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Abstract: In hilly areas across the world, landslides have been an increasing menace, causing loss
of lives and properties. The damages instigated by landslides in the recent past call for attention
from authorities for disaster risk reduction measures. Development of an effective landslide early
warning system (LEWS) is an important risk reduction approach by which the authorities and public
in general can be presaged about future landslide events. The Indian Himalayas are among the
most landslide-prone areas in the world, and attempts have been made to determine the rainfall
thresholds for possible occurrence of landslides in the region. The established thresholds proved to be
effective in predicting most of the landslide events and the major drawback observed is the increased
number of false alarms. For an LEWS to be successfully operational, it is obligatory to reduce the
number of false alarms using physical monitoring. Therefore, to improve the efficiency of the LEWS
and to make the thresholds serviceable, the slopes are monitored using a sensor network. In this
study, micro-electro-mechanical systems (MEMS)-based tilt sensors and volumetric water content
sensors were used to monitor the active slopes in Chibo, in the Darjeeling Himalayas. The Internet of
Things (IoT)-based network uses wireless modules for communication between individual sensors
to the data logger and from the data logger to an internet database. The slopes are on the banks of
mountain rivulets (jhoras) known as the sinking zones of Kalimpong. The locality is highly affected
by surface displacements in the monsoon season due to incessant rains and improper drainage.
Real-time field monitoring for the study area is being conducted for the first time to evaluate the
applicability of tilt sensors in the region. The sensors are embedded within the soil to measure the
tilting angles and moisture content at shallow depths. The slopes were monitored continuously
during three monsoon seasons (2017–2019), and the data from the sensors were compared with the
field observations and rainfall data for the evaluation. The relationship between change in tilt rate,
volumetric water content, and rainfall are explored in the study, and the records prove the significance
of considering long-term rainfall conditions rather than immediate rainfall events in developing
rainfall thresholds for the region.
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1. Introduction

Landslide hazards result in fatalities in urban areas, agricultural lands, and road corridors on
slopes. In a global database of non-seismic landslides, it was inferred that 75% of the landslides that
occurred between 2004 to 2016 took place in Asia, with a major share of events in the Himalayan Arc [1].
Rainfall is the primary triggering factor, so the relationship between rainfall and landslides in the Indian
Himalayas have been explored in detail [2–8]. These thresholds can be used to determine the temporal
probability of the occurrence of landslides as a part of a landslide early warning system (LEWS). The
thresholds can be estimated using empirical methods [9–12], probabilistic methods [8,13,14], and/or
physical methods [15,16], and we can use other tools like geographic information system (GIS) [17]
and global positioning system (GPS) [18,19] and new technologies in order to make the calculation
processes automatic [20,21]. When long-term monitoring data is not available for the study area, it is
often difficult to identify the triggering rainfall corresponding to landslides [22]. A major drawback
observed in many of these methods is the high number of false alarms. The thresholds are based on the
assumption that the in-situ conditions remain unchanged with respect to time and, hence, historical
data can be used to predict future events. This does not always hold true, so LEWS should consider the
effect of real-time site conditions. When thresholds are developed on a regional scale, the effect of the
local site conditions and material heterogeneity is neglected [23]. In addition, the empirical thresholds
are statistically based and do not take the complex hydrological processes and failure mechanisms into
account when deriving the thresholds. Therefore, for accurate prediction of landslide hazards, a field
monitoring system is critical to understand the in-situ conditions. It is an extensively accepted fact
that slope failures are often preceded by cracks due to slope deformations. If the minor movements
of the slopes can be monitored effectively, this can be correlated with the potential occurrence of
displacement [23] in the locale. The authorities can make a better judgment about the warning that
should be given to the public based on real-time monitoring.

Several techniques are being used for field monitoring of unstable slopes. The most common
method is scheduled inspection at regular time intervals. Abnormal slope deformations along
transportation corridors are identified as potential gravity-induced slope failures. Rainfall-induced
landslides are much faster than those induced by gravity, and this approach is not effective in
forecasting such events. Satellite based and ground based networks like synthetic aperture radars
(SAR), light detection and ranging (LiDAR), etc. are also used to monitor the slopes in real time [24–29].
Multi-interfero-metric techniques like Permanent Scatterer Synthetic Aperture Radar Interferometry
(PSInSAR) can be used for ground displacement studies with very high accuracy [30,31]. PSInSAR
identifies radar targets with high phase stability throughout the duration of observation. The targets of
PSInSAR are point-wise objects available in urban areas. The geophysical parameters are extracted
from deterministic points. To overcome this limitation, an advanced algorithm called SqueeSAR is
now used [32]. SqueeSAR extracts the parameters from point-wise objects and distributed scatterers
and processes them jointly [32]. If better-resolution images can be obtained at a lesser expense, this
is a promising approach in predicting slope failures. In-situ ground-based observations are another
emerging method for the real-time monitoring of slopes. With the advances in wireless networks
integrated with the Internet of Things (IoT), data from anywhere can be accessed in real time using
machine to machine communication. Different types of mechanical and electrical systems are used to
predict the failure for early warning. Extensometers are used for this purpose to find out the distance
between the moving soil mass from the stable one [33]. The challenge is to have knowledge about
the part of slope that has a probability to move. Inclinometers can also be used for deep-seated
installations [34] but cannot be chosen for low-cost installation in large areas due to the expense and
expertise required for installation. Usage of several wireless sensors are reported in the literature for
monitoring landslides [35–41], and in this study, a more reliable approach is attempted by using tilt
sensors [38,42], which are found to be an economically viable solution.

The technique was first developed and tested by monitoring several real slopes in Japan [38,43].
The sensors are found to be effective in monitoring shallow landslides. Similar sensors were installed
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in China [44], and by integrating in-situ monitoring and hydro-mechanical analyses, an early warning
system was proposed to forecast landslides in the Wenchuan region. In the Indian context, using tilt
meters is a cost-effective alternative to the traditional extensometer approach. The hydrogeological
settings of the terrain are completely different from the locations in China and Japan where the sensors
have been already used. Before incorporating the sensor network as a part of a LEWS, it is crucial to
evaluate its performance, particularly for the given study area, in correlation with the field observations.
Also, the mechanism of failure in the region needs to be studied in detail to understand the failure
pattern to derive a regional specific LEWS. The study region is experiencing continuous subsidence,
and the failure occurs in a very slow rate in the uphill zone. Hence, sensitive monitoring systems are
required to find the tilt angles and predict a possible failure well before the actual occurrence. This
study aims at understanding the applicability of tilt sensors for slope monitoring in the study area,
and it is the first of its kind for Kalimpong using real-time monitoring. The use of la ow-cost sensor
network will make it possible to install more sensors for effective monitoring of slopes and can aid in
the development of the LEWS for the region. The recorded tilt angles from the sensors are compared
with the rainfall conditions and moisture content data in order to understand the relationship between
rainfall and displacements, thereby evaluating the effect of daily rainfall and antecedent rainfall on tilt
angles and volumetric moisture content.

2. Study Area

The study was conducted in a sinking zone of the Darjeeling Himalayas named Chibo. The area
is located within the Kalimpong town of West Bengal, India (Figure 1). It belongs to the Teesta basin,
which is along the western slope of Kalimpong. During the monsoon season, displacements are
observed in the region due to high precipitation and drainage density. The area is drained by several
streams and their tributaries, known as jhoras in the local dialect. These jhoras are untrained, and the
surface runoff during monsoon makes the banks highly unstable. The sub-parallel to the dendritic
drainage pattern indicates strong structural control [24]. The study area is surrounded by valleys and
dissected hills, and this part of the Himalayas involves the Fold-Thrust-Belt (FTB) and belongs to
Zone IV of India’s seismic zonation map. Geologically, Chibo consists of phyllite, schist, quartzite,
and sheared granite gneiss [5]. Most of the area is covered with thick overburden materials with
intermittent exposures of weathered rocks. The overburden materials are of varying particle sizes and
debris type. A major share of the soil includes silt, sand, and gravel. Sandy soils are found in the eastern
part of the Teesta basin [25]. With an increase in elevation, the particles change from gravels to rocks.
Rapid urbanization of the region has increased the fatalities associated with landslides. Recent land use
modifications associated with urbanization have increased geological instability, which has led to loss
of lives and assets. The complex land movements in Kalimpong includes surface erosion, subsidence,
shallow landslides, and debris flows. Unlike the previous studies using MEMS sensors [44,45], where
only shallow landslides were monitored, very slow displacements are observed in the study region
due to toe erosion and the subsequent settlement of hilly terrains.
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Figure 1. Location of the study area (a) in India, and (b) digital elevation model of Kalimpong. 

The entire region is suffering from erosion and scouring along the jhoras. The erosion downhill 
is in turn resulting in subsidence of the upper hilly portions as well. The construction activities also 
affected the drainage network, and surface runoff is allowed to enter the thick overburden debris 
from past slides. The most affected zones were selected for field monitoring using tilt sensors. The 
locations (Figure 2) were identified after field surveys conducted in 2016 [46]. Two mountain rivulets 
(OC jhora and Pyarieni jhora) were identified as critical after detailed field inspections and 
discussions with the local communities. 
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Figure 1. Location of the study area (a) in India, and (b) digital elevation model of Kalimpong.

The entire region is suffering from erosion and scouring along the jhoras. The erosion downhill
is in turn resulting in subsidence of the upper hilly portions as well. The construction activities also
affected the drainage network, and surface runoff is allowed to enter the thick overburden debris from
past slides. The most affected zones were selected for field monitoring using tilt sensors. The locations
(Figure 2) were identified after field surveys conducted in 2016 [46]. Two mountain rivulets (OC jhora
and Pyarieni jhora) were identified as critical after detailed field inspections and discussions with the
local communities.

Sensors 2020, 20, x 4 of 24 

 

 
Figure 1. Location of the study area (a) in India, and (b) digital elevation model of Kalimpong. 

The entire region is suffering from erosion and scouring along the jhoras. The erosion downhill 
is in turn resulting in subsidence of the upper hilly portions as well. The construction activities also 
affected the drainage network, and surface runoff is allowed to enter the thick overburden debris 
from past slides. The most affected zones were selected for field monitoring using tilt sensors. The 
locations (Figure 2) were identified after field surveys conducted in 2016 [46]. Two mountain rivulets 
(OC jhora and Pyarieni jhora) were identified as critical after detailed field inspections and 
discussions with the local communities. 

 
Figure 2. Location of tilt sensors installed in Chibo. Figure 2. Location of tilt sensors installed in Chibo.



Sensors 2020, 20, 2611 5 of 24

The history of erosion and displacement near the two jhoras justifies the selection of sites for
installing the sensors. The effect of rainfall and the flow of jhoras on displacement were monitored
continuously for three monsoons from 2017 to 2019. Sensors 1, 2, and 3 are located near Pyarieni jhora,
and the remaining three are near OC jhora. The location of sensors, along with the drainage and slope
map of Kalimpong, is presented in Figure 3.
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Sensor 2 is located in the right bank of Pyarieni jhora, and sensor 3 is on its left bank. Sensor 4 is
placed on the left bank of OC jhora, and sensor 5 is also located nearby at the center of the Chibo area.
The data logger is also located near sensor 6, which is placed near the OC jhora.

3. Field Monitoring

The monitoring system used in this study consists of six units. Each unit is equipped with a
micro-electro-mechanical system (MEMS) that can measure the tilt angle of the module embedded
within the soil [43]. A MEMS is a small integrated system with electrical and mechanical components.
A volumetric water content sensor is also embedded in each unit, which measures the moisture content
of the soil. The schematic arrangement of each unit and the components of the sensors are shown in
Figure 4. The tilt sensors are placed with their abscissa parallel to the slope and ordinate perpendicular
to the slope. The resolutions of sensors are mentioned in Table 1. The tilt sensor record tilting angle
with an accuracy of 0.017◦ and the precision of volumetric moisture content is ±3%. The precision of
measurement of sensors is subject to environmental conditions. The tilt sensors have a sensitivity of
4 V/g, which provides the output in digital voltage readings. Volumetric moisture content sensors
have a response time of 10 ms, and the output is obtained as voltage value, similar to the tilt sensors.
The voltage readings are then converted to tilting angles and volumetric moisture contents using
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conversion equations provided by the manufacturer. Power supply to the sensors is provided by
four alkaline batteries of C size, which work in the field for more than a year. The low-cost sensor
unit is easier to install and use than conventional extensometers, inclinometers, etc. The low cost is
achieved using micro-electromechanical systems with integrated circuits, which are much smaller in
dimension than conventional field monitoring techniques. It also uses dry cells, which are cheaper
than the solar batteries. Energy consumption is reduced by letting the sensor sleep for a duration of
10 min after sending a signal wirelessly to the data logger. This will considerably increase the life
of batteries in field [42] and thereby reduce the cost. The battery voltage is also transmitted in real
time, allowing replacement before it is drained out. It can be installed at shallow depths, unlike the
inclinometers, which requires deep boreholes for installation. In the case of extensometers, expertise is
required to identify the location of installation, and it is often difficult for common people to identify
the same without the support of an expert. In case of slope monitoring, where point data is received
and many sensors are required to cover a region, cost-effective methods can only be used to foresee
the failure part effectively. Apart from the advantages of being lightweight and easy to install, while
comparing the performance of tiltmeters and extensometers, it was found that tiltmeters respond to
the soil mass movements more quickly and hence can be used as a more reliable tool for early warning
facilitation [42].

Table 1. Specifications of tilt sensor and volumetric moisture content sensor.

Sensor Resolution

Tilt sensor 0.003◦

Volumetric moisture content sensor 0.002 m3/m3

The volumetric water content sensors were placed at a depth of 30 cm in the slope. The moisture
content is calculated indirectly by measuring the dielectric constant of the soil. The moisture content is
measured at the point of contact of the sensor only whereas the tilt sensor measures the behavior of the
soil around it.

A steel rod is placed with its bottom at 1 m below the surface. A wireless transmission kit is
attached to the rod at its top, and the sensor is kept within a box embedded in soil. The bottom end is
stable, and the top can undergo relative motion. For thin unstable layers, the depth of failing mass will
be shorter. The average shear deformation of the surface layer is measured by the sensor as tilt angles.
From the onset, the amount of displacement can be calculated, and the rate at which warnings are to
be issued can be calculated from the observations.

The communication between the sensors and the web browser is enabled by machine to machine
connection using IoT. The data collected from six different sensors can be used to provide landslide
early warning. Radio communication is used to transfer the data from sensors wirelessly to a data
logger. A wireless communication module is installed in each sensor unit for this purpose (Figure 4b).
The communication range of each wireless communication module is 600 m, so the data logger is
placed within this distance from each sensor. The data from all six sensors are gathered by the data
logger, which is then transmitted to a data server via the internet. The data logger is a receiver that
collects, saves, and transmits the data via the internet. It can receive data from 10 sensor units, and
in this study, six sensor units are used. The system can be configured by specifying an offset time to
avoid interferences due to multiple sensors. Each sensor is identified using a unique ID, and when the
distance between data logger and sensor is more than 600 m, relays can be used in between. In such a
case, separate IDs are used for relays as well. In this study, all sensors are located within 600 m from
the data logger, so no relays are used. The IoT system connects the sensor units to the data logger and
the internet database, enabling real-time monitoring of field data. This data can be used as an integral
part of the LEWS along with the rainfall thresholds.
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Tilting Rate and Slope Failure

Xie et al. (2019) [23] conducted laboratory and field-scale experiments to predict possible slope
failures by analyzing the tilting behavior of MEMS sensors. Artificial rainfall was used to trigger slope
failure along a slip surface, which was pre-defined. An equation was proposed by the study in the
form of Equation (1).

dt
|dθ|

=
−t
B

+
t f

B
(1)
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which can also be expressed as

loglog
(
t f − t

)
= −log

(
|dθ|
dt

)
+ B (2)

where, dt
|dθ| is the inverse of tilting rates expressed in min/◦ and t is the time. B is the coefficient derived

from the linear relationship between time and reciprocal tilting rate. At time tf, which is the time of
slope failure, the reciprocal of tilting rate is assumed to be 0 min/◦.

This equation will be used to evaluate the time duration within a span at a specific tilting rate
before the failure. The graphical representation of the relationship between tilting rate and time
duration is shown in Figure 5.
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Hence, tilting rates can be considered an effective tool to predict the possible failure time.
The direction of the tilt angles can also predict the possible failure plane, as the sensors placed above
the failure plane tilts backward with the sliding slope, while the sensors reaching the slip surface are
expected to tilt forward in the failure process. Tilt sensors placed at the lower part of the sliding masses
can be used to detect the initiation of slope failure [23]. MEMS sensors are conventionally used to
foresee the rapid shallow failures using this concept, but in this study, the displacements are found to
be slow movements.

4. Data Used

The slopes were monitored during three monsoons (1 July 2017 to 30 September 2019). This is
beneficial in analyzing the effect of rainfall variation on the stability of slopes. The tilting angles of the
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sensors were found to vary during the monsoon seasons. It was observed that the rates are in good
agreement with the precipitation measured in the study area. The rainfall data used for the analysis
was collected from the rain gauge maintained by Save The Hills at Tirpai, Kalimpong [47]. A total of
5338.2 mm rainfall was observed in the region during the study period. The time history of daily and
cumulative rainfall during study period is depicted in Figure 6. The monsoon season (June–September)
contributed 90.78% of the total rainfall.
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From Figure 6, it can be inferred that the 2019 monsoon contributed the highest amount of rainfall,
and according to India Meteorological Department (IMD), the amount of rainfall was 110% of the
Long Period Average (LPA) rainfall [48] received in the country. The data from the tilt sensors (tilting
angles in parallel and perpendicular directions) and the volumetric water content sensors are plotted
in Figure 7a–c.
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(a) tilting angle in the direction parallel to the slope, (b) tilting angle in the direction perpendicular to
the slope, and (c) volumetric moisture content.
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5. Results and Discussion

The detailed analysis of the data shows that sensor 2 showed the maximum variation in the 2017
and 2018 monsoons. In 2017, both sensor 3 and sensor 2 showed variations in tilting angle. These
sensors are placed nearby, at the right and left of Pyarieni jhora, respectively. Sensor 4 and sensor
6 did not show any variations in tilting angles and are located at relatively stable areas. The field
observations after each monsoon are also in accordance with the observed tilt angles. It can also be
inferred that the tilting angle and observed displacements are in accordance with the rainfall received
in the region. Rainfall induced scouring and erosion in the jhoras results in the slow subsidence of
the upper hilly areas as well. Some sudden variations were observed in the tilting angles on days
without rainfall and such readings are noted in sensor 1 during the 2017 monsoon and twice in sensor
4 during the 2019 monsoon, both in parallel and perpendicular directions. This can be attributed to
possible external factors like human or animal interventions. The volumetric water content is the
maximum near sensor 5. Another interesting observation is the fluctuating tilting angle of sensor
5 observed in 2018 and 2019. The higher concentration of moisture content results in unstable soil,
which in turn leads to the oscillating behavior of tilting angle in a perpendicular direction. No such
major displacements are observed near the sensor, and due to this, the observations from sensor 5 are
discarded from the analysis. The detailed discussion regarding the variations of tilting angle for each
monsoon season is as follows.

5.1. Monsoon 2017

During the 2017 monsoon, the tilting angles of sensors 3 and 2 showed a notable increase in the
tilt angles. On 28 and 29 July 2017, a major shift was observed in tilt angle from −0.477◦ to 0.006◦.
The initial tilting rate was 0.0117◦/h which later reduced to 0.005◦/h in the direction parallel to slope.
The tilt angle of sensor 3 was found to be increasing at a very slow rate. The rainfalls on the days of
displacement were found to be less, with no rain on 28 July 2017 and 11 mm rainfall on 29 July 2017.
On the preceding days, starting from 17 July 2017, 336 mm rainfall was recorded until 27 July 2017.
The maximum daily intensity of rainfall observed during the event was 77.4 mm. The antecedent
rainfall increased the moisture content, as observed in Figure 8c. A second displacement period was
noted from 13–17 August 2017. During this period, the tilt angle of the sensor increased from 1.126◦

to 1.714◦. The average tilting rate was 0.007◦/h on the first three days and 0.001◦/h on the last two
days. The maximum tilting rates during the initial period of displacement were 0.018◦/h and 0.017◦/h
in the parallel and perpendicular directions, respectively. No sudden slope failures occurred during
either of the displacement periods. The effect was observed as sinking of roads near the location
of the sensor. The cumulative rainfall observed during the sinking period was only 23.6 mm while
the antecedent rainfall for three days, five days, and 10 days prior to displacement were 180.6 mm,
211.4 mm, and 264.5 mm, respectively. Maximum water content was observed near sensor 3 during
the second displacement period as 44%. The moisture content near sensor 2 remained less than that
near sensor 3 during the whole monsoon period, but the variations in moisture content near sensor
two was higher than those near sensor 3.
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For the first displacement period (3–8 August 2018), the total rainfall was 195.8 mm, with a
maximum recorded precipitation of 105 mm on 11 August. The antecedent rainfall 3, 5, and 10 days
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prior to displacement were 124 mm, 141.4 mm, and 215.4 mm, respectively. The maximum tilting
rate observed was 0.014◦/h on 3 August 2018 in both parallel and perpendicular directions. The
maximum moisture content was also recorded on 3 August as 39.97%. It can be inferred that the effect
of continuous infiltration prior to the displacement period has more effect on the tilting rate as the
maximum tilting was observed on a day with a mere 2.6 mm rainfall.

For the latter period (25 August 2019–15 September 2019), tilting was observed continuously
for a period of 22 days at a slow rate. The maximum rate of tilting observed was 0.018◦/h on
7 September 2018, followed by 0.0137◦/h on 2 September 2018 and 0.01◦/h on 15 September 2018.
Similar to the displacements in the 2017 monsoon, the daily rainfall on 2, 7, and 15 September 2018
were 7.4 mm, 1.8 mm and 0 mm, respectively. The antecedent rainfall has resulted in higher water
content on these three days as 40.89% on 2 September 2019, 43.16% on 7 September 2018, and 43.3% on
15 September 2018. This increase in water content has effectively reduced the strength and resulted in
higher tilting rates.

As shown in Figure 11, the roads near sensor 2 underwent substantial subsidence after the 2018
monsoon season. The other sensor locations remained relatively unaffected. The maximum tilting rate
observed after two monsoons is 0.018◦/h.
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5.3. Monsoon 2019

Similar to the 2017 and 2018 monsoons, maximum tilting was observed in sensor 2 during the
2019 monsoon. Sensor 1 also recorded a minor increase in the tilting angle in the parallel direction to
the slope. The detailed time history of tilting angles and moisture content are shown in Figure 12.
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volumetric moisture content.

During the initial displacement period (12 July 2019–20 July2019), both sensors 1 and 2 tilt angles
in a parallel direction increased at a very negligible rate. The maximum rate observed was 0.003◦/h on
20 July 2019 in sensor 2. In sensor 1, a sudden shift in tilt angles was observed in 10 min from 4.362◦ to
4.502◦ on 17 August 2019 23:50. p.m., i.e., a tilting rate of 0.01395◦/min, which is exceptionally high.
The rate increased very slowly from 0.005◦/h on 12 August 2019, and hence it was possible to monitor
the sudden shift. Second displacement period was from 9–18 August 2019. A notable change in tilting
angle was observed on 9 and 10 August 2019. In the parallel direction, a 0.0237◦/h tilting rate was
recorded on 9 August 2019, which reduced to 0.0096◦/h on 10 August 2019. The tilting progressed
at a minor rate until 20 August 2019. In the perpendicular direction, a sudden shift in tilt angle was
observed on 9 August 2019 at a rate of 0.013◦/h. No rainfall was recorded on 9 August 2019 in the
study area and the antecedent rainfall on three days, five days, and 10 days before the peak tilting rate
were 177.5 mm, 182.5 mm, and 209.5 mm, respectively. Figure 13 shows the displacements observed
after monsoon 2019 near sensor 1 and sensor 2.
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Figure 13. Displacements observed after the 2019 monsoon: (a) crack on floor near sensor 1, (b) crack
on floor near sensor 1, (c) subsidence near sensor 2.

The displacement near sensor 2 was similar to those observed in 2017 and 2018, as subsidence in
roads. In case of sensor 1, the observations are in accordance with the sudden shift observed in the tilt
angle reading, i.e., cracks are observed on the floors of two houses nearby.
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From Table 2, the variations in tilting rates with a daily rainfall, antecedent rainfall, and moisture
content can be evaluated. The same has been plotted in Figure 14. From the summary, it is clear that
antecedent rainfall plays a major role in ground displacement rather than daily rainfall values. Hence,
the study points out the significance of using a statistical threshold that considers the effect of both
short-term and long-term rainfall as the first line of early warning [49]. Such thresholds can also be
conceptually modified by incorporating moisture content [8,14,50] and tilt angle values. The total
rainfall received in the study area during the 2018 monsoon period was the least when compared to
the other two monsoons. This is evident from the lesser value of antecedent rainfall observed in two
displacement periods of 2018. However, continuous precipitation has created the same effect and
has increased the tilting rates. All displacements have happened at tilting rates greater than 0.01◦/h.
The displacements observed were not rapid in nature, except the cracks observed near sensor 1 on
17 August 2019. Hence, the sensors prove effective in detecting very slow ground movements and can
be used by the officials to be alert regarding the increasing tilting rates.

Table 2. Comparison of tilting rates with rainfall conditions at sensor 2.

Season
Daily

Rainfall
(mm)

3-Day
Antecedent

(mm)

5-Day
Antecedent

(mm)

10-Day
Antecedent

(mm)

Maximum
Moisture

Content (%)

X Tilting
Rate (◦/h)

Y Tilting
Rate (◦/h)

2017-1 0 57.6 213 335.8 25.25 0.012 0.012
2017-2 6 180.6 211.4 264.5 37.85 0.018 0.017
2018-1 2.6 124 141.4 215.4 39.97 0.014 0.014
2018-2 1.8 109.2 118.6 162.3 43.16 0.018 0.018
2019-1 0 12.8 12.8 111.6 34.63 0.003 0.005
2019-2 0 177.5 182.5 209.5 38.56 0.024 0.014
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From Figure 14, it can be inferred that tilting rates in the X direction (parallel to slope) are higher
than those in the Y direction (perpendicular to slope). The tilting rate is found to increase with the
increase in volumetric moisture content as well. In all cases, the daily rainfall is clearly much less
than the antecedent rainfall. The improper drainage system and water logging leads to an increase
in moisture content, which increases the erosion rate. The erosion starts at the downhill area (near
sensor 3) and is reflected as subsidence in the upper hilly areas (near sensor 2). The location near
sensor 2 (Pyarieni jhora) is identified as the most critical area as it showed displacements in all three
monsoon seasons.

6. Conclusions

The havoc associated with rainfall-induced landslides has severely disrupted the lives of the
people in the Kalimpong area. Chibo is among the most affected areas within the town. The unstable
slopes in this region were monitored regularly using six MEMS sensors for three monsoon seasons
(2017–2019). The work is the first of its kind for the Darjeeling Himalayas, which are highly susceptible
to landslides. It is necessary to evaluate the performance of this relatively new approach for the study
area, as the first step of establishing an LEWS. The study presents the real-time monitoring data for
three monsoon seasons in the Chibo area and explores the relationship between tilt rate and antecedent
rainfall conditions. The monitoring data was compared with the field observations to evaluate the
reliability of the approach.

Six tilt sensors and volumetric moisture content sensors were used to monitor the slopes near
two mountain rivulets (jhoras) in Chibo. The data from the sensors are transferred in real time using
wireless communications using IoT. The ground displacements observed after the monsoon season are
in accordance with the tilt meter readings. The tilt sensors are found to be effective in monitoring very
slow movements, and hence, it is possible to predict the failure time well in advance using real-time
monitoring. It is also observed that variations in tilting are not always associated with peak rainfall
intensities. Continuous precipitation and infiltration increase pore pressures and reduce the strength
of the soil. Also, due to improper drainage, water channels are formed, which increases the erosion
rate. The tilting rate is therefore associated with antecedent rainfall rather than the rainfall on the
day of the maximum tilting rate. The study clearly points out to the significance of considering both
long-term and short-term rainfall for developing rainfall thresholds for the region. This accounts for
the higher number of false alarms reported for the conventional empirical thresholds defined for the
study area [8,49]. In 2018, the rainfall received was the lowest when compared to the 2017 and 2019
monsoons. Still, the tilting rates remained comparable in all the three monsoons, and it can be inferred
that, apart from rainfall conditions, local site conditions should also be considered when developing
an effective early warning system. Some abrupt changes are observed in the tilt sensors when there is
neither rainfall nor ground movements. Such changes can be due to animal/human interference. From
an operational point of view, such sensors should therefore be monitored in real time by authorities to
avoid false alarms.
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