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Effects of nonequilibrium fluctuations on ultrafast
short-range electron transfer dynamics
Yangyi Lu1, Mainak Kundu1 & Dongping Zhong1,2✉

A variety of electron transfer (ET) reactions in biological systems occurs at short distances

and is ultrafast. Many of them show behaviors that deviate from the predictions of the classic

Marcus theory. Here, we show that these ultrafast ET dynamics highly depend on the cou-

pling between environmental fluctuations and ET reactions. We introduce a dynamic factor, γ

(0≤ γ≤ 1), to describe such coupling, with 0 referring to the system without coupling to a

“frozen” environment, and 1 referring to the system’s complete coupling with the environ-

ment. Significantly, this system’s coupling with the environment modifies the reaction free

energy, ΔGγ, and the reorganization energy, λγ, both of which become smaller. This new

model explains the recent ultrafast dynamics in flavodoxin and elucidates the fundamental

mechanism of nonequilibrium ET dynamics, which is critical to uncovering the molecular

nature of many biological functions.
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The electron transfer reaction is one of the fundamental
steps in biological processes1,2. Biological electron transfer
(ET) reactions show a great variety of dynamics with

respect to a wide span of reaction timescales, from femtoseconds
(fs) to milliseconds (ms), and a large variation of donor-acceptor
distances3. These ET dynamics often display behaviors of non-
exponential decays4–6.

It is widely known that, when environmental fluctuations are
much faster than the ET reaction, the ET dynamics can be
described by a single exponential decay,

Q tð Þ ¼ e�t=τET ; ð1Þ
where Q(t) is understood as the survival probability of reactants.
This class of ET reactions has been successfully elucidated by the
classic Marcus theory7, with the reaction rate given by

kET ¼ 1=τET ¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4πkBTλ

s
e�

ΔGoþλð Þ2
4kBTλ ; ð2Þ

in which ΔGo is the free energy of the ET reaction, and λ is the
reorganization energy. In the nonadiabatic limit, the prefactor A
is determined by the Franck–Condon principle8,

A ¼ 2π
�h
J2; ð3Þ

where J is the electronic coupling constant between the two states.
However, in some biological ET reactions, such as charge

separations in reaction center proteins, the ET dynamics is
observed to have the same timescale as those of local fluctuations.
There exist a large class of reaction center proteins, known as
flavoproteins, which contain the flavin cofactor, in the form of
flavin adenine dinucleotide (FAD) or flavin mononucleotide
(FMN)9. Flavin molecules have three redox states: oxidized,
semiquinone (one-electron reduced), and hydroquinone (two-
electron reduced). Hence, the flavin molecules can participate in
one-electron and two-electron transfer processes, as well as
proton-coupled-electron-transfer (PCET) processes10. Because of
the chemical versatility of flavin molecules, flavoproteins are
ubiquitous in biological systems and participate in enzyme-
mediated oxido-reduction reactions that are part of many crucial
biological functions11. The microscopic mechanisms behind these
enzyme activities involve a series of short-range ET reactions, of
which the donor and acceptor are within a few Å. These ET
reactions happen in the ultrafast timescales along with fluctua-
tions of their local environments12. Recent work has suggested
that the nonequilibrium environment has a major impact on the
ultrafast dynamics of short-range ET reactions, which are not
clearly understood within the classical framework13,14.

For example, the flavodoxin, being a flavoprotein, is an electron
carrier, which is non-covalently bonded to a flavin molecule
(FMN)15. Upon excitation, the flavin cofactor, originally at the
state of semiquinone (FMNH•), accepts an electron from an
aromatic tryptophan or tyrosine residue (W or Y), and is reduced
to the hydroquinone state (Fig. 1a). These reactions happen in the
timescale of a few picoseconds and cannot be described by a
single-exponential decay. They often show a stretched-
exponential behavior

Q tð Þ ¼ e� t=τETð Þβ ; ð4Þ
in which β is <1.016,17. The solvation dynamics of the flavodoxin,
which characterizes local motions of the protein and trapped
water, was resolved and described by two components with time
constants of a few picoseconds (ps) and tens of picoseconds,
respectively18.

Interestingly, a different type of ET dynamics arises when the
ET reaction is faster than local motions of protein and water19.

This phenomenon was observed in flavodoxin with the flavin
cofactor being prepared at the oxidized state (FMN). In this case,
the ET reaction between the residual (W or Y) and the oxidized
flavin (FMN) happens within a few hundred femtoseconds upon
excitation, which is ahead of the fastest local relaxation measured
in the solvation experiment18. Surprisingly, these ET dynamics
are very well described by single-exponential decays. Similar
dynamics has been reported in other flavoproteins20,21 and pos-
sibly in other classes of proteins22–24.

It has been well established that the free energy landscape of a
protein in solution is characterized by a large number of local
minima, which occupy a hierarchy of energy scales25–27. Starting
from a random part of the energy landscape, accessing different
local minima requires relaxation motions with different time-
scales, from local orientational motions in fs to protein con-
formational transitions in ms or even longer28,29. If the time
window is limited (for example, by the ET reaction time), the
complete phase space is not fully sampled. In other words,
ergodicity is broken for this type of systems and the traditional
approach of thermodynamics is not applicable30.

It is reasonable to expect that the “degree of ergodicity
breaking” of a ET system is determined by the ET reaction
timescale. Depending on the relative timescales of ET reactions
and the corresponding environmental relaxations, these reactions
are categorized into three classes (Fig. 1b):

1. Frozen: the reaction is faster than any local motion of the
environment. The surrounding protein and water do not
have time to respond to the charge transfer between the
donor and acceptor within the reaction time window. That
is, the ET happens in a “frozen” environment19.

2. Active: the ET reaction is actively coupled to environmental
relaxation modes. This class exhibits a variety of dynamics,
which typically displays non-exponential behaviors6.

3. Equilibrium: the ET reaction is much slower than local
environmental fluctuations such that the populations of
reactants and products are always at equilibrium with the
environment. This type of ET is finely explained by the
Marcus theory31.

In this work, in order to understand the novel dynamics
observed in ultrafast short-range ET reactions, we propose a
generalized reaction-diffusion model, which incorporates the
effect of ergodicity breaking in the model developed by Sumi and
Marcus32. In the next section, the Sumi-Marcus model and the
approach to address ergodicity breaking are reviewed. The ana-
lytical formulation of our model is then presented. Key para-
meters used in the model are related to experimentally
measurable quantities. Especially, a working model of photo-
excited ET reactions is derived. Next, we discuss the predictions
of the model in different classes of ET reactions and compare its
results with those of the Sumi–Marcus model. We then apply the
model to analyze the ET reactions in flavodoxin, which are
representatives of ET reactions in the frozen and active regions.
Built upon these theoretical and experimental results, the cou-
pling mechanisms of ET reactions and environmental fluctua-
tions in both equilibrium and nonequilibrium scenarios are
comprehensively discussed. Limitations of current work and
future directions are presented at the end.

Results
The Sumi–Marcus model. By treating the environmental fluc-
tuations as a diffusive process33, Sumi and Marcus proposed a
two-dimensional theory to model ET reactions32. A “fast”
coordinate, denoted by q, was introduced to take into account
the contributions from intramolecular vibrations, while a

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15535-y

2 NATURE COMMUNICATIONS |         (2020) 11:2822 | https://doi.org/10.1038/s41467-020-15535-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


“slow” coordinate, denoted by x, was used to represent the local
motions involved in a ET reaction. Mathematically, the ET
dynamics is modeled as the time evolution of the distribution of
reactants, P(x, t),

∂P x; tð Þ
∂t

¼ LP x; tð Þ � k xð ÞP x; tð Þ; ð5Þ
where L is the Liouville operator that governs diffusion, and k
(x) is the probability of reaction along the solvent coordinate, x.
The reaction kernel k(x) is determined by the reaction barrier,
being the intersection of free energy surfaces of the reactant and
product states. As an immediate outcome of the theory, the
reorganization energy λ is separated into two terms, the “inner”
reorganization energy, λi, coming from contributions of intra-
molecular vibrations, and the “outer” reorganization energy, λo,
from contributions of environmental fluctuations, i.e.,

λ ¼ λi þ λo: ð6Þ
The ET dynamics, measured as the survival probability of

reactants, is obtained by integrating the reactants’ distribution,
P(x, t),

QðtÞ ¼
Z þ1

�1
P x; tð Þdx: ð7Þ

The Sumi–Marcus model can produce ET dynamics with non-
exponential behaviors and has been extensively applied to
studying different kinds of ET reactions4,14,15,34–36. However,
when the ET reaction is much faster than environmental
relaxations (discussed as the “non-diffusing limit” in the work
of Sumi and Marcus32), the model predicts a multi-exponential
dynamics, in contrast to the single-exponential dynamics
observed in a “frozen” environment19. On the other hand, the

model assumed a fixed curvature of the free energy surface for the
solvent coordinate. However, the curvature is proportional to
thermal fluctuations, which is likely to be dependent on the ET
reaction timescale because of ergodicity breaking of the system.

The method of restricted ensembles. The broken of ergodicity
for the system means that under certain constraints the complete
phase space of the system is not accessible. In this work, it is the
ET reaction that forbids parts of the phase space from being
connected by slower relaxations as compared to the reaction. This
phenomenon is known as the dynamical ergodicity breaking,
because the breaking of ergodicity is not permanent and ergo-
dicity can be recovered in longer timescales37. The physical
properties of a nonergodic system have to be calculated by
averages over restricted ensembles38.

One of the first applications of restricted ensembles in
addressing ET reactions was made by Matyushov39,40. Assume
that ET reaction rate is kET ¼ 1= τETh i, in which τETh i is the
average ET time constant, and the reaction coordinate X= X(q1,
q2, …, qN) is a function of N independent coordinates {qi} of the
system. The free energy of the system F(X), at the R or P state, is
defined as

e�F Xð Þ=kBT/
Z

δ X � X q1; ¼ ; qNð Þð Þe�H q1;¼ ;qNð Þ=kBT

´
Y

i; ωj j<kET
δ qi ωð Þ � Qið Þ

Y
i;ω

dqi ωð Þ; ð8Þ

in which H(q1, …qN) is the Hamiltonian of the system, and
{qi(ω)} are the Fourier transformed coordinates. In contrast to the
free energy defined in equilibrium, in which the density of state,
exp(−H/kBT), is integrated over all possible values of qi, i=1, …,
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Fig. 1 Schematic representations of the ultrafast electron transfer model. a Cartoon illustration of a photo-excited electron transfer reaction inside a
protein. b Three categories of ET reactions characterized by the value of dynamic factor γ (Eq. 16). c Free energy curves of three categories of ET reactions
along the solvent coordinate x. Two curves with the same color, corresponding to the colored ET category in b, are related to the reactant (left curve) and
product (right curve) states of a ET reaction, respectively (Eqs. 10a and 10b). d Free energy surfaces of three categories of ET reactions. Golden
wavepackets represent the initial distributions, P(x, t= 0) (Eq. 30).
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N, the above definition assumes motions that are slower than the
ET reaction (|ω|<kET) to be frozen and fixes the coordinate qi(ω)
to be a constant Qi. As a result, F(X) is also dependent on the ET
rate, F(X)= F(X, kET). Although the restricted free energy
function is not well defined in thermodynamics, in the later
development, the free energy function can be used to quantify the
magnitude of nonequilibrium local fluctuations within a finite
time window.

Nonergodic free energy surfaces. It is assumed that environ-
mental fluctuations of a ET reaction can be approximately
modeled as a polarization field which follows the Gaussian sta-
tistics39. The corresponding reaction coordinate, denoted by x, is
defined as follows

x ¼ �
Z

d~r~P ~rð Þ � Δ~E0 ~rð Þ; Δ~E0 ¼~E1 �~E2; ð9Þ

which is the polarization energy induced by the difference of two
electric fields generated by the R (with the subscript 1) and P
(with the subscript 2) states of the donor-acceptor pair and~P ~rð Þ is
the polarization field of the solvent. According to restricted
ensembles, the complete phase space is separated into a collection
of isolated components. Within each component, the free energy
curves along the coordinate x can be derived,

F1 x; kETð Þ ¼ x2

4λo kETð Þ ; ð10aÞ

F2 x; kETð Þ ¼ x � 2λo kETð Þð Þ2
4λo kETð Þ þ ΔGsol kETð Þ; ð10bÞ

in which all parameters are dependent on the reaction rate, kET39.
In these expressions, the minimum of the R state’s free energy,
F1(x, kET), is shifted to the origin. ΔGsol(kET) is the nonergodic
reaction free energy, contributed by active relaxation modes of
the environment. λo(kET) is the nonergodic outer reorganization
energy, defined by39,

λo kETð Þ ¼ λeqo

Z þ1

�1
dωS ωð Þθ ωj j � kETð Þ; ð11Þ

where θ(x) is the Heaviside step function and

λeqo ¼ lim
kET!0

λo kETð Þ; ð12Þ
which is the reorganization energy when all environmental
relaxation modes are fully relaxed. Here S(ω)41,

S ωð Þ ¼ 1
π

Z 1

0
dt S tð Þcosωt; ð13Þ

is the Fourier transform of the time auto-correlation function
(TCF) of the polarization energy x, S(t),

S tð Þ ¼ δx tð Þδx 0ð Þh i
δ2x 0ð Þ� � ; ð14Þ

where δx tð Þ ¼ x tð Þ � xh it!1. The stabilization energy, which is
measurable in the solvation experiment16, is defined as

ΔEsol ¼ xh it¼0� xh it!1: ð15Þ
As a result, a dynamic factor, denoted by γ, can be defined to

quantify the interplay between the ET reaction and environ-
mental fluctuations,

γ ¼
Z þ1

�1
dωS ωð Þθ ωj j � kETð Þ: ð16Þ

Therefore, γ is a function of kET. By definition, λo(kET) and
ΔGsol(kET) are related to their equilibrium values through (see

Supplementary Eq. 10)

λγo ¼ λo kETð Þ ¼ γλeqo ; ð17Þ

ΔGγ
sol ¼ ΔGsol kETð Þ ¼ ΔGeq

sol þ 1� γð Þλeqo : ð18Þ
It turns out that all the correction of nonergodicity can be

included into γ. To simplify the notations in the following
discussion, a superscript of γ is labeled onto a parameter if it is
dependent on the ET rate, kET, such as λγo and ΔGγ

sol.
The γ values vary between 0 and 1 (see Fig. 1b). When the ET

reaction is fast relative to motions of the environment, γ→0, few
environmental motions are able to couple with the reaction. The
local fluctuations are limited within a fraction of the complete
phase space, which results in a steep free energy surface along the
solvent coordinate x, hence a small λo(kET) (see the blue curve in
Fig. 1c). When the ET is slow, γ→1, the system is able to sample a
majority of the environment’s phase space, leading to a flat free
energy surface and a large λγo (see the red curve in Fig. 1c).

In the above discussion, the donor-acceptor pair is simplified
to be a structure-less dipole. However, in general, the degrees of
freedom inside the donor and acceptor are also relevant to the ET
reaction. Following the argument of Sumi and Marcus32, it is
assumed that these intramolecular degrees of freedom, governed
by the Gaussian statistics, respond to any change of the system
instantly. Another coordinate, denoted by q, is used to represent
these degrees of freedom. Hence, the free energy surfaces, as a
function of x and q, are expressed as

Fγ
1 x; qð Þ ¼ x2

4λγo
þ q2

4λi
; ð19aÞ

Fγ
2 x; qð Þ ¼ x � 2λγo

� �2
4λγo

þ q� 2λið Þ2
4λi

þ ΔGγ; ð19bÞ

where λi is the inner reorganization energy contributed by
intramolecular vibrations. ΔGγ is the free energy of the ET
reaction, including contributions from both the intramolecular
degrees of freedom and active environmental relaxation modes. It
is related to its equilibrium value through

ΔGγ ¼ ΔGo þ 1� γð Þλeqo : ð20Þ
In Fig. 1d, the energy surface on top of the figure corresponds

to a fast ET reaction relative to environmental motions, whose
intersection along x is the blue curve in Fig. 1c. The flattest energy
surface corresponds to a slow ET, whose intersection along x is
the red curve in Fig. 1c. The gradual change of ΔGγ with respect
to the relative rates between ET and environmental fluctuations
can be seen in both figures.

The equation of motion for the system. The reaction kernel k(x)
is determined by the intersection of the two free energy surfaces,

k xð Þ / exp � 1
kBT

Fγ
1 x; qy xð Þ� �� Fγ

1 x; 0ð Þ� �	 

; ð21Þ

where the transition state q†(x) at each point of x is determined
by the following equation,

Fγ
1 x; qy xð Þ� � ¼ Fγ

2 x; qy xð Þ� �
: ð22Þ

In the nonadiabatic limit, k(x) is given by the following
equation32,

k xð Þ ¼ J2

�h

ffiffiffiffiffiffiffiffiffiffiffiffi
π

λikBT

r
e�

x� ΔGγþλγð Þð Þ2
4kBTλi ; ð23Þ

where λγ is the total reorganization energy, subject to the
nonergodic correction, and λγ ¼ λi þ λγo. The electronic coupling
J is assumed to be independent of the configurations of the
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environment, given that the donor and acceptor are close in
distance.

On the other hand, assuming that environmental fluctuations
can be modeled by a diffusive process, in the overdamped limit, a
Liouville operator similar to the Sumi–Marcus theory, is
derived42 (see Supplementary Eq. 29)

LP ¼ D tð Þ 2λγokBT
∂2

∂x2
P þ x

∂

∂x
P þ P

� �
; ð24Þ

where D(t) is the diffusion coefficient that satisfies

D tð Þ ¼ � 1
S tð Þ

dS tð Þ
dt

; ð25Þ

in which S(t) is the normalized TCF of the solvation dynamics
defined in Eq. 14. Thus, the time evolution of the reactant’s
distribution is determined by

∂

∂t
P ¼ D tð Þ 2λγokBT

∂2

∂x2
P þ x

∂

∂x
P þ P

� �
� k xð ÞP: ð26Þ

Photo-excited ET reactions. In the case of a photo-excited ET
reaction, upon excitation, the local environment of the donor and
acceptor is close to the global minimum of the ground state,
deviating slightly from that of the excited state, which is the R
state of the ET reaction43. This deviation along the coordinate x is
denoted by Δxγ, which has the relation with its equilibrium value,
Δxγ= Δxeq × γ. Since Δxeq is approximately equal to ΔEsol,
the stabilization energy (see Eq. 15), we have (see Supplementary
Eq. 32),

Δxγ ¼ γΔEsol: ð27Þ
On the other hand, the reaction free energy ΔGγ also differs

slightly from Eq. 20 (see Supplementary Eq. 34), i.e.,

ΔGγ ¼ ΔGo þ 1� γð Þλeqo þ 1� γð ÞΔEsol: ð28Þ
To conclude this section, in a photo-excited ET reaction, the

time evolution of the reactants’ population, P (x, t), is governed
by the equation

∂

∂t
P ¼ D tð Þ 2λγokBT

∂2

∂x2
P þ x � γΔEsolð Þ ∂

∂x
P þ P

� �
� k xð ÞP;

ð29Þ
where k(x) and the initial condition of P(x, t) are given by (see
Supplementary Eq. 35)

k xð Þ ¼ J2

�h

ffiffiffiffiffiffiffiffiffiffiffiffi
π

λikBT

r
exp � x � γΔEsol � ΔGγ þ λγð Þð Þ2

4kBTλi


 �
;

P x; t ¼ 0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
4πλγokBT

s
exp � x2

4λγokBT


 �
: ð30Þ

In the above expressions, for convenience, the center of the
initial distribution, P (x, t= 0), is shifted to x= 0.

Finally, if the solvation TCF can be expressed as a multi-
exponential decay, which is S tð Þ ¼ P

i cie
�t=τi , the dynamic factor

can be evaluated by (see Supplementary Eq. 38)

γ ¼ 1� 2
π

X
i
ciarctan τi= τETh i½ �: ð31Þ

Effects of environmental relaxations on ET dynamics. As it is
seen in Eq. 29, the coupling between the ET reaction and
environmental fluctuations is reflected in the Liouville operator L
(Eq. 24) and the modified parameters, such as λγo and ΔGγ, which
are revised by the dynamic factor, γ (Eq. 16). In this section, this

coupling mechanism is elucidated. Furthermore, although it has
been well known that the solvation dynamics in biological sys-
tems usually shows non-Debye behaviors, its effects on the ET
dynamics are not clearly understood. The following discussion
will try to shed some light on this problem by examining the
influence of solvation dynamics with single-exponential and
double-exponential decays. In this discussion, the ET dynamics,
Q(t) (Eq. 7), is fitted with stretched-exponential decays (Eq. 4), in
which the average ET time constant is given by

τETh i ¼ τET
Γ 1=βð Þ

β
; ð32Þ

where Γ(z) is the standard Gamma function.

Debye relaxations. With the Debye relaxation, the TCF of the
solvent coordinate x is a single-exponential decay,

S tð Þ ¼ e�t=τD ; ð33Þ
which leads to a constant diffusion coefficient D(t)= 1/τD. To
find out how τD affects the ET dynamics, it is helpful to compare
the solutions of Eq. 29 with different values of τD while fixing all
other parameters in the equation, as shown in Fig. 2. It is clear
that with the increase of τD, β decreases from 1.0 and then
increases toward 1.0 after reaching a minimum (Fig. 2a). In
comparison, the ET dynamics modeled by the Sumi–Marcus
model displays very different behaviors (Fig. 2b). The stretched
factor β monotonically decreases with the increase of τD. To

1.0
a

�D <�ET>, �(simulation)

0.8

0.6

0.1ps

1.0ps

3.0ps

10.0ps

100ps

300ps

3000ps

(3.3ps, 1.00)

(5.0ps, 0.94)

(7.2ps, 0.87)

(10.7ps, 0.78)

(11.6ps, 0.86)

(10.8ps, 0.94)

(10.4ps, 1.00)N
or

m
al

iz
ed

 s
ig

na
l

N
or

m
al

iz
ed

 s
ig

na
l

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

0 10 20
Decay time (ps)

30 40

�D <�ET>, �(simulation)

0.1ps

1.0ps

3.0ps

10.0ps

100ps

300ps

3000ps

(3.2ps, 1.00)

(4.8ps, 0.93)

(6.8ps, 0.84)

(11.0ps, 0.70)

(27.3ps, 0.50)

(33.3ps, 0.47)

(36.5ps, 0.46)

b

Fig. 2 Simulations of photo-excited ET dynamics. The simulations are
performed with different solvation timescales, τD, while fixing other parameters
at J=0.020 eV, ΔGo=−0.60 eV, λi=0.80 eV, and λo=0.40 eV. It is assu-
med that excited-state (ES) global minimum is aligned with the ground
state (GS) global minimum along the x coordinate. a Simulations using the
nonergodic model. b Simulations using the Sumi-Marcus model. Note the
difference in the variation of β between two models.
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understand these different dynamics, it is worthwhile examining
the time evolution of the reactants’ distribution, P(x, t) (Fig. 3). In
the region where τD � τETh i, local motions quickly bring P(x, t)
back to equilibrium (Fig. 3a). The ET dynamics fits an expo-
nential decay with its reaction rate well predicted by the Marcus
theory (Eq. 2). This result is also consistent with the simulation of
the Sumi–Marcus model (see Supplementary Fig. 1a). The ET
reaction belongs to the equilibrium class with λγo and ΔGγ

sol equal
to their equilibrium values, i.e., γ→ 1 (Fig. 1 Class III). As τD
becomes larger, the ET reaction gets into the active region, where
τD � τETh i (Fig. 1 Class II), and γ→ 1. λγo and ΔGγ

sol deviate from
their equilibrium values. The ET dynamics is stretched because P
(x, t) is driven away from its equilibrium distribution by the
asymmetric distribution of the reaction kernel, k(x), with respect
to x= 0 (Fig. 3b). In the other limit, where τD≫ τET, the envir-
onment is frozen (Fig. 1 Class I). The ET dynamics simulated by
the Sumi-Marcus model is very stretched, which is the result of
the static heterogeneity of the environment (see Supplementary
Fig. 1c). However, on the other hand, the ET dynamics simulated

by current model is exponential. In this limit, the ET reaction
happens with negligible impacts from local fluctuations, γ→ 0.
Mathematically, the static heterogeneity has the same effects on
λγo as well as ΔG

γ, which cancel out and result in the exponential
dynamics. The reaction rate is mostly determined by the value of
k(x) at x= 0 (Fig. 3c). In this case, λγo ! 0, and ΔGγ !
ΔGo þ λeqo . Additionally, the introduction of a non-zero stabili-
zation energy (Eq. 15) modifies the ET dynamics slightly (see
Supplementary Fig. 2 and 3).

Non-Debye relaxations. The picture gets more intricate when
moving beyond the Debye relaxation. To explain the influence of
a solvation dynamics with multiple components on ET reactions,
a solvation TCF with a double-exponential decay is used in Fig. 4,

S tð Þ ¼ c1e
�t=2:6 þ 1� c1ð Þe�t=40: ð34Þ

The time constants in picoseconds are chosen from the
measured solvation dynamics of flavodoxin18, but the overall
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picture is applicable to biological ET systems in general. The
solvation dynamics with a time component of a few picoseconds
and another of tens of picoseconds have been observed in a
variety of protein-water systems16,44–47. Different types of ET
dynamics are produced by varying the coefficient c1 in S(t) in
different sets of other parameters, in order to simulate ET
dynamics in equilibrium, active and frozen environments
(Fig. 1b). At any given time t > 0, the diffusion coefficient D(t)
monotonically decreases with decreasing c1, suggesting a slow-
down of local fluctuations (Fig. 4a). Similarly, at any given τET,
the dynamic factor γ decreases with decreasing c1 (Fig. 4b). Since
D(t) decays to the slower relaxation rate and γ gets close to 1
when τET→∞, it is reasonable to infer that the variation of D(t) is
only relevant to the ET dynamics with τET comparable to either of
the relaxation timescales. As it is expected, in the frozen
environment (Fig. 1b I), varying S(t) does not have a significant
impact on the resulting ET dynamics (Fig. 4c). This also applies
to the equilibrium class (Fig. 1b III). As long as the ET reaction is
much slower than any local motion of the environment, the ET
dynamics stays close to the prediction of the Marcus theory
(Fig. 4f). However, inside the active region (Fig. 1b II), the ET
dynamics is very sensitive to the coefficient of each solvation
component, especially that of the slow component (Fig. 4d, e).

In summary, the determining factor of ET dynamics is the
relative ratio between the solvation timescale and the ET
timescale, which is quantified by a dynamic factor, γ (Eq. 16).
The coupling mechanism between ET and the solvation is
realized through the diffusion process and modification of
thermodynamic properties, ΔGγ and λγ (Eqs. 17 and 20). In the
case where the solvation is much slower than ET, a small number
of local relaxation modes are coupled to the reaction and the
environment is frozen. This results in a single-exponential ET
dynamics in which the complexity of the solvation dynamics is
irrelevant. While the solvation is much faster, all local motions
are coupled to ET and the environment is in equilibrium, which
also leads to a single-exponential decay. It is when the solvation
has a comparable timescale with that of the ET reaction, the
dynamics becomes complicated. All components of the solvation
dynamics should be taken into account to produce a reasonable
picture of the ET reaction. Furthermore, the stabilization energy,
which comes from the misalignment of the ground state and the
excited state of the donor-acceptor pair, is also needed to
reproduce an accurate ET dynamics.

Analysis of ET reactions in flavodoxin. In this section, the
model (Eq. 29) is applied to analyzing two types of photo-excited
ET reactions in flavodoxin15,19. As discussed, to get an accurate
picture of the ET reaction, detailed information of the solvation
dynamics is required. The ET reactions to be analyzed are
between a photo-excited flavin cofactor (FMN* or FMNH•*) and
a nearby tryptophan residue in flavodoxin. The TCF of their
solvation dynamics is in the form of

S tð Þ ¼ c1e
�t=τ1 þ c2e

�t=τ2 þ c3e
�t=τ3 ; ð35Þ

with τ1 being a few ps, τ2 being tens of ps, and τ3 being hundreds
of ps16,18. The solvation dynamics does not have sub-picosecond
components, which are attributed to ballistic motions of bulk
water, because the functional site, in which the solvation is
measured, is buried deeply inside the binding pocket and is dis-
tant from the bulk water. The experimental solvation dynamics of
flavodoxin with FMNH• does not have a third component due to
the shorter lifetime of FMNH•*18. Within each system, mutants
are chosen such that each mutant is mutated at the same site and
does not drastically change the protein’s conformation, and the
structures of the donor and acceptor, it is therefore assumed that

the solvation TCF, S(t), and the inner reorganization energy, λi,
stay invariant under mutation. Given that the equilibrium value
of each mutant’s reaction free energy, ΔGo, is available, the
reorganization energies, λγo and λi, can be obtained by fitting the
experimental ET dynamics with Eq. 29.

The ET reaction of FMN is in the frozen region (Fig. 1b I) and
displays a single-exponential dynamics with the reaction rate
being in the hundreds of fs. As expected, the outer reorganization
energy for each mutant is close to 0, a characteristic of ET
reactions in the frozen region (Table 1 and Fig. 5a). The large
reaction rate is a result of low activation energy, being determined
by the large driving force, |ΔGγ|, as well as a fairly large inner
reorganization energy, λi. It has been suggested that the unusual
value of λi comes from the significant structural change between
FMN and the negatively charged, FMN−48. On the other hand,
the ET dynamics with FMNH•, being in the active region (Fig. 1b
II), is stretched with its reaction timescale comparable to the
shortest solvation timescale, τ1. The model gives a small but
nontrivial λγo (Table 1 and Fig. 5b). From Table 1, it is obvious
that the calculated reaction free energy ΔGγ deviates significantly
from its equilibrium value for each mutant.

In contrast to the predictions made by the Sumi–Marcus model
(Fig. 2b and Supplementary Fig. 1), the lack of strong dependencies
on the static heterogeneity of the environment in experimental
results suggests that, for ultrafast short-range ET reactions, the
electronic and vibrational structures of the donor and acceptor are
insensitive to the fluctuations of the local environment.
The influences of environmental fluctuations on the ET dynamics
are reflected in their contributions to the outer reorganization
energy as well as the driving force of the reaction. Conversely, if the
ET dynamics in the frozen region displays non-exponential decay, it
might suggest that the donor and acceptor are strongly coupled
with the environment such that the configurations of the
surrounding molecules have an impact on the electronic and
vibrational structures of the donor and acceptor49.

Discussion
To conclude, in this work, a model of ultrafast short-range elec-
tron transfer reactions is proposed to address the nonequilibrium
interactions between ET reactions and environmental fluctuations.
When dealing with ET reactions in equilibrium (Fig. 1b III), it is
shown that the new model is consistent with the classic Marcus
theory (Eq. 2). In the case of non-equilibrium ET reactions
(Fig. 1b I and II), this model predicts a nonergodic ET dynamics
by freezing relaxation modes that are slower than ET reactions.
This model successfully explained the single-exponential behavior
of extremely fast ET between FMN and the tryptophan (tyrosine)
residue in flavodoxin (Fig. 1b I), which does not fit into the classic
physical picture. Because of the existence of frozen relaxation
modes, the reaction free energy and the reorganization energy of
nonequilibrium ET reactions can deviate significantly from their
values at equilibrium. Particularly, the ET reaction in the frozen
region is characterized by λγo � 0. This model improves our cur-
rent understanding of ultrafast (short-range) ET reactions, which
is instrumental to our comprehension of physical mechanisms
behind many biological functions.

It should be noted that there still exist a few limitations in
current work. Firstly, when applying the model to analyze
experimental results, the relevant parameters, such as the inner
and outer reorganization energy, are obtained by fitting the
simulated results with experimental data. This approach certainly
has its limitation, especially when more parameters like ΔG and
the solvation correlation function S(t) are not available experi-
mentally. Therefore, the applicability of the model can be
enhanced if it is integrated with ab initio methods, which can help
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to compute these model parameters. Secondly, this approach of
addressing photo-excited ET assumes that vibrational distribu-
tions of the reactant and product states of the reaction follow the
Boltzmann distribution. However, it has been argued that photo-
excited ET reactions involve vibrationally excited states, whose
relaxation is in the range of a few picoseconds15. Therefore, the
phenomenon of nonequilibrium also exists inside the donor-
acceptor pair. In this case, instead of a two-state model for the
donor and acceptor, a fine model with electronic and vibrational

structures is required for a reasonable description49. This further
complicates the picture and more efforts are on the way.

We also want to emphasize that, due to the lack of theoretical
tools, it is very likely that many reactions that have been dis-
covered in the past could belong to ET reactions in the frozen
region while stay unnoticed. Furthermore, given the universal
existence of ergodicity breaking in complex environments37,50,
this new model can be applied to any ultrafast electron-transfer
reactions with the coupling between ET systems and their
environments, although it was initially developed for treatment of
photo-excited ET dynamics in biology. It should find wide
applications in chemistry, materials, and biology, to gain a deep
understanding of the fundamental ultrafast ET processes in those
fields.

Methods
Computational routine for solving the differential equation (Eq. (29)). In this
work, we used the software called Mathematica to solve the differential equations.
The software provides numerical methods for solving ordinary or partial differ-
ential equations, such as NDSolve, which are simple to use. The solution of
NDSolve is then numerically integrated using methods, such as NIntegrate, to give
Q(t) (Eq. (4)). Q(t) can be fitted by a stretched-exponential function using the
method, NonlinearModelFit.

Data availability
The data that support the findings of this study are available from the corresponding
author (D.Z.) upon reasonable request.

Code availability
The Mathematica notebook for solving the differential equations is uploaded as
the Supplementary File, et_code.nb.
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