model depending on whether a 

validation study or replicate data are available. Spiegelman et al92 consider a binary 

outcome, and use logistic regression with maximum likelihood to obtain estimates and 

inference. Yi et al94 consider methods applicable for all generalized linear models, with a 

binary covariate subject to misclassification and a continuous covariate measured with error. 

They discuss methods based on (i) full maximum likelihood, as in Spiegelman et al;92 (ii) an 

estimating function method based on ideas of semiparametric methods such as in Tsiatis and 

Ma95 and Ma and Tsiatis;96 (iii) an augmented regression calibration method; and (iv) an 

augmented SIMEX method. Methods (ii)-(iv) aim at providing robustness to distributional 

assumptions about the error-prone continuous variable.

Of methods (ii)-(iv), the augmented SIMEX method is easiest to describe. We denote by 

Xcont and Xcat the continuous and categorical predictors subject to measurement error and 

misclassification, respectively. Their mismeasured versions are Xcont*  and Xcat* . The 

procedure is based on the idea that if Xcont were observed, then one has a simple 

misclassification problem, with Xcat misclassified, which can be solved by misclassification 

methods described in Section 2.5, for example by positing a model for the misclassification 

distribution of Xcat*  given Z, Xcont, and Xcat. Then one applies ordinary SIMEX to the 

method that would have been used if Xcat had been observed.91

The augmented SIMEX and regression calibration methods have the advantage that they are 

easily implemented using regular software for SIMEX or regression calibration, once one 

has computer code also for solving a misclassification problem.

5.3 Variable selection when some covariates are measured with error

In many biomedical settings, one seeks to develop a parsimonious regression model from a 

set of candidate predictors. We saw in Part 1, Section 3, that when there is at least one 

covariate in a multivariable regression model that is measured with error, the estimated 

coefficients for that X and any other covariates can be subject to bias because of the 

underlying correlation structures. Furthermore, as discussed in Part 1, Sections 3.1.3 and 

3.2.3, when there are multiple such error-prone or misclassified covariates in a regression 

model, the direction of the bias can be in either direction (towards or away from the null). 

One way of viewing the cause of this bias in general linear regression is that measurement 

error induces bias in the least squares estimating equation so that its expectation at the true 

parameter vector β is no longer zero. Thus, many of the statistics used in variable selection 

procedures, such as the deviance or p-values associated with regression coefficients, will 

also be biased. Consequently, measurement error in one or more covariates puts any model 

selection procedure at added risk of selecting an incorrect set of variables and estimating 

regression coefficients with bias. This is not a concern for prognostic modeling, where only 

the risk prediction is of interest; however, it is a concern when one wishes to interpret the 
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model coefficients or infer biological importance of the variables selected. Zhang et al97 also 

remark that even when risk prediction is the sole interest, problems in model selection can 

occur when the measurement error structure in the data used to develop the prediction model 

is different from that in the data used for prediction.

There are many modeling procedures used to perform variable selection. Some methods 

have been developed to accommodate measurement error in variable selection and we 

highlight a few here. These methods have focused on penalized regression approaches, 

which use a penalty function to effectively control the model dimension. Whereas 

conventional stepwise procedures have been shown to be subject to instability and 

overfitting,98–101 penalized regression procedures are becoming increasingly popular 

because of their better operating characteristics, particularly when there is a large number of 

candidate predictors relative to the sample size.99,101,102 Penalized regression methods 

typically add a penalty to the usual parameter estimating equation (e.g. the score), which 

then addresses both dimension reduction and parameter estimation in a single step.

For linear and partially linear regression models, Liang and Li103 develop a corrected score 

type approach in which a term, proportional to βTvar(U)β, which offsets the bias caused by 

classical measurement error in the covariate vector X*, is subtracted from the estimating 

equation to then achieve consistent estimation. Here var(U) is the measurement error 

covariance matrix. To this end the authors propose minimizing the following adjusted least 

squares expression:

1
2 ∑

i = 1

n
Yi − Xi

*Tβ − ν(Zi)
2 − n

2βTvar(U)β, (10)

where ν(Zi) is a general function of a precisely observed covariate Z, which is estimated 

with local splines. This adjusted least squares expression is incorporated into a general 

penalized regression framework and the authors discuss choices of the penalty, such as the 

L0, L1 or the smoothly clipped absolute deviation (SCAD) penalty, that provide a variable 

selection framework. The authors show that under certain conditions, asymptotically, this 

procedure can perform as well as if the true model were known. The method assumes that 

var(U) is either known or can be estimated from repeat measurements of X*. These authors 

also develop a similar penalized quantile regression procedure, building on the work of He 

and Liang104 who had developed a quantile regression to handle covariate measurement 

error.

Ma and Li105 develop a more general penalized estimating variable selection approach that 

can be applied to both parametric and semi-parametric measurement error models. Their 

method is applicable to any consistent estimating equation, including generalized linear 

models, and can be applied to a large class of regression models.

Currently, we are not aware of any available software to implement the methods described 

above; however, software for penalized regression methods is now widely available and 

could be used as a base for building the required software for selection of error-prone 

variables.
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In this section, we have highlighted only a few approaches in detail. Other approaches to 

address variable selection in high dimensional data include Datta and Zou,106 Loh and 

Wainwright,107 Sorensen et al,108 Yang and Xia,109 Tian and Xue,110 and Wang et al.111 

Zhang et al97 discuss generally model selection in the setting linear regression models with 

measurement error.

5.4 Design and analysis when the outcome variable is measured with error

The effects of measurement error in outcome variables were outlined in Part 1, Section 3.3. 

Here, we discuss implications for study design and analysis and summarize methods for 

correcting for the effects of measurement error and misclassification of the type that 

produces biased estimates.

5.4.1 Classical error in a continuous outcome—Classical measurement error in a 

continuous outcome variable in a linear regression does not result in biased estimates of 

regression coefficients (Part 1, Section 3.3.1). Therefore, a standard linear regression 

analysis can be used without any alterations. However, classical error in a continuous 

outcome results in lower precision of estimated regression coefficients and this should be 

accounted for in the study design. Consider the linear regression model Y = β0 + βXX + ε, 

where Y denotes the error-free outcome, and the corresponding linear regression model 

Y* = β0* + βX* X + ε* using the error-prone outcome Y*. The variance of the estimate is 

var(βX* ) = var(ε*)(XTX)−1
 and the relationship between variances of estimates from models 

using Y and Y* is 
var(βX* )
var(βX)

= var ε*
var ε . Let nY denote the sample size required to achieve a 

desired standard error for βX. To achieve the same standard error for βX*  therefore requires a 

sample size of nY
var(ε*)
var(ε) , where var(ε*) > var(ε).

5.4.2 Systematic error in a continuous outcome—When the outcome variable has 

linear measurement error (see model (2) in Part 1, Section 2.1), i.e. Y* = α0 + αYY + U, 

where U has mean zero and is independent of Y, the unadjusted regression coefficients 

estimated using Y* = β0* + βX* X + ε* will be biased. Consistent estimates could be obtained 

by using 
Y* − α0

αY
 in place of Y*. This of course requires values for α0 and αY, which may be 

known from previous studies or may need to be estimated. Buonaccorsi112,113 and 

Buonaccorsi and Tosteson114 devised methods for obtaining unbiased intervention effect 

estimates in this setting, when there is available either a validation study or replicates of an 

unbiased measure (e.g. a biomarker) in a sub-study. These methods were summarized by 

Carroll et al1 (Section 15). First, consider the setting with a validation study available, in 

which Y (as well as X) is observed. An estimate of βX can be obtained from the data in the 

validation subset, and we denote this by βX
(1)

. This estimate is consistent but clearly 

inefficient because it is based on only a subset of the data. A second estimate, βX
(2)

, can be 

obtained from a regression of 
Y* − α0

αY
 on X, where α0 and αY are estimates obtained from a 
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regression of Y* on Y. The variance-covariance matrix for βX
(1)

 and βX
(2)

, denoted Σ, can be 

obtained using a stacked estimating approach (Carroll et al1, Appendix A; Keogh et al115). 

Note that the variance for βX
(1)

 and βX
(2)

 will have increased uncertainty from the added 

variability in U, as well as from the uncertainty in the estimated parameters α0 and αY. 

Alternatively, bootstrapping can be used. An efficient estimator of βX is then given by the 

‘best weighted combination’

βX
C = (JTΣ−1J)−1JTΣ−1 βX

(1)T, βX
(2)T T

where J=(I,I) and I is the identity matrix with the same number of rows as there are elements 

of βX. The above result is general and extends to regressions with multiple covariates having 

a vector of regression coefficients βX. In the simple setting of a single covariate X, the 

efficient estimator is

βX
C =

βX
(1)σ(2)

2 + βX
(2)σ(1)

2 − βX
(1) + βX

(2) σ(12)

σ(1)
2 + σ(2)

2 − 2σ(12)
,

where Σ =
σ(1)

2 σ(12)

σ(12) σ(2)
2  is the variance-covariance matrix. This approach, based on a 

weighted combination of estimates, extends to the setting in which a replicates study is 

available instead of a validation study (see Part 1, Section 4.2). Suppose that two repeats of 

an unbiased measurement (e.g. biomarkers) Y1** = Y + U1 and Y2** = Y + U2, with U1 and U2 

independent, are available for a subset of individuals. A consistent estimate of βX, again 

denoted βX
(1)

, can be estimated in the replicates sub-study from a regression of Y1** + Y2** /2

on X. The parameters α0 and αY can be estimated in the replicates sub-study using a method 

of moments approach (Carroll et al1, Section 15).

If the values of parameters α0 and αY are not known from a previous study, the need to 

estimate them should be accommodated at the design stage by incorporating plans and 

resources to conduct a validation or replicates sub-study. Further research is needed to 

establish methods for optimal design of such studies, including the incorporation of 

information on the relative cost of the systematic-error-prone and biomarker measures.

5.4.3 Differential error in a continuous outcome—In some studies, the outcome 

measure is prone to differential error. This can arise in intervention studies with a self-

reported outcome when participants are aware of their intervention group. We consider a 

measurement error model of the form Y* = α0X + αYXY + U for two groups X = 0 and 1. 

This is a generalization of the linear measurement error model considered above. 

Differential error gives rise to biased estimates of the intervention effect; additional 

information is needed to estimate the form of the differential error so as to obtain consistent 

estimates of the intervention effect. Keogh et al115 described methods for analysis in the 
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setting of dietary intervention trials in which the main differential-error-prone outcome 

measure is from a self-report and unbiased biomarkers are available in a replicates sub-

study, based on the Buonaccorsi112 approach outlined above. The Buonaccorsi method 

extends directly to the differential error setting, with βX
(2)

 being based on a regression of 

Y* − α0X
αYX

 on X. In particular, Keogh et al115 investigated the contribution of βX
(2)

 to the 

estimator βX
C

 (the weighted combination of βX
(1)

 and βX
(2)

) under different assumptions. It was 

shown theoretically that in the case of non-differential error the combined estimator will be 

more precise than βX
(1)

, while in the case of differential error nearly all the information about 

the intervention effect comes from the validation or replicates study and that βX
(2)

 adds little 

in large samples. However, via simulation studies Keogh et al115 found that in finite 

samples, it is advantageous to use the self-report data in addition to the replicate biomarkers 

to estimate the intervention effect when the reliability of self-report measurements is 

comparable to that of the biomarker.

5.4.4 Misclassification of a binary outcome—Section 2.5 noted that “matrix 

methods” can be used for handling a misclassified binary exposure when the outcome is also 

binary. Matrix methods can also be applied directly when instead it is the outcome that is 

misclassified, but they work only in very simple settings. Binary outcomes are more 

typically analyzed using logistic regression, and methods for correcting the impact of 

outcome misclassification in logistic regression analysis have also been devised.

For a study of n individuals, the full likelihood can be written:

L = ∏i = 1
n Pr(Y* = yi* |X = xi) = ∏i = 1

n ∑y = 0
1 Pr(Y = y|X = xi)Pr(Y*

= yi* |Y = y, X = xi),
(11)

where the logistic model of interest is logit(Pr(Y = 1|X = xi)) = β0 + βXxi. The 

misclassification probabilities in the second term of the likelihood, Pr(Y* = yi* |Y = y, X = xi), 

can be expressed in terms of Pr(Y = y|X = xi) and the sensitivity (Sn) and specificity (Sp) of 

Y*. Magder and Hughes116 described estimation of β0 and βX using an EM algorithm. They 

described approaches for when the sensitivity and specificity are known, when they can be 

estimated from a previous validation study, and when they need to be estimated from the 

data. In the last situation, there are issues of identifiability if the model is saturated, and 

smoothing assumptions concerning the relation between covariates and outcome are needed 

to proceed. The authors caution against using this approach unless the smoothing 

assumptions are strongly believed. The probabilities of Y=y given Y* and X are estimated in 

the E-step, and the logistic regression parameters β0 and βX are estimated in the M-step. 

Neuhaus,117 Lyles and Lin [2010],118 and Lyles et al119 instead used direct maximum 

likelihood estimation based on (11). They used the result that for the case of non-differential 

misclassification, the likelihood can be expressed in terms of Sn and Sp, as follows:
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L = ∏i = 1
n {(1 − Sp)Pr(Y = 0|X = xi) + Sn Pr(Y = 1|X = xi)}yi* ×

{SpPr(Y = 0|X = xi) + (1 − Sn)Pr(Y = 1|X = xi)}1 − yi*
(12)

They considered sensitivity analyses assuming particular values for Sn and Sp, and making 

use of internal or external validation data. SAS code was provided.

A number of other authors have also considered sensitivity analyses for investigating the 

impact of outcome misclassification, incorporating uncertainty in the specified values for 

sensitivities and specificities. Fox et al120 described probabilistic sensitivity analyses that 

involve simulating the data that would have been observed if there were no misclassification, 

given sensitivities and specificities. They focused on misclassified exposures but noted that 

the methods could also be applied for a misclassified outcome. Lyles and Lin118 described a 

‘predictive value weighting’ for handling misclassified exposures, which can also be applied 

for misclassified outcomes, and in the more complex scenario of misclassification in both 

outcome and exposures. This has been implemented in the pvw module in Stata.121

Edwards et al122 applied multiple imputation to handle misclassified outcome data when 

there is an internal validation study. A Bayesian approach can also be taken by assigning 

priors to the sensitivity and specificity. Some special considerations are needed when Y 

represents case or control status in a case-control study.116,119,123

5.5 Misclassification due to categorizing continuous exposures measured with error

We have presented in Sections 2.2 and 3.2 of Part 1, and in Section 2.5 of this second part, 

problems arising from and methods for dealing with misclassified categorical variables. In 

this section, we discuss the special case where the categorical variable has been formed by 

categorizing an observed continuous variable. Despite the resulting loss of information, in 

epidemiologic analyses, continuous exposure variables are often categorized using either 

pre-specified cut-points or estimated quantiles of the variable’s distribution. Flegal et al124 

published a key result showing that dichotomization of a continuous exposure that is subject 

to non-differential measurement error leads to a binary exposure that has differential 

misclassification. Later work of Brenner and Blettner125 and Delpizzo and Borghes126 also 

stress this point. Although differential measurement error and misclassification may, in 

general, lead to bias in the estimated regression coefficient in any direction (see Part 1, 

Section 3), the simulations of Flegal et al124 demonstrated relative risk estimates that were 

attenuated. These simulations were based on a univariate linear logistic regression with a 

continuous exposure X prone to classical measurement error and dichotomization using a 

pre-specified cut-point.

Considering the same assumptions regarding the exposure X, Gustafson and Le127 extended 

the results of Flegal et al. First, they provided analytic expressions for linear regression in 

addition to numerical results for linear logistic regression. Second, they considered the effect 

of changing the pre-specified cut-point c. Third, they considered the inclusion of a second 

precisely measured continuous covariate Z in the regression and the effect of correlation ρ 
between X and Z. Finally, they considered situations where the true regression of the 
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outcome Y was linear in Z and a weighted average of the continuous and dichotomized X, 

i.e.,

E(Y X, Z) = β0 + β1 (1 − ω)X + ωI(X > c) + β2Z . (13)

This form of regression allowed a more general investigation of the effects of covariate 

dichotomization, i.e., it considers the situation where the truth lies somewhere `ìn between” 

the extremes of dichotomization leading to a completely right model specification versus a 

completely wrong model specification. Their results demonstrated that, when the true 

regression contains a linear exposure on the continuous scale (ω<1), it can be beneficial to 

dichotomize imprecise continuous exposures, as this can reduce bias from the analysis on 

the continuous scale. For example, in the case of the linear regression (with ω=0),

E(Y X, Z) = β0 + β1X + β2Z, (14)

where X~N(0,1), X*~N(0,1 + var(U)), Z~N(0,1), and ρ = cor(X,Z), the multiplicative biases 

in the estimated regression coefficients arising in the analysis with continuous X* and 

categorized W* = I(X* > c) are given by, respectively,

β1X*
β1

= 1
1 + var(U)/(1 − ρ2)

and β1W*
β1W

= θ R(c) − ρ2ϕ(c)
R(θc) − ρ2θϕ θc

, (15)

where θ = 1
1 + var U , R(c) = Φ(c) 1 − Φ(c)

ϕ(c)  and ϕ(.),Φ(.) are the probability density and 

cumulative probability functions of the standard normal distribution. Some values of var(U), 

ρ and c lead to 
β1W*
β1W

>
β1X*

β1
. Gustafson and Le127 point out that no general statements can 

be made about how the bias due to dichotomization depends on the choice of threshold or 

the strength of correlation between predictors. The authors produce several graphs of 

attenuations comparing continuous and dichotomized observed main exposure for 0 < 

var(U)1/2 < 1.2, c = 1,2,3, and ρ = 0,0.3,0.6,0.9. In all those cases, attenuation was greater in 

the continuous case, i.e. 
β1W*
β1W

>
β1X*

β1
. However, this inequality also depends on the nature 

of the underlying relationship between the outcome variable and the exposure. In situations 

where the dichotomized true exposure (ω=1) produces a better fitting model, the bias in its 

regression coefficient tends to be larger than that in the coefficient of the continuous 

exposure, unless var(U) gets close to or exceeds the var(X). In general, it is important to 

remember that dichotomizing a continuous exposure loses information when the relationship 

between the outcome variable and the exposure is truly continuous, and changes the 

interpretation of the corresponding regression coefficient. Thus, even in situations where 

dichotomization does reduce bias in the estimated regression coefficient, this advantage 

could be outweighed by loss of information and/or degradation of model fit.

Recently Keogh et al128 investigated several methods of adjusting for misclassification due 

to dichotomizing a continuous error-prone predictor. In contrast to previous work, a 

measured continuous exposure was specified to follow a linear measurement error model, 
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thereby allowing for systematic error. In addition to methods using estimated 

misclassification probabilities, the authors considered applying two regression calibration 

(RC) based methods, multiple imputation (MI) and moment reconstruction (MR) to the 

continuous exposure followed by dichotomization, and also a SIMEX method. Simulation 

studies were used to compare the methods when either the true exposure or reference 

measurements with classical error were available in a validation subsample. The underlying 

relationship between the continuous exposure and the outcome in the simulations was a 

univariate linear logistic regression, and dichotomization was based on a pre-defined 

cutpoint. In that study, regression calibration and SIMEX methods failed to correct 

adequately for bias because both methods assume non-differential error (the failure of 

regression calibration was also confirmed by Dalen et al129). However, MI and MR 

performed well. Methods using estimated misclassification probabilities also performed 

well, provided differential misclassification was assumed (see also Dalen et al130). It is 

important to note that the latter methods are restricted to estimating odds ratios, while MI 

and MR could, in principle, be used with different regression models, with quantile-based 

categorization, and could also accommodate covariate adjustment. Extending MI and MR to 

those cases as well as to the case of regression of the outcome on a non-linear function of the 

exposure remains an important area for further research.

6. External, imperfect or missing reference instruments

While Part 1 and earlier sections of this paper have made it clear that both theory and 

software are available for handling errors in measurement or classification of variables, 

ultimately their use hinges on the knowledge and data available regarding the measurement 

error or misclassification model that relates the imperfect observed exposure X* to the true 

value X. Unfortunately, all too often, information about the error model is incomplete or 

missing. In this section, we describe how one might approach the problem of measurement 

error or misclassification when there is lack of knowledge about such a model.

The ideal setting for applying methods to address measurement error or misclassification of 

variables is one in which an internal validation study has been done, which would directly 

relate the imperfect observed exposure or outcome to its true value in the population of 

interest. We consider analysis options when such a validation study is not available. In this 

case, there may be data from another cohort, namely an external validation study, or there 

may be an imperfect reference instrument that can provide partial information about the 

nature of the measurement error. We also discuss approaches for settings where there is little 

to no information available regarding the error-prone data.

6.1 Using an external validation study

Internal validation studies are the ideal because their data can be used directly with all the 

methods of measurement error analysis described previously. In their absence, external 

studies can be used to specify the measurement error model (or its associated regression 

calibration model) in the external data and to estimate its parameters. However, the use of 

this external study data in the analysis of the primary study is then reliant on the assumption 

of transportability for the model of X*|X,Z (see also Part 1, Section 4.2). Transportability 
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means that the specified model relating the error prone X* with the true data (X,Z) holds 

with the same parameter values in both studies, and that the relevant parameter estimates and 

their standard errors obtained in the external study can be used without bias in analysis of 

the primary study. See, for example, Guo et al131 who provide a multiple imputation method 

that addresses covariate measurement error in a regression model using information from an 

external validation study that provided information regarding only the covariate error, 

without measurement of the outcome or other study variables. Further discussion of this 

article appears in Liao et al.132 Buonaccorsi2 also provides some discussion of error 

correction methods that rely on external data. In this case, also assuming non-differential 

error, one can use the external data to inform the regression calibration approach, as 

described in Part 1, Section 6.1; however, the calculation of the standard errors would need 

to be different, particularly if the original external data were not available.

The assumption of transportability may be reasonable if external independent data come 

from a similar population with measurements obtained with the same or a very similar 

instrument. Consider, for example, a nutritional study with dietary intake measured by a 

food frequency questionnaire (FFQ). If the external validation study provides independent 

data from the same population with the same FFQ plus a reference instrument, the error 

model that is estimated in the validation study could be assumed transportable to the primary 

study and used for adjusting its results for measurement error. If, however, the same FFQ is 

used in a somewhat different population, or a different version of FFQ is used in that 

population, the transportability assumption may not be fully justified.

A different example of possible problems with transportability includes the situation when 

the distribution of X* given (X, Z), the measurement error model, is the same in both 

primary and external studies, but the distributions of true exposure X given Z are different. 

Since by Bayes’ theorem the regression of X given (X*, Z) depends on both of these 

distributions, the regression calibration model is not transportable. Carroll et al1 (Section 

2.2.5) give an example of this phenomenon related to blood pressure measurement.

Since adopting the correct error model is critical for an appropriate adjustment for 

measurement error, whenever there is doubt about the transportability of an external 

validation study, it is advisable to conduct a sensitivity analysis by considering some 

possible variation in the relevant error parameters and their effect on the results of the 

primary study. Thus, while external validation studies can undoubtedly provide worthwhile 

information about the measurement error, they often do not entirely exempt the investigator 

from conducting a sensitivity analysis. However, in comparison to the situations in Sections 

6.2 and 6.3 that follow, where there is less information regarding the measurement error, in 

the case of external validation studies, the sensitivity analysis could involve a more restricted 

range of parameter values.

6.2 Methods that use an imperfect reference instrument

Often, exposures in epidemiological studies are known to be measured with substantial error, 

but the corresponding measurement error model is not known due to absence of appropriate 

reference instruments. Typical examples include most dietary exposures (see Part 1, Section 

4.3.1) and characteristics of physical activity such as measures of moderate to vigorous 
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activity (see Part 1, Section 4.3.2). In some such cases, an instrument less biased than the 

main study instrument, but nevertheless biased, is used as the reference instrument 

(calibration study with imperfect reference instrument). Examples in nutrition and physical 

activity studies are given in Part 1, Sections 4.3.1 and 4.3.2.

As mentioned later in Section 6.3, in the absence of knowledge of the measurement error 

model, a bias or sensitivity analysis is recommended using a plausible set of parameters (or 

their distribution) for the model. When the measurement error model is estimated using an 

imperfect reference, sensitivity analysis is also recommended. Although the error model 

parameters are imperfectly estimated, they may nevertheless be used together with 

supplementary information to choose the range of parameters for the sensitivity analysis. 

Thiébaut et al133 provided a good example of this approach. They reported the estimated 

relative risk (RR) for breast cancer associated with a two-fold increase in fat density (percent 

of total energy provided by fat). In the Results section, they first report the unadjusted RR 

estimate of 1.15 (95% CI 1.05–1.26) based on food frequency questionnaire data. They then 

report the RR adjusted for measurement error based on a 24-hour recall (imperfect) 

reference validation study: 1.32 (95% CI 1.11–1.58). Finally, in the Discussion section, they 

use data from the OPEN validation study7 to adjust for the bias that may have occurred due 

to use of an imperfect reference instrument for fat density. The adjustment for bias is 

calculated by comparing attenuation factors based on the imperfect reference (24-hour 

recall) with that based on the perfect reference (recovery biomarkers) for protein density that 

has a recovery biomarker, and transporting the ratios of these estimates to the case of fat 

density, which does not have a recovery biomarker. This procedure, which was justified by 

the substantial correlation between protein and fat intake, gave an estimated RR of 1.46 (no 

confidence limits for this estimate were provided). Although they did not perform a formal 

sensitivity analysis in the last analysis, it is clear that their approach was moving in that 

direction.

This example includes the elements of how a sensitivity analysis may be constructed from 

knowledge of measurement error in exposures similar to that being considered. For exposure 

X (e.g. fat intake), the measured exposure X* (using instrument IQ, e.g. a food frequency 

questionnaire) is compared to an imperfect reference instrument XImp**  (using instrument IR, 

e.g. a 24-hour recall) to obtain an estimated measurement error model M*. For some similar 

exposure X1 (e.g., protein intake), information is available on the measured exposure X1* 

(using instrument IQ, the food frequency questionnaire), its imperfect reference instrument 

X1, Imp**  (using instrument IR, the 24-hour recall), and also an unbiased reference 

measurement X1** (e.g., 24-hour urinary nitrogen excretion). The availability of both the 

imperfect reference measurement and an unbiased reference measurement for X1 enables 

one to learn about the relationship between the true measurement error model M1 estimated 

using measurement X1** and the model M1* estimated using the imperfect reference measure 

X1, Imp** . This information about M1 versus M1* is then applied to the estimated measurement 

error model M* for the exposure of real interest X, to yield the desired range of parameters 

for the true measurement error model M for measured exposure X*.
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In this approach, the choice of the “similar” exposure X1 will, of course, depend on the 

context. For dietary intakes, it will be the intake of another dietary component, one that has 

an unbiased reference measurement; for physical activity measures such as moderate or 

vigorous activity measured by a physical activity diary and compared to an accelerometer 

reference, it could be total energy expenditure that can be measured unbiasedly by doubly 

labeled water.

A different approach to dealing with studies using imperfect reference instruments starts 

with the question of whether using an imperfect reference instrument to adjust for 

measurement error is preferable to making no adjustment whatsoever. In other words, if one 

uses an imperfect reference to estimate the measurement error model and then uses this 

model to adjust risk parameter estimates in the health outcome model, would these adjusted 

estimates, even if biased, still have less bias than unadjusted ones? If that could be 

demonstrated, it could motivate the use of these imperfectly adjusted estimates in preference 

to the unadjusted ones. This approach is less demanding than conducting a sensitivity 

analysis, since it involves applying the measurement error adjustment for just one 

measurement error model, but it is also less complete.

The issue has been studied in nutritional epidemiology. Freedman et al134 published the 

results of analyzing such a question using data from the OPEN study, and more recently 

updated their results using data from the five validation studies included in the Validation 

Studies Pooling Project.135 They concluded that, on average, 24-hour recall-based 

calibration of a food frequency questionnaire reduced, but did not eliminate, the bias in the 

risk estimates in multivariate risk models that included energy, and protein, potassium and 

sodium intake densities, in comparison with unadjusted estimates. Although those results, as 

well as similar results using linear measurement error models in the sensitivity analysis 

conducted by Buonaccorsi et al,136 indicate that using a 24-hour recall as a reference 

instrument to adjust for measurement error would improve the analysis of studies in 

nutritional epidemiology, there remain some doubts. The improvement has been 

demonstrated in only a handful of nutrients (those which have unbiased biomarkers), and 

may not transfer to all other dietary components, especially episodically consumed dietary 

components, for which the measurement error model is highly non-linear.137

A general limitation of this approach is that even if the resulting estimates are less biased 

than unadjusted estimates, they are nevertheless biased. Therefore, presenting them as the 

best estimates available does not reveal the full extent of the underlying uncertainty, and is a 

less complete approach than conducting a sensitivity analysis.

6.3 Approaches when there is no reference instrument

If we have no knowledge about the measurement error model, then we have to make 

assumptions about it. Note that ignoring measurement error is one (incorrect) assumption, 

which is akin to assuming there was no error in measurement. In this section, we outline 

alternatives to this naïve approach. Investigations can still be undertaken to understand the 

potential impact of measurement error or misclassification on study results. This approach 

involves three steps. First, a measurement error model is posited. Second, study results are 

produced that are corrected for measurement error, under the assumed measurement error 
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model. This may involve direct reanalysis of the data, or post-hoc adjustment of estimated 

outcome model parameters. Finally, assumptions about the parameters in the assumed error 

model are typically varied in a sensitivity analysis to examine the robustness of study results 

to a range of assumptions about the measurement error.

Bias analysis, sometimes also referred to as uncertainty analysis or probabilistic sensitivity 

analysis, follows the above general approach for quantifying the potential effects of 

measurement error. This method focuses on sources of systematic and random error. Bias 

analyses have several goals: i) to estimate the direction and magnitude of the bias in study 

results induced by the errors in the data, ii) to make explicit the sources of suspected errors 

and the degree of uncertainty that they introduce into study results, and iii) to efficiently 

guide future research by elucidating what associations are sensitive to the underlying amount 

of measurement error or misclassification and would best benefit from future replicates or 

validation studies to estimate that error. 138

Methods for bias analyses are well established in the statistical and epidemiologic literature 

and apply to estimating the impact of sources of bias that go beyond just measurement error, 

such as unmeasured confounding or non-ignorable dropout [Lash et al138, Greenland et al,
139 Greenland,140 Fox and Lash,141 Fox 2009,142 MacLehose et al,143 Lash and Ahern144]. 

A fundamental step of bias analysis is to thoroughly review the study’s subject selection and 

retention, methods of data collection, and other opportunities for confounding, selection bias 

and measurement error.138 Once those potential sources of bias have been identified, 

mathematical models are developed for the relationship between the underlying true data 

with biases removed and the study data. For this endeavor, distributions rather than a single 

set of parameter values are used to generate a sensitivity analysis for the results of the bias 

analysis. In the absence of any validation data or other studies to inform the selection of 

parameters, educated guesses can be used to posit such relationships.142 In this last step, one 

option is to assign a prior distribution from which to draw the necessary error parameters, 

which allows for a Bayesian analysis that naturally integrates the uncertainties coming from 

the sub-models for exposure, outcome, and measurement. Choice of this prior in the absence 

of validation studies could similarly be informed by expert option, as discussed in Section 

2.2. Lash et al138 provide a review of best practices for bias analysis. One challenge to this 

approach is its reliance on proper specification of the mathematical form of the measurement 

error, such as additive or multiplicative. This choice is likely best informed by validation 

data but could also be made part of the sensitivity analysis in the absence of such data.

A practical example of bias analysis can be seen in the study by Jurek et al,145 who sought 

to quantify the impact that exposure misclassification may have had on a study by Ross et 

al146 reporting on the effect of maternal supplement use on the risk of leukemia in children 

with Down syndrome. Because of a lack of an internal validation study, Jurek et al145 

developed their misclassification models and parameter distributions from a mixture of 

expert opinion, a literature review of validation studies of similar exposure instruments, and 

limitations set by the data themselves. Using several error model scenarios, including both 

differential and non-differential misclassification and a formula to adjust the estimated odds 

ratio for the underlying exposure misclassification, they conducted a sensitivity analysis for 

the induced bias. Their bias analyses revealed that data that were corrected for the reporting 
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bias in supplement use generally yielded a stronger protective effect than the naïve analysis 

that ignored the misclassification. The uncertainty was increased in all scenarios.

He et al147 provided an alternative approach for examining the potential effects of 

measurement error. These authors considered an accelerated failure time model for mortality 

in the Bussleton Health Study cohort that included two error-prone covariates, serum 

cholesterol and systolic blood pressure (SBP), as well as other assumed precise covariates. 

The errors in cholesterol and blood pressure were assumed to be independent and to follow 

the classical measurement error. Lacking a replicates sub-study, the authors considered 

several possibilities for the size of the underlying measurement error variance and applied a 

SIMEX approach to re-estimate the regression parameters for each value of the assumed 

measurement error variance. With this exercise, the authors were able to conclude that even 

under small to moderate classical measurement error, the factors determining mortality 

remained the same, with the most uncertainty about the magnitude of the effect of SBP. Such 

analyses motivate future replicates studies to gather multiple measures of SBP in similar 

settings to better understand the magnitude of the measurement error variance and the 

relationship of SBP to mortality. The decreased sensitivity of results to the measurement 

error in cholesterol suggest that for this exposure such studies may be of secondary 

importance to that for SBP.

7. Conclusion

In this two-part tutorial, we have presented basic information needed to understand the 

impact of measurement error and misclassification on results of epidemiological research 

studies, and methods available to adjust for such error. In Part 2, we have also presented 

some more advanced methods to address covariate and outcome measurement error, but our 

review is not exhaustive. Some notable methods not considered here include conditional 

score and corrected score methods to address covariate error. For density estimation, there is 

also only minimal detail regarding deconvolution kernel estimators and other nonparametric 

density estimation methods. The reader is referred to some recent textbooks (Carroll et al1, 

Buonaccorsi2, Yi3, Gustafson13) for introductions to these and other methods not 

considered.

Our impression is that the problem of measurement error and misclassification is being 

seriously neglected in the design of many epidemiologic studies and in the presentation of 

their results.148,149 Barriers to satisfactory handling of such problems include lack of 

validation studies required to quantify the amount and type of error, lack of appreciation and 

understanding of the effects of such error, and lack of knowledge of the methods and 

software required to adjust for these effects. Publication of this paper is part of a wider effort 

by our STRATOS Topic Group to bring these problems to the attention of the biostatistical 

and epidemiologic communities; and on a broader perspective, our work on publishing this 

guidance paper is part of the general aim of STRATOS to strengthen the analytic thinking 

underlying observational studies.150
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Figure 1: 
Flowchart for the steps in a likelihood analysis.
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Figure 2: 
Smoothed estimated densities of usual sodium intake per day among the OPEN study 

participants based on (i) a single 24-hour urinary sodium determination (single biomarker) 

and (ii) the NRC method of adjusting for the measurement error in a single determination 

(usual intake).
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Table 1:

Analyses of the association of log potassium density intake with body mass index, using maximum likelihood 

estimation and Bayesian methods: data from the 484 participants in the OPEN study

Notation

X = true log potassium density; Z1 = Sex; Z2 = Age

X* = FFQ potassium density; X** = biomarker log potassium density

Y = BMI

Models

Outcome Model Y|X,Z1,Z2 ~ N(β0 + βXX + β1Z1 + β2Z2, σε
2)

Measurement Error Model 1 X*|X,Z1,Z2 ~ N(α0 + αXX + α1Z1 + α2Z2, σU
2)

Measurement Error Model 2 X**|X ~ N(X,σX**
2 )

Exposure Model X|Z1,Z2 ~ N(γ0 + γ1Z1 + γ2Z2, σX
2)

Maximum Likelihood Results for Outcome Model

Coefficient Estimated coefficient Standard Error 95% CI P-value

log potassium density, βX −7.19 1.25 −9.64, −4.74 <0.001

Sex (F v M), β1 −0.03 0.51 −1.03, 0.97 0.95

Age (years), β2 0.09 0.03 0.03, 0.15 0.004

Bayesian Results for Outcome Model

Coefficient Estimated coefficient Posterior Standard Deviation 95% credible limits Posterior Probability of being 
>0

log potassium density, βX −6.08 1.43 −9.38, −3.78 <0.005

Sex (F v M), β1 −0.30 0.51 −1.30, 0.71 0.27

Age (years), β2 0.08 0.03 0.02, 0.15 >0.995
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Table 2:

Analyses of the association of log sodium intake with body mass index, using analyses unadjusted for 

covariate measurement error, moment reconstruction, and multiple imputation. Data from the 484 participants 

in the OPEN study.

Part A: Outcome regression parameter estimates

Variable Unadjusted Analysis β (SE) Moment Reconstruction β (SE) Multiple Imputation β (SE)

log sodium intake 1.13 (0.57)
12.21 (2.70

a
) 11.02 (2.65

b
)

Sex (F v M) −0.23 (0.51)
3.16 (1.00

a
) 2.75 (1.45

b
)

Age (years) 0.037 (0.029)
0.052 (0.035

a
) 0.051 (0.070

b
)

Part B: Regression models needed for Moment Reconstruction

B1: Model of biomarker log sodium intake on 

BMI, sex and age 
c

Estimated coefficient Standard error z-value

Intercept 8.03 0.19 43.4

BMI (kg/m2) 0.031 0.004 7.81

Sex (F v M) −0.29 0.04 −7.00

Age (years) −0.0027 0.0025 −1.11

Residual variance 0.0965

B2: Model of FFQ log sodium intake on BMI, 
sex and age

Estimated coefficient Standard error z-value

Intercept 8.43 0.170 49.53

BMI (kg/m2) 0.0071 0.0036 1.97

Sex (F v M) −0.28 0.04 −7.27

Age (years) −0.0062 0.0023 −2.68

Residual variance 0.1736

Part C: Regression models needed for Multiple Imputation

Model of biomarker log sodium intake on 

FFQ log sodium, BMI, sex and age 
c,d

Estimated coefficient Standard error z-value

Intercept 7.54 0.45 16.93

FFQ log sodium intake 0.059 0.049 1.22

BMI (kg/m2) 0.030 0.004 7.47

Sex (F v M) −0.27 0.04 −6.22

Age (years) −0.0022 0.0025 −0.91

Residual variance 0.0963

a
From a bootstrap sample of 5000

b
From 500 multiple imputations

c
Based on a random subsample of 250 participants

d
Used to impute biomarker log sodium intake
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Table 3:

Analyses of the association of log potassium density intake with body mass index, using analyses unadjusted 

for measurement error, moment reconstruction and multiple imputation. Data from the 484 participants in the 

OPEN study.

Variable Unadjusted Analysis β (SE) Moment Reconstruction β (SE) Multiple Imputation β (SE)

log potassium density −1.69 (0.93)
−8.13 (1.77

a
) −7.28 (2.03

b
)

Sex (F v M) −0.38 (0.49)
0.04 (0.53

a
) 0.05 (0.73

b
)

Age (years) 0.039 (0.29)
0.101 (0.035

a
) 0.094 (0.048

b
)

a
From a bootstrap sample of 5000

b
Using 500 multiple imputations, where the imputation model for the biomarker log-potassium intake was based on a random subsample of 250 

participants and included the self-reported FFQ log-potassium density, sex, age (years), and BMI
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Table 4:

Data from a study of risk factors for sudden infant death syndrome [Kraus et al, (1989)43]: Y = sudden infant 

death syndrome (case=1, control=0); X = antibiotic use during pregnancy according to medical record (yes=1, 

no=0); X* = antibiotic use during pregnancy according to mother’s report (yes=1, no=0)

X=0 X=1 X unobserved Total

Y=0, X*=0 168 16 479 663

Y=0, X*=1 12 21 101 134

Y=1, X*=0 143 17 442 602

Y=1, X*=1 22 29 122 173
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Table 5:

Estimated percentiles of the distribution of usual sodium intake (mg/day) among a population typical of the 

participants in the OPEN study, using a single measurement of urinary sodium (unadjusted method) versus the 

NRC method applied to the log value of this measurement

Percentile Unadjusted method (mg/day) NRC method (mg/day)

5 1,810 2,233

10 2,150 2,530

25 2,879 3,126

50 3,948 3,928

75 5,322 4,876

90 6,649 5,729

95 7,686 6,363
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