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Abstract
Cannabis-inspired medical products are garnering increasing attention from the scientific community, general public, and health policy
makers. A plethora of scientific literature demonstrates intricate engagement of the endocannabinoid system with human immunology,
psychology, developmental processes, neuronal plasticity, signal transduction, and metabolic regulation. Despite the therapeutic poten-
tial, the adverse psychoactive effects and historical stigma, cannabinoids have limited widespread clinical application. Therefore, it is
plausible to weigh carefully the beneficial effects of cannabinoids against the potential adverse impacts for every individual. This is
where the concept of “personalizedmedicine” as a promising approach for disease prediction and preventionmay take into the account.
The goal of this review is to provide an outline of the endocannabinoid system, including endocannabinoidmetabolizing pathways, and
will progress to a more in-depth discussion of the therapeutic interventions by endocannabinoids in various neurological disorders.
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Introduction

Cannabis sativa is an herbaceous plant widely recognized for
its psychotropic activity and recreational abuse. Undoubtedly,
the most recognized cannabis-derived molecule is delta-9-
tetrahydrocannabinol (Δ9-THC), which acts on the
endocannabinoid system (ECS) and mediates the psychotro-
pic effects of marijuana. Regardless of this activity, marijuana
is being used for recreational purpose for centuries. In addi-
tion, anecdotal reports of medicinal value coupled with enor-
mous interest from the public in natural medical products have
sparked a keen interest in understanding the potential clinical
utility of cannabis and targeted modulation of ECS. Indeed,
oral formulations of cannabinoids (i.e., nabilone, dronabinol)
havingΔ9-THCmay be useful for the treatment of nausea and
vomiting in cancer patients undergoing chemotherapy [1, 2].
Despite potential prophylactic and/or therapeutic functions,
the historical stigma of cannabinoids limited the performance
of randomized controlled clinical trials to demonstrate the
utility of cannabis in alleviating human diseases.

Vamsi Reddy and Dayton Grogan contributed equally to this work.

* Kumar Vaibhav
kvaibhav@augusta.edu

1 Department of Neurosurgery, Medical College of Georgia, Augusta
University, Augusta, GA, USA

2 Department of Pathology, Medical College of Georgia, Augusta
University, Augusta, GA, USA

3 Department ofOral Biology andDiagnostic Sciences, Dental College
of Georgia, Augusta University, Augusta, GA, USA

4 Brown University, Providence, RI, USA
5 Georgia Cancer Center, Augusta University, Augusta, GA, USA
6 Lombardi Comprehensive Cancer Center, Georgetown University

Medical Center, Washington DC, USA
7 Department of Psychiatry and Behavioral Sciences, University of

Washington School of Medicine, Seattle, USA
8 VISN 20 Mental Illness Research, Education and Clinical Center

(MIRECC), VA Puget Sound Health Care System, Seattle, USA
9 European Medical Association (EMA), Brussels, Belgium

https://doi.org/10.1007/s13167-020-00203-4
EPMA Journal (2020) 11:217–250

/Published online: 15 April 2020

http://crossmark.crossref.org/dialog/?doi=10.1007/s13167-020-00203-4&domain=pdf
mailto:kvaibhav@augusta.edu


Incidences of neurological disorders increase manifold
globally with the rise in life expectancy. According to a sys-
tematic analysis, neurological disorders were leading in
disability-adjusted life years (DALYs) with 276 million inci-
dences and was second most cause of death at 9 million in
2016, whereas stroke (42.2%), migraine (16.3%), and
Alzheimer’s disease (AD) and other dementia (10.4) were
highest contributors for DALYs [3, 4]. The DALYs and death
counts due to neurological diseases increased by 15% and
39% respectively in between 1990 and 2016 [3]. According
to WHO report, global DALYs and death for all combined
neurological disorders could reach up to 6.77% and 12.22%
respectively [5], and therefore, a close attention and action are
needed from medical and scientific world to emphasize on
therapeutic intervention of these diseases.

While dysregulation of the ECS is associated with detri-
mental outcomes in neurological injuries, targeted modulation
of ECS remains an understudied approach to improve out-
comes [6–16]. Of note, preclinical studies by our group and
others found that selective activation of the non-psychoactive
cannabinoid receptor 2 (CB2R) reduced neuropathology after
a variety of neuropsychiatric and neurodegenerative diseases,
including cerebral ischemia [11, 17, 18], traumatic brain inju-
ry (TBI) [15, 19], neuropathic pain [20], stroke [11], neurode-
generative disease [21–23], depression [24], anxiety [25],
schizophrenia-like behaviors [26], and drug addiction
[27–29]. The goal of this review is to describe the functions
of the ECS with respect to neurological function, including
potential utility in neurological impairments. With this under-
standing, the medical community can use an evidence-based
approach to inform public policy regarding the consumption
of cannabis products as therapeutics to improve brain health.

ECS: understanding components and their
functions in health

ECS is an endogenous regulatory system comprised of ligands
(endocannabinoids), cannabinoid receptors (CBRs), and
endocannabinoid synthesizing/degrading enzymes (Fig. 1).
In the following sections, we discuss the different roles and
physiological functions of ECS and how dysfunction within
the ECS may result in neuropathology.

Endogenous cannabinoids: ligands, metabolism,
and receptors

Endocannabinoids and their synthesis

Endocannabinoids are arachidonate-based lipids (eicosa-
noids), such as anandamide (N-arachidonoylethanolamide,
AEA) and 2-arachidonoylglycerol (2-AG), which are endog-
enous ligands to the cannabinoid receptors (CB1R and CB2R)

[30, 31]. Both ligands AEA and 2-AG act as neurotransmitters
affecting behavior in a manner different to that of THC [32],
which is an exogenously derived cannabinoid and often has
multiple side effects [33]. Both endogenous ligands are orig-
inated from arachidonic acid, as needed, to meet the physio-
logical requirements of the body on a situational basis [34].
AEA synthesis involves multiple paths involving different
phospholipases. AEA synthesis generally begins with N-
arachidonoyl phosphatidyl ethanol (NAPE) as its starting ma-
terial . NAPE is hydrolyzed primari ly by NAPE-
phospholipase D (NAPE-PLD) into products which subse-
quently form AEA [35–37]. 2-AG synthesis generally in-
volves sequential hydrolysis of an arachidonoyl-containing
phosphatidylinositol 4,5-bisphosphate (PIP2) by a phospholi-
pase C-beta (PLC-β) [38, 39] to form diacylglycerol, which is
then hydrolyzed by diacylglycerol lipase (DAGL) to form 2-
AG [40].While both endocannabinoids, AEA and 2-AG, bind
to CBRs, they exhibit different responses, efficacy, and spec-
ificities. In general AEA, which has a moderate affinity to
both CBRs, is activated in response to CNS stress and act as
a response to pain in peripheral nervous system (PNS) [33,
41–43]. In contrast, 2-AG which is formed as an intermediate
in several lipid metabolism pathway, is more abundant than
AEA and thus, has high efficacy at both CBRs [33, 42–47].

Endocannabinoid metabolism

The enzyme fatty acid amino hydrolase (FAAH) degrades all
fatty acid amides, including AEA [48]. In addition,
cyclooxygenase-2 (COX-2) enzymatically degrades AEA to
generate prostamides [49–51]. 2-AG, the most abundant
endocannabinoid within the CNS, is primarily metabolized
by three hydrolytic enzymes: monoacylglycerol lipase
(MAGL) and alpha/beta domain hydrolases 6 and 12
(ABHD6 and 12) [51, 52]. Beyond this, 2-AG may addition-
ally be degraded by COX-2 and FAAH enzymes [53].
Degradation by COX-2 occurs in neural tissue and results in
the production of prostaglandin E2 (PGE2), an excitatory ox-
idative metabolite also found to be involved with synaptic
transmission and plasticity [32]. 2-AG can also serve as an
intermediate for lipid synthesis by acting as a source of ara-
chidonic acid during prostaglandin synthesis [54].

Cannabinoid receptors

There are two primary cannabinoid receptors—CB1R and
CB2R—which bind with different endogenous or exoge-
nous cannabinoids to mediate the downstream effects.
Both receptors share 44% homology in amino acid se-
quence [55] and act as Gi/o-linked G protein-coupled re-
ceptors (GPCRs). Both receptors can inhibit adenylyl cy-
clase and can activate mitogen-activated protein kinase
(MAPK) [56, 57]. However, CB1Rs may also inhibit N
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or P/Q-type calcium channels and may activate inwardly
correcting potassium channels [58, 59]. Although both
these receptors possess similar binding pattern for canna-
binoids [55], they acquire different functional roles
(Table 1). CB1R is psychoactive whereas CB2R is thought
to lose this effect.

CB1Rs are found predominantly in the CNS on presyn-
aptic axon terminals and stomata [60]. In particular,
CB1Rs are expressed heavily in cortical association areas
and the direct nigrostriatal pathway but less in the primary
somatosensory cortex. Subcortically, CB1Rs are localized
in the amygdala [61, 62], basal ganglia [63], hippocampus
[64, 65], and cerebellum [66]. CB2R has lower expression
in CNS, but is more involved with peripheral immune
cells [67], including lymphocytes, followed by natural
killer (NK) cells, monocytes, neutrophils, and T helper
cells [68]. Consistent with higher expression on immune
cells, CB2R is predominant found on microglia within the
CNS, with lesser expression noted in CNS vascular

elements [69, 70]. High expression of CB2R mRNA was
also observed in ventral tegmental area (VTA), specially
on dopaminergic neurons [71], with reports showing most
neuronal CB2R localization post-synaptically on the cell
body [64, 71]. In contrast to the constitutive expression of
CB1R, CB2Rs are strongly induced following trauma or
pathology [15, 63], making this a potentially interesting
target for disease/injury mitigation. This inducible activity
has also be correlated with neuropathic pain [20], stroke
[11], traumatic brain injury [19], neurodegenerative dis-
e a s e [ 21–23 ] , d ep r e s s i on [24 ] , a nx i e t y [ 25 ] ,
schizophrenia-like behaviors [26], and drug addiction
[27–29].

Besides classical CBRs, non-cannabinoid receptors also
may be involved with the ECS. For instance, transient re-
ceptor potential (TRP) channels may also be influenced by
cannabinoids in the context of peripheral pain and temper-
ature sensation [72]. Of the TRP receptors, TRPV1 has
garnished the most attraction given its inducibility and

Fig. 1 The endocannabinoid system in normal cellular homeostasis and
its dysregulation in different neuropathologies. Schematic diagram shows
ECS and its different components in normal cellular physiology. The

dysregulated ECS as result of injury or pathologies to brain, becomes
inefficient to maintain cellular homeostasis, and exaggerates the
progression of different neurological disorders
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affiliation with immune cells. Peroxisome proliferator-
activated receptors (PPAR-α and PPAR-γ) also may be
influenced by cannabinoid action to regulate gene
transcription/regulation [73].

Physiological functions

ECS is a complex system that is intricately involved with
human immunology, psychology, developmental process,
neural plasticity, signal transduction, and metabolic regula-
tion. With interplay into so many physiological components,
understanding ECS and its implication in CNS homeostasis is
critical to explore the therapeutic potential in various neuro-
logical diseases.

Neural transmission and synaptic regulation

Metabotropic suppression of inhibition/excitation (MSI/MSE)
is also known as “synaptically evoked suppression of inhibi-
tion or excitation” or “endocannabinoid-mediated short-term
depression” [32]. MSI/MSE is activated by the postsynaptic
activation of Gq/11-linked GPCR which then activates PLC-
beta to create diacylglycerol (DAG). This DAG gets
deacetylated by diacylglycerol lipase (DAGL) to synthesize
2-AG which then diffuses presynaptically to CB1Rs and sup-
presses synaptic transmission [74]. This suppression is medi-
ated by various GPCRs linked to Gq/11 including metabotro-
pic glutamate receptor 1 (mGluR1) and 5 (mGluR5), M1 and
M3muscarinic receptor, orexin-A receptor, cholecystokinin A
receptor, and alpha1-adrenergic receptor [75].

Table 1 Comparison between cannabinoid receptors CB1R and CB2R.
CB1R and CB2R are two main cannabinoid receptors that share similar
ligand binding pattern and has 44% homology in amino acid sequence in

whole protein and 68% homology in transmembrane domain [55, 57].
However, both receptors act as Gi/o-linked GPCRs [56, 57, 479, 480] and
are functionally quite different as highlighted in the given table

Properties Cannabinoid receptor 1 (CB1R) Cannabinoid receptor 2 (CB2R)

History a. First discovered from rat brain P2 membrane
and synaptosomes in 1988 [55, 481]

b. Cloned for the first time from rat cerebral
cortex cDNA library [55, 56]

c. Located on chromosome 6q14-15 [55, 482]

a. First discovered and cloned from human promyelocytic leukemia
cell HL60 cDNA [55, 57]

b. Located at chromosome 1p36 [55]

Localization a. Mainly in the CNS, abundant in basal ganglia,
cerebellum, cortex, and hippocampus [55, 483, 484]

b. Also, present in the pituitary, thyroid, gonads,
upper airways, adrenal, liver, and uterus [483, 484]

c. Predominantly on presynaptic neurons [483, 484]

a. Mainly on immune cells and keratinocytes [483, 484]
b. CB2R coexists with CB1R in the retina, heart, pancreas, stomach,

bone, digestive tract, and CNS (microglia and astrocytes) in certain
conditions [55, 483–487]

c. Predominantly on glia cells and postsynaptic neurons [483–486]

Ligands a. Shows a strict requirement for pentyl or longer
alkyl tails in ligands [483, 484]

b. AEA has high affinity for CB1R [Ki = 89 nM]
with EC50 = 31 nM [338, 488–491]

c. 2-AG is full agonist to CB1R, with lower affinity
[Ki = 472 nM] than AEA and with
EC50 = 519 nM [338, 492–496]

d. Binds with THC [Ki = 41 nM] [338]

a. CB2R recognizes classical cannabinoids with shorter alkyl
chains—dimethylpropyl or dimethylethyl [497, 498]

b. AEA has comparatively lower affinity for CB2R than CB1R
[Ki = 371 nM; EC50 = 27 nM] [338, 488–492, 494, 496, 499]

c. 2-AG acts as a full agonist to CB2R [Ki=1400 nM] and has EC50=618 nM)
[42, 338, 492, 494, 496, 500, 501]

d. Binds with THC [Ki = 36 nM] [338] and with mildly
psychoactive component cannabinol (CBN) [483, 484]

Functions a. Has psychoactive property [483, 484]
b. Stimulates dopaminergic reward pathway [502]
c. Motivates to eat, smoke or intake of drugs [502]
d. Required for synaptic transmission [483, 484]
e. CB1R signaling includes [58, 499, 503]:
• Inhibition of forskolin-stimulated adenylyl cyclase
• Inhibition of N-, P-, and Q-type calcium channels
• Activation of inwardly rectifying potassium channels
f. Plays an essential role in:
• Fine-tuned motor control [504–506]
• Central and peripheral regulation of food intake

[504–506]
• Fat accumulation [504–506]
• Lipid and glucose metabolism [504–506]

a. Has immunological property [483, 484]
• Regulates leukocytes adhesion and rolling on endothelium

[70, 507–510]
• Activation of CB2R improves microvascular circulation and

protects BBB [70, 507–509, 511]
• Regulates T cell differentiation [512, 513]
• Inhibits melanoma cell transendothelial migration [514]
b. CB2R may contribute to neuronal plasticity in mouse

hippocampal CA3 and CA2 pyramidal neurons [64]
c. CB2R signaling includes:
• Phosphoinositide 3-kinase pathways [515]
• Activation of de novo ceramide production or

cyclooxygenase-2 (COX-2) induction [516]
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Endocannabinoid-mediated long-term depression (eLTD)
is the final mode of retrograde suppression and exhibits a
long-lasting inhibition through multiple mechanisms primari-
ly through endocannabinoid-induced homo-/heterosynaptic
transmission. Homosynaptic eLTD is much more prominent
at the glutamatergic synapse of ventral and dorsal striatum
[76, 77]. In contrast, heterosynaptic eLTD affects adjacent
synapses to the one being stimulated. Both types of eLTD
work in various capacities throughout CNS including hippo-
campal inhibitory synapses via adenylyl cyclase inhibition as
well as cortical circuit maturation [78–80]. There is research
indicating that by removing inhibition of eLTD, inhibitory
synapses could increase dendritic excitability, thus potentiat-
ing excitatory transmission over a narrow spatial domain [81].
Finally, an autonomous self-inhibition exists as 2-AG can di-
rectly suppress neuronal excitability especially during intense
neuron stimulation, which activates somatic CB1Rs and so-
matic potassium conductance via an inward rectifying K chan-
nel [82–84].

The two cannabinoid receptors converge on some func-
tions but are divergent in others due to a variety of ligand
diversification. CB1R is localized on presynaptic neurons,
modulates neurotransmission, and plays a role in neuronal
excitability by suppressing exogenous or endogenous canna-
binoid binding [60]. Its activation decreases presynaptic
GABA release, eliminates GABAergic inhibitory control of
postsynaptic neurons, and excites postsynaptic neurons
through disinhibition [85, 86]. CB2R, on the other hand, is
described as a “modulatory volume transmitter” which can
gradually control the strength of nociception. In the CNS,
CB2Rs have lower expression levels than CB1Rs which can
explain their inability to respond to cannabinoids under phys-
iologic conditions [69, 70]. CB2Rs, however, are expressed
abundantly in neuronal post-synaptic somatodendritic region,
suggesting an opposing effect from CB1Rs [66, 87].
Activation of these receptors reduces VTA-DA neuron firing
and excitability which may aid in neuroprotection by hyper-
polarizing membrane potential and inhibits postsynaptic neu-
ronal function [32]. Thus, the ECS plays vital role in both
short-term and long-term synaptic plasticity [88–93].

Immune regulation

The release of endocannabinoids within the injured CNS en-
hances endogenous neuroprotection via undefined mecha-
nisms [70, 94–96].We reported upregulated CB2R expression
on myeloid cells with unaltered cerebral CB1R mRNA ex-
pression within days of experimental TBI [15]. Functionally,
we and others showed that selective activation of CB2R re-
duced inflammation, attenuated edema, limited disruption of
the BBB, improved cerebral perfusion, and enhanced behav-
ioral outcomes post-TBI [15, 70]. Moreover, CB2R activation
is associated with anti-inflammatory effects in preclinical

models for atherosclerosis [97], multiple sclerosis [98],
Alzheimer’s disease [99], and arthritis [100]. Interestingly,
early treatment with CB2R agonist AM1241 suppressed
microglial activation in stroke rats, while the same agonist
did not show any significant effect when administered in de-
layed manner [11].

Administration of the selective CB2R agonist, JWH133,
shifted macrophages from a pro-inflammatory (M1) state into
an anti-inflammatory (M2) state after acute liver failure, via a
mechanism postulated to involve negative regulation of TLR4
[101]. Inhibition of TLR4 mitigates hypoperfusion-induced
cognitive dysfunction and protects the BBB and white matter
by reducing autophagy and inflammation [102–106].
Interestingly, pharmacological inhibition of MAGL, a princi-
pal 2-AG metabolizing enzyme, reduced macrophage infiltra-
tion during liver fibrosis [107]. Further, expression of macro-
phage MAGL inhibits tumor progression by promoting CD8+

T cell-mediated inflammation, while MAGL deficiency pro-
moted CB2R/TLR4-dependent macrophage activation and
suppression of inflammation [108]. CNS accumulation of in-
filtrating macrophages and TH cells were associated with pa-
renchymal inflammation and neurodegeneration after experi-
mental TBI or in resected brain tissue from TBI patients [109,
110]. Whereas the TH1/TH2 ratio remained unchanged in pe-
diatric TBI patients [111], TH17 cells were increased after
comorbid post-traumatic stress disorder with mild TBI in rats
[112–114], suggesting a role for TH polarization in chronic
neurological injury. CB2R agonist, GP1a, significantly re-
duced macrophage infiltration in the acute period after insult
and protected CBF by polarizing macrophages into M2 (anti-
inflammatory) phenotypes [15]. Further, CB2R agonists, β-
caryophyllene, and COR167 were able to inhibit demyelin-
ation through modulating T cells [115, 116]. Although CB2R
is highly recognized as anti-inflammatory receptor on immune
cells, the role of other components in immune regulation can-
not be ignored, and therefore, studies specifically focused on
different components of ECS should be encouraged.

ECS and neurological diseases

The association of the ECS in different physiological process-
es, such as synaptic plasticity and neuronal transmission, ad-
vances the probability of its role in neurological recovery
[11–16, 117]. Indeed, promising results have demonstrated
that modulation of the ECS attenuates key features of neuro-
logical injury, including neurodegeneration, excitotoxicity,
and immunomodulation [118]. Along these lines, activation
of CB1R decreased neuronal excitotoxicity, whereas CB2R
activation limited post-ischemic [17] and post-traumatic in-
flammation [15]. Thus, cannabis has the potential to influence
injury progression involved in neurodegeneration and neuro-
logical recovery. In the following subsections, we discuss the
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evidence supporting a potential role for cannabinoids in a
variety neurological disorders.

Traumatic brain injury: modulation of ECS improves
recovery post TBI

Traumatic brain injury (TBI) is described as occurring in a
series of two separate events [118]. The first insult consists
of a purely mechanical trauma, resulting in cell death and
axonal injury through vascular damage and edematous pres-
sure. The secondary injury follows the mechanical damage
and activates apoptotic pathways within surrounding neural
tissues through the release of glutamate-mediated
excitotoxicity and Ca2+ influx [119, 120]. Such secondary
damage also involves cerebrovascular derangements and im-
munologic activation. This twofold positive cycle consisting
of both mechanical and self-regulated cellular components
complicates the clinical management of TBI [121].

Reduced CB1R expression negatively correlated with ede-
ma formation and behavioral impairments while increased,
post-traumatic expression of CB2R was associated with
higher neurological deficits after experimental TBI in rodents
[19]. In line with these data, an increased ratio of CB2R den-
sity was observed in a porcine pediatric fluid percussion injury
model of TBI [122]. Functionally, mice exposed to CB2R
agonists, or CB1R antagonists, or inhibitors of cannabinoid
degradation demonstrated a reduction in neurodegeneration
[123]. In addition, CB2R agonists reduced lymphocyte rolling
and adhesion, which can ameliorate lesion size and improve
motor function [124]. Interestingly, repeated stress-induced
loss of CB2R deprived improvement post TBI in females,
while high basal level of CBR expressions in young naive
females protected against TBI [125], suggesting a possible
role for the ECS in modifying TBI outcomes.

Endocannabinoids 2-AG and AEA seem to play a major
role in the neuromodulation after TBI. A transient increase in
2-AG at the injured site was observed and was thought to
serve as a protective factor, while inhibition of this protective
effect by SR-141716A, a CB1R antagonist, showed increas-
ingly detrimental outcomes post TBI [126]. Further, exoge-
nous 2-AG administration reduced edema, inhibited
transactivation of the nuclear factor NF-kB, protected BBB,
and reduced pro-inflammatory cytokine mRNA (Il-1β,
TNFα, and IL-6) [127–129]. However, deletion of CB1R
eliminated these effects, suggesting that CB1R receptors me-
diated the protective effects of exogenous 2-AG [128]. While
direct effects of AEA or 2-AG on traumatic brain are not
entirely explored, inhibition of specific metabolizing enzymes
(e.g., FAAH, MAGL, and ABHD6) have shown promise in
modulating cellular and molecular hallmarks of TBI patholo-
gy, such as cell death, excitotoxicity, inflammation, cerebro-
vascular breakdown, and cell death [12, 130–135], and im-
proved functional outcomes [118]. JZL184, an inhibition of

MAGL, a primary metabolizing enzyme for 2-AG, showed
improved neurological recovery and reduced astrocytosis,
synaptic hyperexcitability, and glutamate dyshomeostasis up
to 2 weeks after mild TBI in rats [130]. The protein aggregates
such as amyloid-β plaques [136], p-tau [137], and TDP-43
[138], found to be accumulated in traumatic brain within hour
after axonal damage [136], were reduced by treating with
MAGL inhibitors [12]. Further, inhibition of MAGL after
repetitive mild closed TBI reduced inflammation, Aβ plaque
formation, and tau phosphorylation, while improving synaptic
transmission, recovering spatial memory, and preventing
chronic traumatic encephalopathy (CTE) [12, 135]. Thus, in-
hibition of MAGL protected against TBI-induced microglial
activation [12, 133], whereas inhibition of ABHD6 promoted
microglia/macrophage shift from a pro-inflammatory M1 to
an anti-inflammatoryM2 phenotype possibly via upregulation
of CBRs and inhibition of iNOS and COX-2 [131]. In addi-
tion, inhibition of FAAH restored the level of AEA [132],
prevented microglial activation and BBB disintegration
[133], activated CB2R receptors [139], and minimized
COX-2 and iNOS activities [134]. Inhibition of FAAH further
increased synaptophysin [134], a synaptic vesicle protein
whose elimination impairs object recognition and spatial
learning in mice [140], and prevented amyloid precursor pro-
tein and phosphorylation of tau protein [132]. While the
mechanism of protection of BBB by ECS is not known
completely, AEA decreased BBB permeability via TRPV1
in ischemic stroke [141]. Given that activation of TRPV1
receptors disrupts BBB integrity [142], it is possible that
AEA, as a partial agonist at TRPV1 channels [143], maybe
be acting as a functional antagonist against a high efficacy
endogenous ligand.

Interestingly, cannabinoids are also shown to improve ef-
fect of exogenous drugs against traumatic injury. For example,
modulation of CB2R by SMM-189 or raloxifene, a FDA-
approved estrogen receptor-targeting drug reduced blast-
induced visual impairment and retinal pathology post TBI
[144, 145]. Similarly, leptin, a hormone that regulates energy
balance, showed its neuroprotective effect against TBI via
modulation of CB2R which was attenuated in presence of
CB2R antagonist AM630 [146]. In addition, protective effect
of minocycline after TBI was abolished by treatment with
CB1R or CB2R antagonists (AM251 or AM630, respectively)
[147]. Estradiol decreased the number of TBI-induced immu-
noreactive astrocytes, which was inhibited by CB1R/CB2R
antagonists, while also increasing cerebral cortex mRNA
levels of CB2Rs [148]. Thus, it can be claimed that eCB
receptors in response to TBI may exert effect via endocrine
as well as paracrine signaling mechanisms.

Use of marijuana either alone or with other drugs is com-
mon among TBI (single or multiple impact) patients that may
affect the existing mental health and may lead to higher mor-
tality [149, 150]. An observational study in Colorado revealed
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three common reasons of cannabis use—recreational (72%),
to reduce stress/anxiety (62%), and to improve sleep (55%)
among TBI victims [151]. One of the very interesting results
published by Nguyen et al. investigated the relation between
THC consumption and mortality after TBI [152]. Out of 446
patients included in study, 82 patients (18.4%) were found
THC(+) and showed decreased mortality (2.4%; 2 deaths) in
comparison to 42 deaths (11.5%) in THC(−) screened group
[152].

A recent study with 307 acute concussion patients with
average age 33.7 years did not observe significant impact on
recovery by continuous use of cannabis, cigarette, and alcohol
within 4 weeks of injury. However, use of cannabis was found
to be associated with lower severity than the other two [153].
Most of the time patients are indulged in cannabis use post-
injury, unaware of its proven benefits or multiple effects [151,
154]. Moreover, cannabis abuse may cause neurological stress
and enhance risk of psychosis in adolescent patients and may
outweigh its potential therapeutic benefits [155]. However,
there is paucity of extensive data on efficacy and efficiency
of natural cannabinoids in TBI, and therefore, more extensive
studies on cannabis use in TBI and a strict guideline for use of
cannabis and patient management must be incorporated clin-
ically to avoid unwanted effects of cannabis abuse.

Stroke: cannabinoids reduce infarct volume

Stroke is one of the debilitating pathologies and has 13–35%
of first month case-fatality rate [156]. The percentage of
young population receiving stroke is alarmingly increasing
and involves many factors such as genetic predisposition, al-
cohol consumption, sedentary lifestyle, and hypertension.
Polivka et al. identified two less explored factors—primary
vascular dysregulation and Flammer syndrome (FS)-associat-
ed symptoms in the disposition of young age stroke [156].
Therefore, innovative screening programs, targeted risk-
mitigatingmeasures, and exploration of new treatment options
emerge as new therapeutic strategies for treatment of stroke.

Ischemic stroke has been reported to alter ECS in both
clinical and preclinical conditions, indicating an important
role of this system in normal blood circulation [17]. A recent
meta-analysis by England and colleagues revealed that all
subclasses of cannabinoids, cannabis-derived, synthetic and
specific CB1R, and CB2R agonists significantly reduced in-
farct volume in transient/permanent ischemia and improve
both early and late functional outcomes in experimental stroke
[157]. Further, a selective and potent CB1R/CB2R agonist
TAK-937 reduced infarct volume and improved functional
outcomes in middle cerebral artery occluded (MCAO) rats,
while minimizing infarct volume and S100β release in CSF
following middle cerebral artery occlusion in non-human pri-
mates [158]. Similarly, administration of CB1R agonist HU-
210 significantly reduced motor disability and infarct volume

via hypothermia in a dose-dependent manner and was useful
4 h after stroke onset [159]. CB2R agonist JWH133 promoted
neuroblast migration into lesioned tissue to encourage
neurogenesis [160]. Interestingly, early treatment with CB2R
agonist AM1241 suppressed microglial activation in stroke
rats, while delayed treatment did not show any significant
effect [11]. Further, exogenous AEA and 2-AG in combina-
tion reduced infarct size in focal ischemic rats, but could not
facilitate effects alone [161]. AEA has been reported to protect
BBB permeability in ischemic stroke, possibly through
TRPV1 [141]. Given that activation of TRPV1 receptors dis-
rupts BBB integrity [142], it is possible that AEA, being par-
tial agonist to TRPV1 channels [143], may be acting as a
functional antagonist in presence of stroke-induced endoge-
nous agonist.

Phytocannabinoid CBD reduced the ischemia-induced
gliosis, neuronal loss, and excitotoxicity to protect behavioral
functions in neonatal MCAO rats [162]. Moreover, CBD re-
duced brain edema and BBB permeability associated with
ischemic condition [163] and was also effective in diabetes-
related atherosclerosis [164]. In mouse and piglet models of
stroke, CBD improved cerebral blood flow [165, 166]. CBD
protected cerebral hemodynamic and produced beneficial car-
diac effects in stressful conditions, but not in normal condition
[167, 168]. CBD showed trends to infarct reduction with ad-
ministration of less than 6 h after stroke onset [157] and
showed functional improvements even at the later time point
[169]. Multiple targets have been reported to mediate the neu-
roprotective effects of CBD such as a combination of a potent
antioxidant, immunosuppression, and anti-inflammatory ac-
tions [170]. However, CBD has negligible activity on CBRs,
but may interfere with the ECS via non-cannabinoid receptors
such as 5-hydroxytryptamine 1A receptors, adenosine recep-
tors, TRPV1, and nuclear receptors of the peroxisome
proliferator-activated receptor family [170]. Another compo-
nent of cannabis, THC also showed trends to infarct reduction
with administration of less than 4 h [157]. However, THC
inhibits voltage-dependent calcium channels via CB1R and,
thus, reduces excessive glutamate release, hypothermia, and
loss of CBF [171, 172]. Further, THC, when acting on the
CB2R on immune cells, was found to decrease the severity
of stroke. Low oral doses of THC modulated myeloid and
lymphoid cells to improve ischemia in atherosclerosis model
[173].

Although numerous studies have evaluated cannabinoids
and ECS in experimental stroke, reports are somewhat con-
flicting and thus start a debate on role of cannabinoids in
stroke. A meta-study on 98 stroke patients having mean age
32.7 ± 12 years were identified as chronic cannabis users and
thus indicated a correlation between cannabis consumption
and incidence of stroke [174]. Additionally, pre-ischemic ad-
ministration of 2-AG enlarged infarct volume and reduced
CBF via platelet aggregation [175–177]. A possible
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explanation of this event occurred through an increase in
downstream product arachidonic acid stimulated by increase
in 2-AG [176, 177], as inhibition of COXs prevented platelet
aggregation in the presence of 2-AG [175]. Further, platelet-
dependent disease progression were not mediated via CB1R
or CB2R, but through MAGL [176, 177]. On contrary, a re-
cent systematic review reported neuroprotective effects of
cannabis from a variety of methodologies to use of cannabi-
noids [157]. Since cannabinoids have shown excellent tolera-
bility and beneficial effects in ischemic stroke, they may be
capable candidates for therapeutic intervention in future.
However, a cautious approach and model are needed as there
is scarcity of clinical trials related to cannabinoids and stroke.
The model of centralized stroke care as successfully run by the
Czech Republic [178] may be a preferable model to adopt in
this case. This model system meets the criteria for predictive,
preventive, and personalized medicine (PPPM) and will en-
sure ideal prevention, diagnosis, and treatment of possible
complications and prediction of outcomes with cannabinoid
therapy [178].

Huntington’s disease: phytocannabinoids attenuate
the symptoms of HD

Huntington disease (HD) is an autosomal dominant disorder,
characterized by debilitating changes of mood, cognition, and
movement control. It stems from an expansion of the CAG
trinucleotide repeat found in chromosome 4, which leads to a
decrease in GABA and acetylcholine-producing neurons of
the basal ganglia [179]. Subsequent atrophy of the caudate
nucleus and increase in dopamine production results in the
characteristic findings described above. As there currently ex-
ists no cure for this disease, current investigations are
attempting to more fully understand the disease process and
invent potential therapeutic targets.

Recent studies have found that both CB1R and CB2R play
vital roles in the progression of this disease [180–188].
Interestingly, the loss of CB1R from the GABAergic neurons
is found to be an early sign of HD as well as a significant
degeneration of receptors in globus pallidus externa. In con-
trast, CB2Rs are actually upregulated in postmortem HD basal
ganglia [189]. Endocannabinoid levels of AEA and 2-AGwere
decreased in the striatum of patients with HD and correlate with
disease burden, measured via trinucleotide repeats [190]. A
study by Sapp et al. reported loss of CB1R early in the disease
with an increase in CB2R that might be a protectivemechanism
in order to reduce pro-inflammatory cascade. However, this
protective mechanism is not substantial enough to prevent pro-
gression of neuronal death [191]. Previously, Sativex, which is
a combination of botanical extracts enriched with THC and
CBD, attenuated oxidative stress and inflammation, and
protected striatal neurons in a model of striatal injury indicative
of HD [192]. Cannabigerol (CBG), a non-psychoactive

phytocannabinoid, improved motor deficits and protected
striatal neurons in both 3-nitropropionate (3-NP) intoxicated
and R6/2 transgenic mice which replicate many features of
HD [193]. Particularly, expressions of HD-associated genes,
such as Huntington-associated protein 1, Sin3a, Rcor1,
symplekin, and GABA-A, were normalized by CBG treatment,
while CBG improved the gene expressions of BDNF, IGF-1,
and PPARY in R6/2 mice [193]. Another CBG derivative,
VCE-003.2, enhanced neuronal progenitor cell survival, im-
proved motor deficits, and inhibited inflammation probably
through PPARY in a mouse model of HD [194]. In addition, a
recent study with cannabinoids in HD patients showed im-
provement in motor symptoms, mainly dystonia with less irri-
tability, apathy, and hypersalivation in some cases [195].
Overall, the emerging scenario of cannabinoid-based therapies
in HD and other neurodegenerative disorders suggests their
pharmacological efficacy in attenuating disease progression
and related symptoms and warrants for more experimental
and clinical efforts.

Amyotrophic lateral sclerosis: cannabinoids delay
the progression of disease

Amyotrophic lateral sclerosis (ALS, also known as Lou
Gehrig’s disease) is a fatal motor neuron disease, disabling
common activities, e.g., chew, speak, and walk. ALS causes
the loss of voluntary muscle movement and thus causes grad-
ual weakening, twitching, and wasting away. Other clinical
symptoms are weakness, spasticity, cachexia, dysarthria,
drooling, and pain secondary to immobility [54, 196–198].
ALS can be categorized into two types—sporadic (90%) and
familiar (10%). Genetically, ALS is associated with mutations
in the superoxide dismutase-1 gene (SOD-1), TAR-DNA
binding protein-43 (TDP-43), fused in sarcoma (FUS) [199],
and in non-coding hexanucleotide repeat sequence
(GGGGCC) in the chromosome 9 open reading frame 72
(C9orf72) genes [54, 200].

ALS most of the time is difficult to diagnose as it presents
similar symptoms to those of Parkinson’s disease, multiple
sclerosis, and Huntington’s disease. Timely treatments of
ALS may slow the progression of disease and reduce compli-
cations and discomfort. The US FDA has approved four med-
ications for ALS—Rilutek (riluzole tablet), Tiglutik (riluzole
oral suspension), Nuedexta (a combo of dextromethorphan
and quinidine), and Radicava (edaravone). Riluzole, a gluta-
mate antagonist, was able to block voltage-gated sodium
channels to inhibit the presynaptic release of glutamate and
can only prolong survival by 3–5 months [197, 198, 201]. Its
tablet form (Rilutik) was approved in 1995, while much later
in September 2018, a liquid form of riluzole (Tiglutik) was
approved to avoid difficulty of swallowing tablets in ALS
patients. Rilutek has also been approved for treatment for
ALS in Canada, Australia, and across Europe. Radicava, the
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first intravenous treatment specifically for ALS was approved
by the FDA in May 2017. Nuedexta was approved to treat
pseudobulbar affect (inappropriate laughing or crying) in
2011. The quinidine in Nuedexta inhibits the metabolism of
principal compound dextromethorphan in liver and thus in-
creases its availability in circulation [54, 197, 198, 201].
However, with established treatment options, patients get par-
tial benefits, and therefore, medical and research communities
are trying to find more efficacious treatment options.

Recent in vivo studies suggest beneficial effect of cannabi-
noids in ALS. In transgenic hSOD(G93A) mice, which devel-
op symptoms similar to human ALS,Δ9-THC administration
either before or after symptoms emerged, improved motor
impairment and increased survival [202]. It was argued that
THC exerted anti-ALS effect by its anti-glutaminergic and
antioxidant properties as THC attenuated oxidative stress in
ALS hSOD(G93A) mouse spinal cord primary cultures ex-
posed to the oxidant tert-butyl hydroperoxide (TBH) as
assessed by lactate dehydrogenase (LDH) and SOD-1 release.
However, this antioxidant effect of THC was independent of
CB1R, as CB1R-antagonist SR141716A did not inhibit the
antioxidant effect of THC [202]. But, anti-excitotoxic effect of
THC was CB1R dependent as protective effect of THC
against kainic acid-induced excitotoxicity in ALS
hSOD(G93A) mouse spinal cord primary neuronal cultures
was blocked with antagonist SR141716A [202]. Moreover,
cannabinol (CBN), a non-psychotropic cannabinoid which
has residual affinity to CB1R, was able to delay disease onset
in ALS hSOD(G93A) mice. Further, commercially available
Sativex® (2.7 mg ofΔ9-THC and 2.5 mg of CBD) treatment
delayed ALS progression in the early stages of disease in ALS
hSOD(G93A) transgenic mice [203]. However, the molecular
mechanisms remain undefined [204].

CB1R/CB2R agonist WIN 55,212-2 delayed the disease
progression, while deletion of FAAH abolished disease symp-
toms in 90 days old ALS hSOD(G93A) mice after onset of
motor impairment and tremor, but had no effect on survival
[205]. On the contrary, CB1R deletion did not affect onset of
disease, but increased survival by 13% and extended lifespan
by 15 days in ALS hSOD(G93A) mice [205]. CB2R and
NAPE-PLD both were also found to be upregulated in the
spinal cords of ALS hSOD(G93A) mice paralleling disease
progression [203, 206, 207], and CB2R agonist AM-1241
increased survival by 56% and delayed motor deficits in
ALS hSOD(G93A) mice after disease onset [207].
Therefore, it may be presumed that the beneficial effects of
cannabinoids may be mediated by non-CB1R, such as
CB2Rs, and were ascribed to regulation of microglial/
macrophage activation, glutamate excitotoxicity, and oxida-
tive stress [205–208].

Cannabinoids were also investigated clinically in ALS. In a
single observational study with cannabinoids, only the 10% of
ALS patients showed moderate improvement in appetite,

pain, depression and salivation [209, 210]. In addition,
Cannabis has been reported to subjectively improve spasticity
[209]. A randomized, double-blind, and single-center study
with 30 participants (Clinicaltrial.gov NCT03690791) on the
safety, tolerability and efficacy of cannabis-based medicine
extract (Centrist CBD Oil) in slowing the disease progression
in ALS or motor neuron disease patients is currently under
phase 3 trial. Participants are given 25 mg of CBD delayed-
release (DR) capsules containing < 2 mg of THC or placebo.
Difference in mean ALS Functional Rating Scale-Revised
(ALSFRS-R) total score between groups at end of treatment
(Total score: min 0–max 48) will be analyzed as primary out-
come measure. Higher score represents better outcome [211].
However, paucity of clinical studies related to efficiency of
cannabinoids in ALS remains a major challenge for future
research.

Parkinson’s disease: cannabinoids protect
dopaminergic system

Parkinson’s disease (PD) is the second most prevalent neuro-
degenerative disease, characterized by the loss of dopaminer-
gic neurons from substantia nigra pars compacta of basal gan-
glia. The etiology of PD is not fully defined, but may be
caused by gene mutations, protein inclusions, oxidative stress,
and sustained inflammation [212]. The symptoms of PD are
multi-factorial and classically defined by the triad of cog-
wheel: muscle rigidity, resting tremor, and bradykinesia in
addition to behavioral and psychiatric manifestations, includ-
ing sleep disturbances, cognitive deficits, anxiety, depression,
and psychotic symptoms, occurring in the early stages of dis-
ease progression [213–217]. Currently, levodopa (L-DOPA) is
the most widely used drug for treatment of PD, but prolonged
L-DOPA administration may increase dyskinesia [212]. Thus,
safe and efficacious therapies are needed to combat the nega-
tive symptoms associated with PD.

Components of the ECS are abundantly expressed in the
basal ganglia and interact with glutamatergic, γ-aminobutyric
acid-ergic (GABAergic), and dopaminergic neurotransmitter
systems, suggesting therapeutic potential in PD [185,
218–228]. Endocannabinoid receptors are particularly vital
in PD because both CB1R and D1/D2-like receptors are
colocalized in striatal neurons [229]. In PD patients, a fourfold
increased expression of CB2R was observed when compared
to control samples [230], although gene expression profiling
revealed a decrease in CB2R gene expression in the cerebel-
lum and hippocampus of PD patients, as compared with
healthy control patients [231]. Similarly, CB2R expression
was decreased in putamen, while CB1R remained unchanged
[230]. Sierra et al. found both CB1R and CB2R mRNAwas
localized within pallidothalamic-projecting neurons in both
uninjured and MPTP-treated non-human primates, with re-
duced expression levels noted in dyskinetic subjects [232];
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however, other reports showed elevated CB2R expression in
striatal microglial cells in experimental models [22, 233] and
in astrocytes within the substantia nigra of PD patients [230],
suggesting the potential for model-, species-, and/or cell type-
specific regulation of CBRs in PD.

Increased AEA levels within the cerebrospinal fluid of PD
patients were normalized by L-DOPA treatment [219, 223,
234, 235], suggesting a compensatory protective role for
AEA in PD. In line with these findings, increased striatal
levels of AEA were observed in 6-hydroxydopamine (6-
OHDA)-infused rodents (a preclinical model of PD), correlat-
ing with reduced activity of AMT and FAAH, although it is
important to note that neither 2-AG levels nor AEA binding to
CBRs were altered [228]. Functionally, chronic FAAH inhibi-
tion reduced AEA metabolism and prevented both MPTP-
induced dopaminergic cell loss and motor impairment [236,
237]. Further studies showed that the increased levels of AEA,
secondary to FAAH inhibition, increased dopamine levels in
the nucleus accumbens shell and attenuated dyskinesia via
CB1R activation in lesioned rats [238, 239]. In a similar man-
ner, chronic inhibition of MAGL increased 2-AG levels,
prevented motor impairments, and preserved the nigrostriatal
pathway in MPTP-infused mice [240]. Together, these find-
ings point to a possible beneficial role for targeted modulation
of the ECS in the context of PD.

A number of preclinical and clinical PD studies demonstrat-
ed that CB1R modulates motor symptoms and components of
cognitive processing [185, 213, 219, 227, 228, 241–244]. A
[18F]MK-9470 PET study in PD patients found significant re-
gional alterations in CB1R that are unrelated to levodopa-
induced dyskinesia severity [245]. Low CB1R in mid-
superior frontal gyrus and in midcingulate cortex was observed
to be associated with poor mind, poor executive functioning,
and poor episodic memory, while PD patients with severe vi-
suospatial dysfunction had reduced CB1R in the precuneus,
midcingulate, supplementary motor cortex, inferior
orbitofrontal gyrus, and thalamus [213]. MPTP-lesioned mar-
mosets displayed increased CB1R in the striatum, an effect
normalized by L-DOPA treatment [246]. Pharmacological in-
hibition of CB1R promoted antiparkinsonian effects in rats with
severe, but not lesser, nigral lesions [242], while low-dose
rimonabant (0.1 mg/kg), a CB1R antagonist, attenuated dopa-
minergic neuronal cell death, blocked neuroinflammation, and
partially reduced hypokinesia in 6-OHDA lesioned animals,
independent of striatal dopaminergic, GABAergic, and gluta-
matergic neurotransmission [244, 247]. Moreover, the synthet-
ic, non-selective CBR agonists, HU-210 and WIN55,212-2,
protected nigrostriatal neurons in MPTP-lesioned rodents via
a proposed antioxidant mechanism secondary to CB2R, but not
CB1R, activation [248, 249]. Of note, HU-210 maximally re-
duced 6-OHDA-induced cell death in mouse cerebellar granule
neurons when cocultured with glial cells, suggesting astrocytes
may mediate the protective effect of cannabinoid in PD [246].

Together, these results indicate that nigrostriatal lesions are as-
sociated with changes in the ECS within the basal ganglia
[250]. Although the mechanisms whereby CB1R modulating
drugs affect PD progression remain only partially resolved, it is
interesting to note that SR141716 almost fully protected SH-
SY5Y neurons against MPP+ toxicity (an in vitro model of
PD), even in the presence of the CB1R selective agonist,
ACEA [251].

A number of research studies have investigated the role of
natural cannabinoids in the treatment of PD symptoms. THC
protected MPP+-treated neuronal cells in vitro and attenuated
the loss of dopaminergic neurons in a 6-OHDA-induced neu-
rodegeneration model [246, 252]. Interestingly, the beneficial
effects of THC were mimicked by ACEA-induced CB1R ac-
tivation, but not by the CB2R agonist, HU-308 [253]. Garcia
and colleagues showed Δ9-tetrahydrocannabivarin (Δ9-
THCV), a phytocannabinoid with antioxidant properties
[254] decreased 6-OHDA-evoked motor deficit and dimin-
ished the dopaminergic neuron loss in the SNpc in
hemipark insonian rodents [255] . S imi la r ly, the
phytocannabinoid β-caryophyllene attenuated gliosis, oxida-
tive stress, and loss of nigrostriatal dopaminergic neurons in a
rotenone-induced PD [256], while VCE-003.2, an
aminoquinone derivative of the non-psychotropic
phytocannabinoid cannabigerol (CBG), attenuated inflamma-
tory neuronal injury, and improved behavioral outcomes after
preclinical PD [257, 258]. CBD, the most widely utilized
phytocannabinoid, protected neuronal cells against MPP+ tox-
icity, restored axonal and synaptic proteins, and attenuated
microglial activation [259–261]. Administration of CBD
(5 mg/kg) for 5 weeks did not reduce dopaminergic neuronal
loss or improve motor deficits in MPTP-infused mice, al-
though daily administration of a lower dose (3 mg/kg), initi-
ated at the time of 6-OHDA injection, preserved striatal dopa-
mine and tyrosine hydroxylase in rats, whereas delayed CBD
treatment was ineffective [236, 246]. In line with reports
showing a correlation between the antinociceptive effect of
exercise and increased CB1R/CB2R expression within the
anterior cingulate cortex and periaqueductal gray matter and
in a rat model of PD [262], CBD-produced an antinociceptive
effect in preclinical PD model while an inverse agonist of
CB1R and CB2R prevented this effect [263]. Although the
mechanisms underlying the beneficial effects remain unde-
fined, CBD may decrease FAAH activity to facilitate AEA-
mediated effects [264].

An open-label pilot study showed that CBD in combination
with standard of care minimized psychotic symptoms without
affecting cognitive or motor alterations in PD patients [265].
In another randomized double-blind clinical trial with 21 PD
patients, CBD (75 and 300 mg daily) improved most quality
of life outcomes for 6 weeks with CBD treatment, although
motor function was not affected [266]. Similarly, a pilot study
with 4 PD patients with REM sleep behavior disorder reported
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a reduction in incidences of agitation, beating, kicking, and
nightmares after treatment with 99.9% purified CBD (75 or
300 mg orally per day) [267]. An open-label observational
study in 22 PD patients showed significant improvements in
resting tremor, rigidity, and bradykinesia and the non-motor
aspects sleep and pain after smoking cannabis (500 mg, un-
specified composition) [268]. Further, in a Web-based self-
reported assessment (n = 595), 454 identified PD patients,
who have consumed cannabis daily and for longer than
12 months, reported lower disability and fatigue, while
47.8% patients reported decline in intake of prescribed medi-
cines since beginning of cannabis consumption [269]. These
exciting early-stage clinical results showing a potential benefit
of cannabinoids after PD will be further explored in the up-
coming phase II, randomized, placebo-controlled, and double-
blind enriched enrollment withdrawal study (The NMS-Nab
Study) [270]. In this study, 4-week outcomes will be assessed
in 38 PD patients following administration of a synthetic can-
nabinoid, nabilone [270]. Given the safety and early-stage
efficacy, continued exploration of cannabis-inspired medi-
cines, including studies aimed to identify and standardize the
optimal substance(s), route of administration, doses, time
point of analysis, and endpoints, is warranted in PD patients.

Multiple sclerosis: cannabis formulation modulates
spasticity

Multiple sclerosis (MS) is an autoimmune chronic inflamma-
tory disease that promotes the loss of myelin and damage
axons in the central nervous system (CNS). The etiology of
MS is poorly understood. However, it is known that inflam-
mation present in MS promotes myelin loss and neuro-axonal
degeneration. These events are responsible for impairing the
signal conduction through the neurons resulting in disability
[271–273]. The symptoms of MS can include, but are not
restricted to, spasticity, ataxia, fatigue, pain, difficulty in
speaking, constipation, loss of bladder control, depression,
or anxiety [271, 274–276]. Interestingly, MS patients show
well-described signs and symptoms which are also associated
with Flammer syndrome (FS). These symptoms may work as
a directive markers for therapeutic benefits and functional out-
comes [277, 278]. MS patients most often show nine FS signs
and symptoms, such as cold hands/feet, reduced thirst, dizzi-
ness, drug side effects, headaches from tension or medication
overuse, weight loss, feeling cold, long sleep-onset time, and
skin blotches [277, 279]. Scientific studies suggest a potential
role of the ECS in controlling either the symptoms or the
evolution of MS [280, 281]. The cannabinoids seem to have
the potential to slow down the disease progression by exerting
a neuroprotective effect [282]. However, patients withMS can
present an impaired ECS with reduced levels of anandamide
(AEA), palmitoylethanolamide (PEA), 2-AG, and oleoyl
ethanolamide (OEA) in the CSF [283].

The fact that both natural and synthetic cannabinoids can
act on the human by exerting immunosuppressive role and
acting through the components of the ECS make them great
allies in the search for an effective treatment for MS. Indeed,
patients with MS reported relief after smoking cannabis or
using cannabinoids [284–286]. The Δ9-THC was the first
cannabinoid to be studied as a means of relieving spasticity,
tremor, and pain in MS [284, 287]. This cannabinoid shows
effective results in experimental autoimmune encephalomy-
elitis (EAE) models of MS [288] and in humans [287].
However, the use ofΔ9-THC could be limited by its psycho-
tropic effects which may induce acute psychosis, and impact
executive function [289–291]. On the other hand, CBD was
seen as a potential safe alternative for alleviating neuroinflam-
mation and neurodegeneration in MS, also with lower toxicity
and better psychological outcome (i.e., anxiolytic) in patients
compared to Δ9-THC [290, 291]. However, CBD has no
significant effect on spasticity, which seems more related to
CB1R [281, 288, 292, 293].

Current pharmacological studies on MS have largely fo-
cused on a combination ofΔ9-THC and CBD extracted from
cannabis like Sativex® (nabiximols), a cannabinoid prepara-
tion with 1:1 ratio of Δ9-THC and CBD. While Δ9-THC
promotes modulation of spasticity and has an anti-
inflammatory property, CBD seems to reduce the psychoac-
tive effects of Δ9-THC [294]. According to Zamil Al-Ghezi
et al., Sativex® can change the expression of miRNA, down-
regulating some and upregulating others, inducing cell cycle
arrest and apoptosis in activated Tcells. This process would be
responsible for promoting a neuroprotective and anti-
inflammatory role as well as a switch of cytokines from pro-
inflammatory to anti-inflammatory [295]. Also, the post-
marketing studies revealed no evidence of addiction, but
mild-to-moderate dizziness as the most common adverse ef-
fect [296]. In addition to Sativex, there are two more licensed
cannabinoid preparations to be used in MS treatment in some
countries, Marinol® and Cesamet®. The Marinol® has an
active ingredient, dronabinol, a synthetic form of Δ9-THC
[297]. This synthetic cannabinoid reduced the intensity of
central and radiating pain after taking dose of 10 mg/day for
15 weeks [298]. In addition to the pain relief, patients that
used dronabinol also reported improvement on sleep but no
treatment effect on spasticity was reported [299, 300]. Similar
to Marinol®, Cesamet® is a brand name for a synthetic Δ9-
THC cannabinoid, called nabilone. Like dronabinol, nabilone
has shown significant improvement in pain relief, but no
change in spasticity [301]. Besides the side effects reported
by patients during the use of cannabinoids in MS treatment,
the use of phyto- or synthetic cannabinoids seems to be very
helpful in neuroprotection and improvement of life quality
[299, 300]. However, long-term benefits and risks of MS ther-
apy is still not completely understood.
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The treatment approach for MS has taken a shift from re-
lapse prevention to a more personalized establishment with
the choice of the suitable drugs and their sequential applica-
tion over the time-course of the disease, considering patient
preference, clinical findings, and related symptoms such as
fatigue, depression, and cognitive impairment. Thus, future
trials specially with cannabinoids must assign higher rele-
vance to patient outcomes and should implement predictive
markers for individual response to new treatment strategies.
Thus in this way, benefit to individual patients may be maxi-
mized, and adverse events and risk to study participants may
be mitigated in clinical trials [302].

Alzheimer’s disease: cannabinoids improve cognition

Changes within the ECS are strongly linked with the progres-
sion of Alzheimer’s disease (AD) [187, 303–312]. Analysis of
postmortem AD patient brains revealed increased expression
of CB2R, primarily in CNS resident immune cells surround-
ingβ-amyloid plaque deposition, within the hippocampus and
entorhinal cortex [313, 314]; however, positron emission to-
mography (PET) scans using [11C]NE40, a radioligand with
low selectivity for CB2R over CB1R, suggested lower CB2R
availability in AD patients, with no relationship to amyloid
beta (Aβ) plaques [315]. CB2R expression paralleled the de-
velopment of chronic neuroinflammation during the advanced
stages of AD, whereas an initial rise in hippocampal and cor-
tical CB1R expression was followed by reduced expression in
the later stages of AD [316–318]. Similarly, PET studies dem-
onstrated lower binding ratios of CB1R, with a more pro-
nounced effect in males, in the parieto-temporal cortex and
hippocampus of APP/PS1–21 mice, as compared with age-
matched wild-type mice [319]. While no significant correla-
tion was observed between CB1R expression and β-amyloid
deposition in AD patients, as compared to age-matched con-
trols [320], amyloid precursor protein (APP), which given rise
toβ-amyloid, interacts with and inhibits the biological activity
of CB1R during presymptomatic stage in transgenic mice
predisposed to develop AD [321]. Together, these data sup-
port a potential relationship between the expression of CBRs
and AD progression.

The endocannabinoids, AEA and 2-AG, are released in
response to Aβ-amyloid deposition, although transgenic mice
predisposed to develop AD exhibit reduced AEA levels [322].
Although an explanation for these seemingly disparate results
is lacking, endogenous levels of AEA are regulated by fatty
acid amide hydrolase (FAAH), an enzyme expressed by astro-
cytes that degrades AEA into arachidonic acid. Indeed, ara-
chidonic acid accumulates around pathogenic plaques, lead-
ing to pro-inflammatory responses to perpetuate the patho-
physiology of AD [305]. A decrease in FAAH activity was
observed in the frontal cortex of AD patients. Similarly, re-
duced FAAH activity was observed in cerebrocortical

synaptosomes from aged rat brain, while elevated activity
was noted in cerebrocortical membranes [323]. Of interest,
CB2R selective agonist-JWH-133 slightly increased AEA hy-
drolysis in human controls, but suppressed AEA metabolism
in cerebrocortical synaptosomes andmembranes isolated from
adult or aged rat. In comparison, WIN55,212-2, a mixed CB1/
CB2-R agonist, increased AEA hydrolysis in AD patients, but
decreased activity in human controls and in aged rat brain
preparations [323]. Though FAAH activity is similarly regu-
lated in aged rats synaptic endings and human AD brains,
activity may be differentially modulated by CB1/CB2-R ago-
nists [323]. In contrast, inhibition of the 2-AG metabolizing
enzyme, monoacylglycerol (MAGL), reduces inflammatory
activation and attenuates neuropathology, independently from
CB2R, in AD-prone mice [304, 324].

The release of endocannabinoids activates neuronal CB1R,
which is abundantly expressed within the hippocampus, basal
ganglia and cerebellum—brain regions critical for memory
function and cognition, to inhibit glutamate release, reduce in-
tracellular Ca2+ concentrations, and enhance neurotrophin ex-
pression and neurogenesis [303, 314]. Endocannabinoids also
interact with CB2R expressed on immune cells, including CNS
resident macrophages/microglia, to attenuate the production of
pro-inflammatory molecules implicated in the progression of
AD [303, 314, 325]. Activation of CB2R reduced AD-like
pathology, attenuated inflammation, and improved cognition
[313, 326], while the non-psychoactive phytocannabinoid,
CBD, reduced amyloid-β production, inhibited gliosis, sup-
pressed oxidative stress and inflammation, decreased tau
hyperphosphorylation, and chronically reduced both social
and cognitive deficits in experimental AD models [260, 308,
327–329]. In contrast, CB2R−/− mice displayed AD-like tau
hyperphosphorylation and hippocampus-dependent memory
impairment while CB2R activation by JWH133 reduced tau
phosphorylation in HEK293 cells [330]. Similarly, transgenic
mice predisposed to develop AD that also lack CB2Rs (APP/
PS1*CB2−/−) exhibited elevated cortical Aβ deposition and
increased the levels of soluble Aβ40, as compared to AD mice
with CB2R; however, mortality, tau hyperphosphorylation as-
sociated with Aβ plaques, and the beneficial effects of
cannabis-based medicines were unaffected in mice lacking
CB2R [331]. An independent study reported reduced neuronal
loss, decreased plaque levels, increased expression of Aβ-
degrading enzymes, less inflammation, and improved behav-
ioral outcomes in APP/PS1*CB2−/− mice [332]. Thus, CB2R
may provide endogenous protective mechanism that elicits det-
rimental outcomes if continuously engaged.

THC, a psychoactive component of cannabis, reversibly
disrupts short-term memory and dose-dependently impairs at-
tention and cognition [333–338]; however, when chronically
administered at low doses, THC improves neurological func-
tion in aged animals and promotes hippocampal neurogenesis
while reducing neurodegeneration in animal models of AD [99,
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339–343]. A recent open-label pilot study showed THC oil
(7.5 mg twice daily) was well tolerated and reduced AD-
associated delusions, agitation/aggression, irritability, apathy,
and sleep disturbances in 11 AD patients [344]. A separate
randomized, double-blinded, and placebo-controlled study
with non-psychoactive doses of THC (1.5 mg thrice daily for
3 weeks) did not reduce dementia-related neuropsychiatric
symptoms in mild to severely demented patients [345]. While
anecdotal evidence and early-stage clinical trials suggest a pos-
sible benefit of cannabinoids on AD-associated symptoms and
pathology in humans, small sample sizes, short trial duration,
and lack of placebo control limit the interpretation of these
results. Thus, high-quality clinical studies that assess both safe-
ty and efficacy are needed to more definitively determine the
translational value of cannabinoids in AD [345–348]. Toward
this end, the results from a randomized placebo-controlled
study (Clinicaltrial.gov NCT02351882) of daily nabilone
(2 mg) administered for 6 weeks was recently completed in
40 AD patients is expected within the next year [349, 350]. A
second 3-week, placebo-controlled pilot study (Clinicatrial.gov
NCT02792257) investigating the effect of 5–10 mg dronabinol
(Marinol®) in 160 AD patients is ongoing and will be com-
pleted in late 2020. These important clinical trials will provide
critical insight regarding the future of cannabinoids in AD.

Schizophrenia: cannabinoids show anti-psychotic
effect

The pathogenesis of schizophrenia, which is defined as hallu-
cinations, delusions, and altered speech for greater than
6 months, is linked with alterations in the ECS [351–359].
Genetic studies showed CB1R [353, 360–364] and CB2R
[365] polymorphisms are associated with schizophrenia. In
addition, people with low CB2R function exhibited an in-
creased risk for schizophrenia [365]. A particular mechanism
of how schizophrenia functions is through increased CB1R
density [366–373] and increased anandamide levels in CSF
[366, 374, 375], and plasma [358, 376] in schizophrenic pa-
tients. Further, CB1R agonists led to schizophrenia-like be-
haviors [377–381], while CB1R antagonists proved to have
antipsychotic properties [382, 383] in animal models. The
antipsychotic effects of AEA have been also reported [377].
Additional evidence has reinforced the antipsychotic proper-
ties of CBD in both clinical and preclinical models of schizo-
phrenia [377, 384–388]. It should be noted that recreational
marijuana usage in adolescents is clinically linked to the de-
velopment of schizophrenia. Possible reasons for this could be
explored further. Personalized medicine in specific settings of
psychological disorders is being established as a model of
individualized care [389]. An integration of molecular science
with cannabinoid therapy in clinical settings will certainly lead
to novel therapies and certainly promises to a better predictive,
preventive, and personalized medicine (PPPM) in psychiatry.

With substantial progress in the methodology, omics analyses
and data integration, the future for PPPM in psychiatry is
encouraging.

Epilepsy: cannabinoids limit the epileptic seizures

Intensive and continual neuronal activity as well as a healthy
balance of excitatory and inhibitory neurotransmission is es-
sential to proper brain function. However, when this balance is
disrupted, epileptic seizure occurs. Epileptic seizures and their
excessive neuronal activity lead to excitotoxicity causing
damage to the CNS.

Throughout multiple animal models and clinical studies,
cannabinoids have been shown to exert both anti- and pro-
convulsive activities with little current evidence for a mecha-
nism [390]. Although not confirmed by large clinical human
studies, CB1R agonists are beneficial in epilepsy. Most stud-
ies showing improvement in seizure control were associated
wi th low THC/h igh CBD produc t s r a the r than
endocannabinoids, but also do not disclose sufficient data
about subject randomization, group comparisons, anti-
epileptic drug doses, and study design [391]. Although treat-
ment options may be far from conclusive, there is strong ev-
idence that cannabinoid receptors, more specifically CB1R,
has a role in the intrinsic protection of neural tissue via sup-
pression of pathologic neuronal excitability. There are litera-
ture discrepancies with the exact role of the CB1Rs, however,
in some studies, it is suggested that downregulation of CB1Rs,
particularly on glutamatergic axon terminals, diminish the
neuroprotective properties of the endocannabinoid system
leading to excessive neuronal excitability and damage in epi-
leptic patients [392]. Other reported seizure-associated in-
creases in CB1R possibly to protect against hyperexcitability
or seizure propagation [393].

Other reports suggested the anti-epileptic effect of inhibi-
tors of endocannabinoid metabolism. For example, inhibition
of MAGL by JZL184 reduced seizure in kindling model of
temporal lobe epilepsy possibly through CB1R-dependent
mechanism [394]. Similarly, MAGL inhibition by potent
and selective inhibitor CPD-4645 alleviated the inflammation
and neuronal loss in status epilepticus and its effect was sim-
ilar to effect observed in CB1R-deficient mice [395]. In addi-
tion, inhibition of FAAH through URB597 exhibited anti-
epileptic effect via increase in AEA and possibly through
stimulation of CB1R. The restoration of AEA by inhibiting
FAAH orAEA transport led to inactivation of TRPV1 channel
and reduced Ca2+ entry into the hippocampal cells and thus
showed anti-epileptic effect [396]. URB597 further prevented
seizure-induced alterations in both STP and LTP and was
devoid of any deleterious effects as CB1R agonist,
WIN55,212-2, showed in naïve animal [397]. These evi-
dences advocate that boosting the eCB tone rather than CB1
activation might represent a potential strategy for the
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development of anti-epileptic drugs for treatment of both sei-
zures and comorbid memory impairments associated with ep-
ilepsy. However, with a lack of widespread preclinical and
clinical studies, it is apparent that the endocannabinoid sys-
tem’s involvement in epilepsy is an area of need for future
research.

Pain: cannabis extract relieves disease-associated
pain

Pain is a complicated and multifaceted concept in medicine,
which makes it especially difficult to understand and target
therapeutically. Pain is thought to be a combination of a sub-
jective experience in psychophysics, an objective sensory
neurophysiology, as well as an emotional reaction to
distressing stimuli [398]. Just as there are various modalities
of pain modulation, the endocannabinoid system has shown a
particular link to a variety of pain pathways [399–403].

It has been found that CB2R agonists are analgesic in
chronic pain models [404] and help with peripheral inflamma-
tion [405]. One possible mechanism by which this is possible
is that CB2R agonists allow beta-endorphin release from
keratinocytes [406]. Furthermore, PEA, an analgesic in in-
flammatory pain, is targeted by the endocannabinoid system
allowing for a functional improvement in pain modulation
[407]. Cannabinoids allow pain modulation through spinal,
supraspinal, and peripheral mechanisms [408–410].

In addition to somatic pain, neuropathic pain also demon-
strates interplay with CB2Rs. Neuropathic pain can be due to
traumatic injury as well as metabolic changes and chemother-
apy. CB2R agonists were found to suppress neuropathic
nociception using a nerve ligation model of L5 and L6 spinal
nerves in rats [406]. Chemotherapy-induced neuropathic pain
was also shown to be significantly suppressed via CB2Rs,
even in the absence of peripheral nerve degeneration [411].
Finally, two CB2R-selective agonists, L768242 (GW405833)
and AM1241, have shown to suppress capsaicin-evoked re-
lease of calcitonin gene-related peptide in murine models,
suggesting a neuronal mechanism of analgesia [412].

Among the increasing incidences of opioid abuse, natural
cannabinoids have emerged as strong candidate for pain man-
agement [413]. Clinical studies with oral cannabis extract
(OCE) on MS patients were found effective in spasticity and
related pain [414, 415]. Nabiximols mouth spray (Sativex®),
which is a mixture of CBD and THC, is currently approved for
treating MS-associated spasticity and neuropathic pain in the
UK, Canada, and several European countries [416–418].
However, it was suggested that cannabis extract, when having
low THC content (< 4%), was safe and produced greater ther-
apeutic benefits [415, 419]. Therefore, a complete understand-
ing of action of cannabis and its components is desired as they
are able to alter the brain normal functioning even consumed
in small quantities [420].

Brain tumor: cannabinoids reduce tumor growth
and promote chemotherapy response

Brain tumor is one of the deadliest type of cancer with inci-
dence of 10.85% per 100,000 people annually worldwide
[421]. There are over several clinical subtypes of brain cancers
based on the originating cells, but glioblastoma multiforme
(GBM) has the most aggressive and constitutes 60% of all brain
tumors of adults [422]. The lethality of glioblastoma can be
gauged from the fact that more than two third of patients with
glioblastoma die within 2 years [423]. The brain cancer affects
all ages and is diagnosed in all anatomical regions of CNS.
Most common pathologies, especially in children, include as-
trocytoma, medulloblastoma, germ-cell tumors, brainstem-gli-
omas, and epyndemomas [424]. Therefore, developing new
natural and synthetic anti-glioma drugs has become main focus
for FDA and global research [425].

The therapeutic use of cannabinoids in neurological disor-
ders like multiple sclerosis and epilepsy has generated interest
in its efficacy for treating diseases such as brain tumor, since
the elucidation of psychotropic constituent ofCannabis sativa
opened way to identification of sites of action of THC, CB1R,
and CB2R and subsequently endogenous agonists to these
receptors [426–428]. Although, the anti-neoplastic activity
of THC and its analogs was first reported in the early 1970
[429], recent studies reflect the possibility that ECB system
could be targeted to retard or block cancer growth [426]. The
endocannabinoids AEA and 2-AG are ubiquitous among both
vertebrate and invertebrate tissues and have modulatory role
in cell proliferation, differentiation, and apoptosis, suggesting
their roles in control of cell survival, transformation, and death
[426, 430]. Further, the endocannabinoid signaling pathway
that involves CB1R and CB2R is implicated in brain devel-
opment and function physiologically. CB2R stimulation via
sustained synthesis of ceramide and activation of ERK trig-
gers nuclear events that lead to programmed glioma cells
death [426]. Non-psychoactive CBD administration to the hu-
man glioma cell lines resulted in dramatic drop of glioma cell
viability in a concentration-dependent manner evident within
24 h after administration. The reduction of viability was cor-
related to induction of apoptosis which was not reverted by
cannabinoid antagonists. The CBD administered to nude mice
at 0.5 mg/mouse inhibited the growth of subcutaneously im-
planted human glioma cells significantly, suggesting possible
application of CBD as anti-neoplastic agent [431]. Also, ad-
ministration of CBD in glioma stem cells displayed an in-
crease in ROS and thus inhibition of cell survival and a sig-
nificant increase in survival of glioma stem cells (GSC)-bear-
ing mice [432].

The endocannabinoid system functions as tumor suppres-
sive through variety of cytostatic, apoptotic, anti-angiogenic,
and anti-metastatic mechanism [433]. The generation of ma-
lignant cells involve imbalance of endogenous ligands and
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receptors of cannabinoid system. THC has shown to down-
regulate the expression of E2F1 and cyclin A which leads to
G1 arrest in GBM cells [434]. THC has also shown to induce
apoptosis by releasing cathepsins leading to organelle perme-
abilization and apoptosis [435]. One of the first studies that
showed the therapeutic benefits of cannabinoids in brain tu-
mor demonstrated its efficacy by reduction in size of tumors in
rats [436]. Additionally, oral administration of Sativex-mimic
extract (THC/CBD in 1:1 ratio) in conjunction with temozo-
lomide exhibited strong antitumor effect in subcutaneous and
intracranial glioma cell-derived tumor xenograft [437].

The expression of CB2R have been shown to be upregulated
in glioblastoma patients [438]. The grade of tumor varies from
G1 (well-differentiated, least aggressive, low grade) to G4 (un-
differentiated, most aggressive, high grade). The expression of
CB2R was found to be twofold higher in tumor of high grade
compared to low grade [439]. A highly selective CB2R-agonist
COR167 restricted the growth of glioblastoma and anaplastic
astrocytoma via reduction of TGF-β1 and TGF-β2 [440].
CB2R expression analysis can assist in the efforts to identify
biomarkers that can identify patients that can respond to thera-
pies. Tumor angiogenesis is an important component for growth
and expansion of malignant cells as it provides new blood ves-
sels for supply of oxygen and nutrition. Cannabinoids have
shown to disrupt tumor angiogenesis by suppressing pro-
angiogenic factors like VEGF and Ang2 and inhibition of endo-
thelial cell migration and proliferation [441].

The clinical management of brain tumors is difficult as
these tumors have low response rates to chemotherapeutic
agents. A growing number of data from in vivo and in vitro
studies with cannabinoids elucidated the beneficial role of
cannabinoids as tumor-suppressing agent. The cannabinoids
increase the chemo-sensitivity of GBM cells by acting as ag-
onist for cationic receptor TRPV2 [442]. The transient loss of
TRPV2 expression using siRNA showed downregulation of
Fas and procaspase-8 and increased proliferation in human
glioma cell lines [443]. Synthetic THC-mimics (dronabinol
and nabilone), CBD, and a refined cannabis extract,
nabiximols (THC/CBD = 1.08:1.00) have demonstrated
calming effects against cancer-associated nausea, vomiting,
pain, anxiety, anorexia, weight loss, or sleep disturbance
[444]. Recently, a prominent increase in use of cannabinoids
in conjunction with immunotherapy have been observed [445,
446]. In an observational study in patients treated with
nivolumab, cannabis use during immunotherapy treatment de-
creased response rate [445]. In another case study, daily dose
of CBD (400 mg/ day) alongside tumor resection followed by
radio-chemotherapy increased the survival of patients with a
mean survival time of 22.3 months [446].

In an interesting phase 1 interventional study with three pa-
tients with epilepsy with associated tumors enrolled in The
University of Alabama at Birmingham CBD Program
(Clinicaltrial.gov: NCT02700412 and NCT02695537), CBD

(Epidiolex; Greenwich Biosciences) reduced tumor-associated
seizure frequency and severity [447]. The phase II clinical trial
of THC and CBD underway for its benefit in glioblastoma
patients (ClinicalTrials.gov: NCT03529448). The preliminary
results have showed better 1-year survival (83%) of treatment
group compared to placebo control (53%) [448]. Cannabinoids
executed their therapeutic effects by reducing tumor growth, by
reducing angiogenesis, and by promoting tumor cell death.
Moreover, cannabinoids inhibited the stem cell-like properties
and invasiveness of GBM tumors [449]. Taken together, the
importance of pharmacological effectiveness and the molecular
mechanisms of the cannabinoid system in tumor pathophysiol-
ogy cannot be ignored. In last two decades, there has been rapid
development in field of personalized medicine due to develop-
ment of technologies like next-generation sequencing (NGS)
which can assist in rapid screening of clinically responsive pa-
tients [450]. Along with recent advances in multi-omics geno-
mics, transcriptomics and proteomics screening of cancer pa-
tients which can be responsive to patient stratification and ac-
curate, quick, and personalized treatments [451], the
endocannabinoid system could be a potential pharmacological-
ly target for novel anti-cancer drugs.

Therapeutic strategies and translational
approaches

The ECS has emerged as a new therapeutic target in a variety
of neurological and neuroinflammatory disorders [452]. The
cannabinoids possess broad-spectrum activity at multiple cel-
lular andmolecular mechanisms that involve not only the ECS
itself but also the immune system [309]. Cannabinoids can
prevent excitotoxicity, oxidative stress, and neuroinflamma-
tion and can augment neuronal metabolism through either
specific cannabinoid receptor-mediated signaling pathways
or via direct interactions with transcription factors.

Current treatments involve the use of CB1R/CB2R activa-
tors or agonists. The current clinical CB1R/CB2R activators
available are Cesamet (nabilone), Marinol (dronabinol; Δ9-
tetrahydrocannabinol [Δ9-THC]), and Sativex (Δ9-THCwith
cannabidiol) [63]. The only selective agonist clinically ap-
proved by the FDA is a CB1R-selective agonist Resunab™;
however, this drug is only designated for a fast-track develop-
ment program in a phase II human clinical trial for scleroder-
ma and is not openly clinically available [63]. Most of the
agonists are synthetic exocannabinoids, typically derived
some way from THC. A study showed lower post-TBI mor-
tality in the THC(+) patients (2.4%) as compared with the
THC(−) group and thus suggested an association of positive
THC screen with decreased mortality in adult patients sustain-
ing TBI [152]. THC, in itself has gained muchmedia attention
with few understanding its actual role in treatment or physio-
logical effect. Similar to the endocannabinoid AEA, THC is a
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low effector agonist [42, 43, 453, 454]. THC or THC syn-
thetics are also not equivalent to natural endocannabinoids.
THC has multiple effects at once in a very imprecise and
irregularly responsive manner compared to natural
endocannabinoids that function with “right place, right time”
manner that is precise in effect location and tightly controlled.
Furthermore, endocannabinoids do not have the psychoactive
effects of exocannabinoids or synthetics targeting CB1Rs and
CB2Rs. Adding to the complications of THC use, the
exocannabinoid was shown at times of low endocannabinoid
receptor density or limiting postreceptor effectors to antago-
nize CB1Rs usually controlled by 2-AG showing potential
adverse receptor response and imprecision in receptor
targeting [455–458]. These adverse effects become a primary
challenge to overcome in the future of endocannabinoid sys-
tem involved treatments. The lack of specificity could also
become dangerous as synthetic highly efficacious street can-
nabinoid agonists such as Spice can cause much greater psy-
choactive side effects [459]. However, some studies have
shown promising results in limiting withdrawal symptom ef-
fects. High doses of a CB1R antagonist rimonabant attenuated
“high” with no withdrawal effects in humans taking a super-
vised moderate dose of THC [460]. However, in rodent
models, long-term high doses of THC elicited withdrawal
symptoms, thus showing that the mechanism is much more
complicated than just THC “highjacking” CB1Rs for physio-
logical effect [461]. Current research has sought to target
CB2Rs more heavily than CB1Rs due to their lower risk of
adverse psychoactive effects. However, many complications
regarding the use and study of CBR2s make the future chal-
lenging. There are currently a lack of highly selective CB2R
antibodies [462] to study as well as no availability of CB2R
floxed or Cre mouse to use. Under some conditions, CB1Rs
and CB2Rs actually create a heteromer making it difficult to
isolate each receptor’s function from one another in testing
[463]. Furthering the isolation challenges, there has been trou-
ble inducing only CB2Rs without CB1R effect as well as
trouble selecting only for CNS CB2Rs without affecting
PNS CB2Rs where they are most prevalent [32].

Phytocannabinoids: a viable treatment
option?

The potential medicinal properties of marijuana have been the
subject of intense scientific debate for decades. The approvals
of nabiximols and purified CBD extract for the treatment of
spasticity and pediatric epilepsy have drawn global medical
attention to cannabinoids [464]. Thirty-two states and
Washington, DC in the USA allow the use of marijuana to treat
certain medical conditions. However, medical marijuana laws
differ widely from state to state [465]. Cannabinoids may differ
in composition and biological effects, depending on marijuana

preparations. Medical cannabinoids, particularly non-
psychotropic CBD, have demonstrated considerable promise
in ameliorating chronic pain and various diseases ranging from
neurological and movement disorders to cancer [466–468].

Clinical studies on patients with MS revealed efficacy of
oral cannabis extract (OCE) in spasticity and related pain
[414, 415]. In addition, nabiximols, a cannabis extract prepa-
ration, reduced bladder void in urinary infection [414].
Further, the studies reinforced the benefits of cannabis in neu-
ropathic pain and suggested an improved safety profile as an
extract without undesirable neurological effects when contain-
ing low THC concentrations (< 4%) produced therapeutic
benefits without undesirable neurological effects [415, 419].
Nabiximols mouth spray (Sativex®) contains CBD and THC
that are currently available in the UK, Canada, and several
European countries for treating the spasticity and neuropathic
pain in MS patients [416–418]. The US Food and Drug
Administration (FDA) approved a CBD-based liquid medica-
tion called Epidiolex® for the treatment of two forms of se-
vere childhood epilepsy [417, 418], as well as THC-based
pills, dronabinol (Marinol®) and nabilone (Cesamet®), for
the treatment of nausea in cancer patients undergoing chemo-
therapy and to stimulate appetite in AIDS patients with
marked weight and muscle loss [417, 418]. In fact, with the
rising concern over opioid epidemic, cannabis and cannabi-
noids are emerging as strong alternatives for pain relief [413].
However, a complete understanding of action of cannabis
should be desired as THC-mediated relief in chronic radicular
neuropathic pain is associated with altered brain connectivity
among anterior cingulate and dorsolateral prefrontal cortex
with somatosensory cortex [420].

The risks and benefits of cannabinoid should be weighed
carefully as marijuana, like all drugs, has potential risks. For
example, cannabinoid not only increased appetite in cancer
patients but also declined the quality of life, which may be
due to the side effects of cannabinoid [469]. Further, oral
cannabinoids have shown many adverse effects, e.g., dyspho-
ria, dizziness, depression, or hypotension compared with con-
ventional antiemetic therapy [1]. In addition, efficacy of can-
nabinoids is still unknown in neurologic conditions, e.g., dys-
kinesia in patients with Parkinson’s disease, non-chorea-
related symptoms of Huntington’s disease, Tourette syn-
drome, cervical dystonia, and epilepsy [1, 414]. Common side
effects include dizziness, dry mouth, nausea, disorientation,
euphoria, confusion, sedation, and cardiac arrhythmia in peo-
ple who are already at risk. Regular smoking of marijuana can
be addictive and is associated with breathing problems and
lung infections [470].

Insufficient literature and varied composition of cannabis
products lead to inconclusive evidence of cannabinoid use and
their efficacy in many diseases. Further, the prevalence of a
wide range of adverse events associated with medical mari-
juana (ranging from dry mouth to patient death) is a potential
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question that need to be addressed [415, 471]. As the scientific
and medical world advance in the field of medical uses of
marijuana, evidences suggest that marijuana may be an effec-
tive treatment for chronic pain, neuropathic (nerve) pain, and
muscle spasms due to multiple sclerosis or paraplegia. Now as
marijuana’s use as a treatment for certain medical indications
has taken focus, patients and physicians both have to learn
about its potential risks and benefits [472].

Conclusions and future PPPM strategies:
innovative approach by predictive
diagnostics, targeted prevention,
and personalization of medical services

One of the most significant features of medicinal cannabis is
its ability to be considered as personalized medicine by
allowing individuals to control over their own treatment
(e.g., dose, time, and type of cannabis). This aspect of medic-
inal cannabis is more meaningful in CNS-related diseases. All
neurodegenerative diseases need great medical support from
early diagnosis and prognostic evaluation to personalized ther-
apeutic regimes and a better prediction of treatment outcomes.
Brain imaging along with advanced data acquisition and anal-
ysis has become a major important tool to identify disease and
proper treatment benefits clinically [473]. However, lack of
specific biomarkers to identify persons at risk for neurodegen-
erative disorders is an avenue for major improvement in the
field. The first step would be to invent new preclinical models
for neurodegenerative diseases that depict initiation and pro-
gression of diseases more accurately. Then identifying key
molecular pathways relevant for pathophysiology of neurode-
generative diseases maybe considered a novel and viable per-
spective for both predictive as well as individualized medicine
and targeted therapeutic modality. In light of systemic alter-
ation, because it may seem that the impact of mechanistic
approach would be diminished, at least in the short-term,
therefore, the multi-omics at DNA and protein (both expres-
sion and activity) levels would be highly recommended and
useful. An established biomarker panel is considered as a
powerful tool for personalized medicine as for an individual-
ized patient profiling and improved multi-level diagnostics, in
a predictive, preventive, and prognostic fashion. A major req-
uisite to achieve this is an increased interaction between basic
scientists and clinicians with respect to preventive, predictive,
and personalizedmedicines (PPPM) in neurodegenerative dis-
eases [473].

The ECS has been shown to influence a range of CNS
diseases as detailed in this review and numerous other system-
ic pathologies as well. The current literature is only just
starting to scratch the surface on how the ECS can be targeted
and modulated for therapeutic benefit. The future seeks to
further understand CB2Rs due to their highly inducible

feature making them a great therapeutic target [32]. The use
of selective CB2R agonists shows promising targets to manip-
ulate drug-seeking behavior, reward, dependence, and addic-
tion pathways [28, 29, 474]. A primary target for future re-
search would be to develop more selective CB2R agonists
with less CB1R adverse activation. Another strategy would
be to develop tissue specific activator/inhibitor of CBRs to
limit peripheral side effects [475]. Additional options to be
further explored are combination treatment plans in which
FAAH modulators are used with agonists to control effect of
metabolism and synthesis of natural endocannabinoids while
implementing effects of synthetic agonists [32, 33].

Cannabis or cannabis-based compounds are becoming
common in treating medical conditions. Since there is a defi-
nite lack of conclusive data on efficiency and side effects of
cannabinoids in clinical conditions, treatment with cannabis or
its products must be proceeded cautiously. Health care profes-
sionals serve as the most frequent source of information re-
garding cannabis risks and benefits. As more and more states
have adopted medical cannabis laws, medical professionals
must be trained for cannabis effect and health outcomes and
must provide awareness about cannabis to concerned patients.
Planned and standardized training could ensure that health
care professionals are prepared to identify medically appropri-
ate symptoms and conditions for use of cannabis [476].

The endocannabinoids show great promise for future thera-
peutics; however, a rational approach is necessary to develop
specific agonist/antagonist régimes and to avoid unwanted
health outcomes. In order to inform policymakers, practitioners
and users more clearly, future studies should be performed by
following uniform guidelines and reporting of patient outcomes
[477]. In addition, better understanding of mechanisms respon-
sible for the pathophysiology of neurodegenerative diseases and
involvement of cannabinoid system would establish more cer-
tain platform for PPPM effectively [478]. Hence, further studies
are needed to identify functional links between neurodegenera-
tive diseases and endocannabinoid system and to translate them
according to PPPM-guidelines [478] to provide higher standards
of health care to affected patient.
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