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The emergence of severe acute respiratory syndrome coronavirus 2 (or 
coronavirus disease [COVID]-19) has led to a widespread global pan-
demic (1). COVID-19 symptoms and mortality are disproportionately 
more severe in people with obesity and obesity-related comorbidities 
(2,3). This is of concern for the United States, where ~42% have obe-
sity, and of these, 85% have type 2 diabetes.

Without effective vaccines or therapies, there is an urgent need for preven-
tion and treatment strategies for COVID-19 infections. Developing such 
strategies requires a thorough understanding of how COVID-19 infections 
spread in a population. Mathematical modeling predicts the spread of 
COVID-19 and permits testing different strategies to control and reduce 
population disease impacts.

The New York Times published COVID-19 predictions from five mathe-
matical models with widely varying results (4). A recent review (5) also 
highlighted model differences and noted that a fluid situation dependent 
on many external variables should not be viewed as a “crystal ball.” 
Why do COVID-19 models yield such variable predictions? How are 
the different COVID-19 models developed? How should models be 
applied? Here, we provide a brief tutorial addressing these questions.

The majority of models fall into the following two categories, which are 
applied for different purposes: projections versus statistical forecasts. 
Projections are deterministic and they explain what could happen under 
a set of underlying hypotheses, while statistical forecasts use observed 
data to predict what will happen (6).

Dynamic Projection Models
In 1927, Kermack and McKendrick (7) developed the first continuous 
variable projection model of epidemic population dynamics, often re-
ferred to as a “susceptible, infected, and removed” (SIR) model. They 
compartmentalized a constant population into three states. The first 
state represents individuals susceptible to the disease with the number 
of susceptible individuals on day t of the epidemic, denoted by S (t) . 
The second state is the number of infected individuals on day t of the 
epidemic, denoted by I (t) . Finally, individuals removed from the in-
fectious disease dynamics through death or recovery with immunity on 
day t of the epidemic are denoted byR (t) .

R models assume susceptible individuals contract the infection by inter-
acting with infected individuals. The term that models this interaction is 
represented as a proportion of the product of the susceptible and infected: 
rS (t) I (t). If the mortality/recovery rate is modeled as a direct propor-
tion of infected individuals, we arrive at the final Kermack-McKendrick 

Model. This flow diagram is depicted in Figure 1, with mathematical 
formulation as a system of three ordinary differential equations:

The key property of projection models like the Kermack-McKendrick 
system is that they are based on logical assumptions of the underly-
ing mechanics of a process and they can be developed without data to 
immediately address “what if” questions.

It is from SIR-like models that we can see the effects of social dis-
tancing on flattening the curve. SIR models, however, are sensitive to 
underlying model assumptions. When these assumptions are modified, 
projections sometimes change dramatically. For example, we could 
assume there is a time lag to infection that accounts for the virus incu-
bation period by modifying the term rS (t) I (t) to rS (t) I (t−�). The 
transmission rate, r, could also be assumed dependent on the currently 
observed infected population. Additionally, instead of assuming r is 
constant, we could model r as a function of I (t) by using the Hill func-
tion (8) as follows:

Here, r declines as the number of infected individuals gets higher, 
reflecting increased social distancing during peak infectivity. On 
the other hand, r increases when the number of infected individuals 
decrease. The values β

max
, K, and n are parameters that could be fit to 

data once available. The changes in assumptions alter the projections as 
depicted in Figure 2.

Once data is fit to model parameters, SIR models can predict when 
infections peak or how high the peak may be, but as pointed out in 
Jewell et al. (5) and observed in Figure 2, these are dependent on the 
underlying model assumptions.

dS

dt
=−rS (t) I (t)

dI

dt
= rS (t) I (t)−�I (t)

dR

dt
= �I (t)

r (I (t))=
β
max
Kn

I (t)n+Kn
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Forecasting Models
Forecasting models are more useful after data has been gathered. For 
instance, most SIR COVID-19 models use fixed parameters, which 
lead to a constant referred to as R

0
 or “R naught.” R

0
 is defined as the 

number of secondary infections that will result from a single infected 
individual being introduced into a completely susceptible population. 
A calculated reproduction number during an ongoing epidemic is the 
“effective” reproduction number, R

E
(t), which is the observed average 

number of secondary cases from a single primary case per unit time. 
R
E
(t) accounts for changes to R

0
 through control measures such as so-

cial distancing.

Within the SIR framework, R
0
= rNT , where T  is the time to recover 

and N is the population size. Absent of interventions, the estimated R
0
 

of COVID-19 is between 1.5 and 6.7 (9). However, this value is not 
constant but changing daily. Renewal equations allow us to estimate 
values (10) of R

E
(t) that can be fit to a statistical model. Similar to 

Massad et al. (6), we fit an exponential decay model to New York’s 
data yielding R

E
(t)= e0.5−0.02t, though other statistical models such as 

one with an asymptote could be considered. Figure 3 depicts the fit-
ted effective reproduction number versus the calculated R

E
(t) values 

for New York. This forecast model will inform improved SIR model 
projections and generate prediction intervals. Projection models for 
the SARS-1 epidemic overestimate R

0
 compared with statistical 

Figure 1 Transition from the three possible states, susceptible S (t) , infected, I (t), and removed R (t) . The proportion of interactions 
between individuals in S (t) and I (t) that lead to infection per unit time is r , and the proportion of infected individuals that recover 
with immunity or die from disease per unit time is �. The total number of individuals within the system remains constant throughout 
calculation.

Figure 2 Varying assumptions can alter the dynamic projection model outcomes. Assuming there is a time lag shifts the curve. Including social distancing that increases with 
increased infective populations and decreases with declining infected populations “flattens the curve” and results in an asymmetric projection. The parameter values were set 
with total population set as 1,000 individuals, r =0.02, � =0.01. For the time lag model, the time lag for infection was set at � =7 days and the time lag to mortality at 3 days. 
For the model wherer  is represented by the Hill function, K =30, �max =0.85 and n=3.1.
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forecasting estimates of reproduction numbers (6). It is important that 
researchers use projection models for hypothetical scenario develop-
ment and statistical forecasting models for forecasting, which are two 
different goals.

Including the differential effects of COVID-19 on individuals with 
obesity into both projection and forecasting models by separating each 
compartment into normal weight and obesity populations will be key to 
understanding the population-wide impacts of COVID-19 on obesity. 
Obesity researchers can apply both types of models to evaluate preven-
tion and treatment strategies for COVID-19 in persons with obesity.O
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Figure 3 The effective reproduction number RE (t), sometimes referred to as R0 or “R naught,” for New York fit to data 
with an exponential curve. RE (t) represents the average number of secondary cases because of one infected person 
at the beginning of the epidemic, and in order for the epidemic to decline, RE (t) should be less than 1. The points are 
the calculated daily effective reproduction number calculated by number of observed cases divided by the number 
of expected cases on a given day, while the gray curve forecasts future effective reproduction numbers that can be 
used in dynamic projection SIR models. Here, RE (t) went below 1 (represented by the dashed line) around 28 days.
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