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ABSTRACT Haematococcus lacustris is an industrially important eukaryotic mi-
croalga that is thought to be a great source of natural astaxanthin with strong anti-
oxidant activity. Here, we report the draft assembly and annotation results of the
genome of H. lacustris NIES-144. These data will expand our knowledge of the mo-
lecular biological features of this microalga.

Haematococcus is a genus of eukaryotic Chlorophyceae microalgae that can form a
red immotile cyst and accumulate the highest content of natural astaxanthin

reported to date under stress conditions (1). Although these microalgae have been
studied as a natural resource for astaxanthin, which is a high-value carotenoid with
strong antioxidant activity (2), the genomic information is limited to H. lacustris strain
SAG192.80 (3).

To expand our molecular biological knowledge of these industrially important
microalgae, we determined the draft genome sequence of H. lacustris NIES-144, which
was obtained from the Natural Institute for Environmental Studies (NIES, Japan). H.
lacustris NIES-144 was cultured in C medium (4) under 14/10-h light/dark photocycles
at 25°C. Extraction of genomic DNA from Haematococcus cells was performed using a
FastDNA Spin kit for soil (MP Biomedical, USA). Paired-end and mate pair libraries (3 kb
and 10 kb, respectively) were prepared using a combination of the Covaris (USA)
sonicator and the TruSeq DNA LT sample prep kit or the Nextera mate pair sample
preparation kit (Illumina), respectively. The paired-end library was sequenced using the
TruSeq rapid sequencing by synthesis (SBS) kit on the Illumina HiSeq 2500, while the
mate pair library was sequenced using the TruSeq SBS kit v3 on the Illumina HiSeq 2000
platform.

The mate pair reads (average, 154,807,864 reads) were processed with cutadapt
1.2.1 (5) to remove adapter sequences. The paired-end reads (215,289,986 reads) and
trimmed mate pair reads (average, 105,701,143 reads) were assembled into 9,693
scaffolds with a total length of 172 Mb (genome coverage, 186�; GC content, 58.4%;
N50 scaffold length, 38,941 bp) using ALLPATHS-LG R45226 (6) with the following
parameters: GENOME_SIZE: 125,000,000; FRAG_COVERAGE: 100; JUMP_COVERAGE: 100;
and HAPLOIDFY: True. The completeness of the draft genome was 57.7% based on the
Benchmarking Universal Single-Copy Orthologs (BUSCO) software v3.1.0 (eukaryota_
odb9 database) (7). Prior to gene structure prediction, the repeat sequences of the H.
lacustris NIES-144 genome were identified and masked by RepeatMasker v4.0.9 (8) with
default parameters. The gene structure of the masked Haematococcus genome was
predicted by using MAKER v2.31.10 (9) in collaboration with AUGUSTUS 3.3.2 (10), SNAP
v2006-07-28 (11), and GeneMark-ES 4.3.0 (12) (model parameters, Chlamydomonas,
Arabidopsis thaliana, and Chlamydomonas reinhardtii, respectively). For RNA and protein
homology evidence in the MAKER prediction, we also recruited the transcriptome data
of H. lacustris NIES-144 (SRA accession number SRX3729494) (13) and the protein
sequences of representative eukaryotic species, including H. lacustris strain SAG192.80
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(3). A total of 13,309 genes were functionally annotated for H. lacustris NIES-144 by
BLASTp analysis against the UniProtKB SWISS-PROT and TrEMBL databases (14) with E
value thresholds of �1.0 � 10�5 and InterProScan v5.36-75.0 (15) analysis against the
Pfam database (16). Also, 277 tRNAs were predicted using tRNAscan-SE v2.0 (17). This
genome will provide the prerequisite information for genetic engineering and spur the
further development of efficient astaxanthin production by this microalga.

Data availability. This whole-genome shotgun project has been deposited at
DDBJ/ENA/GenBank under BioProject number PRJDB8952 (BioSample number
SAMD00192397). This version of the project has the accession number BLLF00000000
and consists of sequences deposited under the accession numbers BLLF01000001 to
BLLF01009693. The raw reads can be accessed under the SRA accession number
DRP005830.
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