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Abstract 

Background: The novel human coronavirus disease 2019 (COVID-19) pandemic has claimed more than 

240,000 lives worldwide, causing tremendous public health, social, and economic damages. While the 

risk factors of COVID-19 are still under investigation, environmental factors, such as urban air pollution, 

may play an important role in increasing population susceptibility to COVID-19 pathogenesis. 

Methods: We conducted a cross-sectional nationwide study using zero-inflated negative binomial models 

to estimate the association between long-term (2010-2016) county-level exposures to NO2, PM2.5 and O3 

and county-level COVID-19 case-fatality and mortality rates in the US. We used both single and 

multipollutant models and controlled for spatial trends and a comprehensive set of potential confounders, 

including state-level test positive rate, county-level healthcare capacity, phase-of-epidemic, population 

mobility, sociodemographic, socioeconomic status, behavior risk factors, and meteorological factors.  

Results: 1,027,799 COVID-19 cases and 58,489 deaths were reported in 3,122 US counties from January 

22, 2020 to April 29, 2020, with an overall observed case-fatality rate of 5.8%. Spatial variations were 

observed for both COVID-19 death outcomes and long-term ambient air pollutant levels. County-level 

average NO2 concentrations were positively associated with both COVID-19 case-fatality rate and 

mortality rate in single-, bi-, and tri-pollutant models (p-values<0.05). Per inter-quartile range (IQR) 

increase in NO2 (4.6 ppb), COVID-19 case-fatality rate and mortality rate were associated with an 

increase of 7.1% (95% CI 1.2% to 13.4%) and 11.2% (95% CI 3.4% to 19.5%), respectively. We did not 

observe significant associations between long-term exposures to PM2.5 or O3 and COVID-19 death 

outcomes (p-values>0.05), although per IQR increase in PM2.5 (3.4 ug/m3) was marginally associated 

with 10.8% (95% CI: -1.1% to 24.1%) increase in COVID-19 mortality rate. 

Discussions and Conclusions: Long-term exposure to NO2, which largely arises from urban combustion 

sources such as traffic, may enhance susceptibility to severe COVID-19 outcomes, independent of long-

term PM2.5 and O3 exposure. The results support targeted public health actions to protect residents from 

COVID-19 in heavily polluted regions with historically high NO2 levels. Moreover, continuation of 

current efforts to lower traffic emissions and ambient air pollution levels may be an important component 

of reducing population-level risk of COVID-19 deaths. 
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Introduction 
 

The novel human coronavirus disease 2019 (COVID-19) is an emerging infectious disease caused by 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)1. First identified in 2019 in Wuhan, the 

capital of Hubei Province, China, the COVID-19 pandemic has since rapidly spread globally. As of April 

29, 2020, there have been 1,027,799 cases and 58,489 deaths confirmed in the United States2. Despite 

substantial public health efforts, the observed COVID-19 case-fatality rate (i.e. the ratio of the number of 

COVID-19 deaths over the number of cases) in the US is estimated to be 5.8%3. Although knowledge 

concerning the etiology of COVID-19-related disease has grown since the outbreak was first identified, 

there is still considerable uncertainty concerning its pathogenesis, as well as factors contributing to 

heterogeneity in disease severity around the globe. Environmental factors, such as urban air pollution, 

may play an important role in increasing susceptibility to severe outcomes of COVID-19. The impact of 

ambient air pollution on excess morbidity and mortality has been well-established over several decades4-8. 

In particular, major ubiquitous ambient air pollutants, including fine particulate matter (PM2.5), nitrogen 

dioxide (NO2), and ozone (O3), may have both direct and indirect systemic impact on the human body by 

enhancing oxidative stress and inflammation, eventually leading to respiratory, cardiovascular, and 

immune system dysfunction and deterioration9-13.  

While the epidemiologic evidence is limited, previous findings on the outbreak of severe acute 

respiratory syndrome (SARS), the most closely related human coronavirus disease to COVID-19, 

revealed positive associations between air pollution and SARS case-fatality rate in the Chinese 

population14. An analysis of 213 cities in China recently demonstrated that temporal increases in COVID-

19 cases was associated with short-term variations in ambient air pollution15. Hence, it is plausible that 

prolonged exposure to air pollution may have a detrimental effect on the prognosis of patients affected by 

COVID-1916. As is usual in the early literature on emerging hazards, questions remain concerning the 

generalizability and reproducibility of these finding, due to the lack of control for the epidemic stage-of-

disease, population mobility, residual spatial correlation, and potential confounding by co-pollutants. 
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To address these analytical gaps and contribute towards a more complete understanding of the 

impact of long-term exposures to ambient air pollution on COVID-19-related health consequences, we 

conducted a nationwide study in the USA (3,122 counties) examining associations between multiple key 

ambient air pollutants, NO2, PM2.5, and O3, and COVID-19 case-fatality and mortality rates in both single 

and multi-pollutant models, with comprehensive covariate adjustment. We hypothesized that residents 

living in areas with higher long-term ambient air pollution levels may be more susceptible to COVID-19 

severe outcomes, thus resulting in higher COVID-19 case-fatality rates and mortality rates among more 

heavily polluted counties.  

 
Methods 
 

We obtained the number of daily county-level COVID-19 confirmed cases and deaths that occurred from 

January 22, 2020, the day of first confirmed case in the US, through April 29, 2020 in the US from three 

databases: the New York Times17, USAFACTS18, and 1Point3Acres.com19. In this analysis, the main 

COVID-19 death outcomes included two measures, the county-level COVID-19 case-fatality rate and 

mortality rate. The COVID-19 case-fatality rate was calculated by dividing the number of deaths over the 

number of people diagnosed for each US county with at least 1 or more confirmed case, which can imply 

the biological susceptibility towards server COVID-19 outcomes (i.e. death). The COVID-19 mortality 

rate was the number of COVID-19 deaths per million population, and it can reflect the severity of the 

COVID-19 deaths in the general population.  

Three major criteria ambient air pollutants were included in the analysis, including NO2, a traffic-

related air pollutant and a major component of urban smog, PM2.5, a heterogeneous mixture of fine 

particles in the air, and O3, a common secondary air pollutant20. We recently estimated daily ambient NO2, 

PM2.5, and O3 levels at 1 km2 spatial resolution across the Contiguous US using an ensemble machine 

learning model21,22. We calculated the daily average for each county based on all covered 1 km2 grid cells, 

and then further calculated the annual mean (2010-2016) for NO2 and PM2.5, and the warm-season mean 
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(2010-2016) for O3, defined as May 1 to October 31. Although more recent exposure data were not 

available, county-specific mean concentrations of air pollutants across years are highly correlated23.  

We compiled county-level information for several covariates that may also contribute to 

heterogeneity in the observed COVID-19 rates and thus may confound associations with long-term air 

pollution exposure. Healthcare capacity was measured by the number of intensive care unit (ICU) beds, 

hospital beds, and active medical doctors per 1000 people24. Population travel mobility index, based on 

anonymized location data from smartphones, was used to account for changes in travel distance in 

reaction to the COVID-19 pandemic25,26. Socioeconomic status (SES) was measured by social deprivation 

index27, a commonly used measure of area-level SES, composed of income, education, employment, 

housing, household characteristics, transportation, and demographics28. Sociodemographic covariates 

included population density, percentage of elderly (age ≥ 60), and percentage of male24. We also obtained 

behavioral risk factors including population mean body mass index (BMI) and smoking rate24, and 

meteorological variables29 including air temperature and relative humidity. Additional information about 

these covariates, including data sources, are given in the Technical Appendix.  

Statistical methods 

We fit zero-inflated negative binomial mixed models (ZINB) to estimate the associations between long-

term exposure to NO2, PM2.5, and O3 and COVID-19 case-fatality rates and mortality rates. The ZINB 

model comprises a negative binomial log-linear count model and a logit model for predicting excess 

zeros30,31. The former was used to describe the associations between air pollutants and COVID-19 case-

fatality rate among counties with at least one reported COVID-19 case. The latter can account for excess 

zeros in counties that have not observed a COVID-19 death as of April 29, 2020. We fit single-pollutant, 

bi-pollutant, and tri-pollutant models, in order to estimate the effects of each pollutant without and with 

control for co-pollutants. All analyses were conducted at the county level. For the negative binomial 

count component, results are presented as percent change in case-fatality rate or mortality rate per 
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interquartile range (IQR) increase in each air pollutant concentration. IQRs were calculated based on 

mean air pollutant levels across all 3,122 counties. Similar results are presented as odds ratios for the 

excess zero component. We included a random intercept for each state because observations within the 

same state tended to be correlated, potentially due to similar COVID-19 responses, quarantine and testing 

policies, healthcare capacity, sociodemographic, and meteorological conditions.  

As different testing practices may bias outcome ascertainment, we adjusted for state-level 

COVID-19 test positive rate (i.e. a high positive rate might imply that the confirmed case numbers were 

limited by the ability of testing, thus upward-biasing the case-fatality). To model how different counties 

may be at different time points of the epidemic curve (i.e., phase-of-epidemic), we adjusted for days both 

since the first case and since the 100th case within a county through April 29. In addition, we adjusted for 

potential confounders including county-level healthcare capacity, population mobility, sociodemographic, 

SES, behavior risk factors, and meteorological factors, as described above.  

To control for potential residual spatial trends and confounding, we included spatial smoothers 

within the model using natural cubic splines with 5 degrees freedom for both county centroid latitude and 

longitude. To examine the presence of spatial autocorrelation in the residuals, we calculated Moran’s I of 

the standardized residuals of tri-pollutant main models among counties within each state. Statistical tests 

were 2-sided and statistical significance and confidence intervals were calculated with an alpha of 0.05. 

All statistical analyses were conducted used R version 3.4. 

Sensitivity analyses 

We conducted a series of sensitivity analyses to test the robustness of our results to outliers, confounding 

adjustment, and epidemic timing (Supplementary Appendix Figures S1 and S2). Given that New York 

City has far higher COVID-19 cases and deaths than any other region, we excluded all five counties 

within New York City in one sensitivity analysis. In another, we restricted the study to the most recent 4 

weeks (April 1 to April 29), when the case count and death count may be more reliable and accurate 
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compared to earlier periods. We also conducted sensitivity analysis by using air pollution data averaged 

between 2000 to 2016. To assess the importance of individual confounder covariates, we fit models by 

omitting a different set of covariates for each model iteration and compared effect estimates.  

 
Results 
 
A total of 3,122 US counties were considered in the current analysis, with confirmed cases reported in 

2,810 (90.0%) and deaths in 1,443 (46.2%). By April 29, 2020, 1,027,799 COVID-19 cases and 58,489 

deaths were reported nationwide (Table 1). Among the counties with at least one reported COVID-19 

case, the average county-level case-fatality rate was 3.7 ± 7.0% (mean ± standard deviation), and the 

average mortality rate was 69.4 ± 183.1 per 1 million people. Spatial variations were observed on 

COVID-19 case-fatality and mortality rates, where Michigan had the highest average county-level case-

fatality rate of 8.2% and New York had the largest mortality rate of 1,117.2 deaths per 1 million people. 

The lowest case-fatality rate and mortality rate were observed in Wyoming (0.7%) and North Dakota 

(11.8 deaths per million people), respectively (Figure 1). 

Long-term (2010-2016) average concentrations across the contiguous US ranged from 5.8 to 19.3 

parts per billion (ppb; 5th and 95th percentiles, respectively) NO2, 3.8 to 10.4 μg/m3 PM2.5, and 37.2 to 49.7 

ppb for warm-season average ozone concentrations, respectively (Figure 2). The highest NO2 levels were 

in New York, New Jersey, and Colorado, and the lowest in Montana, Wyoming, and South Dakota. 

California and Pennsylvania had the highest PM2.5 concentrations, and the highest O3 levels were in 

Colorado, Utah, and California.  

We observed significant positive associations between NO2 levels and both county-level COVID-

19 case-fatality rate and mortality rate (p=0.02 and p<0.001, respectively, Table S1 and Figure 3), when 

controlling for covariates. In single pollutant models, COVID-19 case-fatality and mortality rates were 

associated with increases of 7.1% (95% CI: 1.2% to 13.4%) and 11.2% (95% CI: 3.4% to 19.5%), 

respectively, per IQR (~4.6 ppb) increases in NO2. These results imply that one IQR reduction in long-
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term exposure to NO2 level would have avoided 4,181 deaths (95% CI: 718 to 7,845) among those tested 

positive for the virus and 19.9 deaths (95% CI: 6.1 to 34.8) per million people in the general population, 

as of April 29, 2020.  

Results from the zero-component model agrees with the count model where higher NO2 

concentrations were associated with a decrease in the probability of observing zero COVID-19 death 

(Appendix Table S1). The strength and magnitude of the associations between NO2 and both COVID-19 

case-fatality rate and mortality rate persisted across single, bi-, and tri-pollutant models (Figure 3).  

In contrast, PM2.5 was not associated with COVID-19 case-fatality rate (p=0.87) but was 

marginally associated with higher COVID-19 mortality rate (p=0.08), where one IQR (3.4 ug/m3) 

increase in PM2.5 was associated with 10.8% (95% CI: -1.1% to 24.1%) increase in COVID-19 mortality 

rate. Null associations were found between long-term exposure to O3 and both COVID-19 case-fatality 

and mortality rates (p=0.42 and p=0.22, respectively). The Moran’s I and p-values (Appendix Table S2) 

from these models suggested that most spatial correlation in the data has been accounted for. 

Results remained robust and consistent across 30 sets of sensitivity analyses (Appendix Figures 

S1 and S2). When we restricted the analyses to data reported between April 1 to April 29, when COVID-

19 tests were more readily available, significant associations remained between NO2 and COVID-19 case-

fatality and mortality rates, and no associations were found with PM2.5 or O3. We also observed similar 

trends pointing to associations with NO2 when excluding the New York City. In addition, even though 

679 counties (22%) had missing behavioral risk data, the analysis omitting behavioral risk factors yielded 

similar results.  

 
 
Discussion 

 

In this nationwide study, we used county-level information on long-term air pollution and 

corresponding health, behavioral, and demographic data to examine associations between long-term 

exposures to key ambient air pollutants and COVID-19 death outcomes in both single and multi-pollutant 
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models. We observed significant positive associations between NO2 levels and both county-level COVID-

19 case-fatality rate and mortality rate, while null associations were found for long-term PM2.5 and O3 

exposures. These results provide additional initial support for the interpretation that long-term exposure to 

NO2, a component of urban air pollution related to traffic, may enhance susceptibility to severe COVID-

19 outcomes. These findings may help identify susceptible and high-risk populations, especially those 

living in areas with historically high NO2 pollution, including the metropolitan areas in New York, New 

Jersey, Colorado, and Michigan. Given the rapid escalation of COVID-19 spread and associated mortality 

in the US, swift and coordinated public health actions, including strengthened enforcement on social 

distancing and expanding healthcare capacity, are needed to protect these and the other vulnerable 

populations. Although average NO2 concentrations have decreased gradually over the past decades, it is 

critical to continue enforcing air pollution regulations to protect public health, given that health effects 

occur even at very low concentrations8. 

Among the sparse studies on the link between air pollution and COVID-19, our findings are 

consistent with a recent European study that reported 78% of the COVID-19 deaths across 66 

administrative regions in Italy, Spain, France and Germany, occurred in the five most polluted regions 

with the highest NO2 levels32. Another recent paper reported correlations between high levels of air 

pollution and high death rates seen in northern Italy33. However, major questions remain concerning the 

robustness and generalizability of these early findings, due to the lack of control for population mobility, 

multipollutant exposures, and most importantly, potential residual spatial autocorrelation.  

With the current analysis, we hopefully contribute to the questions involving the potential link 

between urban air pollution and COVID-19 risk in addressing these issues. We examined two major 

COVID-19 death outcomes, the county-level case-fatality rate and the mortality rate. The case-fatality 

rate can imply on the biological susceptibility towards server COVID-19 outcomes (i.e. death), while the 

mortality rate can offer information of the severity of the COVID-19 deaths in the general population. 

Looking at both case-fatality and mortality will contribute to a more comprehensive understanding on the 

impact of air pollution exposures on COVID-19 death outcomes. Our study included an assessment of 
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three major air pollutants using high spatial resolution maps, the use of recent county-level data, 

consideration for both single and multi-pollutant models, and control of county-level mobility. Given that 

the stage of the COVID-19 epidemic might depend on the size and urbanicity of the county, we included 

the time of the first and 100th case for each county in the models as covariates to minimize the possibility 

that the observed associations are confounded by epidemic timing due to unmeasured location and 

population-level characteristics. Due to the cross-sectional design, we controlled for potential spatial 

trends by including flexible spatial trends in the main analysis, and evaluated residual autocorrelation 

using Moran's I statistic. Our analyses indicated that the presence of spatial confounding was substantial, 

necessitating the use of spatial smoothing. We observed statistically significant PM2.5 and O3 associations 

with COVID-19 mortality in models without controlling for spatial smoothers (Appendix Figures S1 and 

S2). Finally, we conducted a total of 30 sets of sensitivity analyses and observed robust and consistent 

results. 

Although the various social distancing measures around the US have reduced vehicle traffic and 

urban air pollution, it is plausible that long-term exposure to urban air pollutants like NO2 may have direct 

and indirect effects within the human body, making people more biologically susceptible to severe 

COVID-19 outcomes. NO2 can be emitted directly from combustion sources or produced from the 

titration of NO with O3. NO2 and nitric oxide (NO) have relatively short atmospheric lifetime, thus having 

larger spatial heterogeneity compared to more regionally distributed pollutants such as PM2.5 and O3. As a 

result, the spatial distribution of NO2 represents the intensity of anthropogenic activity, especially 

emissions from traffic and power plants. As a reactive free radical, NO2 plays a key role in photochemical 

reactions that produce other secondary pollutants, including ozone and secondary particulate matter. In 

our analysis of three major air pollutants, however, NO2 showed strong and independent effects with 

COVID-19 case-fatality rate and mortality, meaning that the effects of NO2 may not be mediated by PM2.5 

and O3. Even so, we cannot rule out the possibility that NO2 is serving as a proxy for other traffic-related 

air pollutants, such as soot, trace metals, or ultrafine particles. Long-term exposures to NO2 have been 

associated with acute and chronic respiratory diseases, including increased bronchial hyperresponsiveness, 
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decreased lung function, and increased risk of respiratory infection and mortality34-36. In addition, as a 

highly reactive exogeneous oxidant, NO2 can induce inflammation and enhance oxidative stress, 

generating reactive oxygen and nitrogen species, which may eventually deteriorate the cardiovascular and 

immune systems37,38. The impact of long-term exposure to PM2.5 on excess morbidity and mortality has 

also been well-established4-5,8. An early unpublished report that explored the impacts of air pollution on 

mortality found that 1 μg/m3 PM2.5 was associated with 8% increase in COVID-19 mortality rates in the 

USA39. The study was conducted in a single pollutant model and did not investigate on COVID-19 case-

fatality rates. In contrast, we found only marginally significant associations between COVID-19 mortality 

rates and PM2.5. Specifically, the magnitude and strength of this association observed in the current 

analysis were weaker, mainly due to our control of the spatial trends and residual autocorrelation, which 

may have confounded the previous study findings34. In addition, PM2.5 was not associated with COVID-

19 case-fatality rate across all single and multipollutant models, indicating that it may have less impact on 

biological susceptibility to severe COVID-19 outcomes compared to NO2. 

We acknowledge that our study is limited in several key areas. First, the cross-sectional study 

design reduced our ability to exploit temporal variation and trends in COVID-19 deaths, an important 

determinant in establishing causal inference. Towards this end, time-series analyses of air pollution and 

COVID-19 case-fatality rates and corresponding mortality rates will be important; these data will only be 

available in the future. Second, actual death counts are likely underestimated, particularly during the early 

stages of the outbreak, with highly dynamic reported fatality rates, increasing from 1.8% to 5.8% in the 

past two months. However, results using data from only the most recent four weeks were largely 

unchanged, suggesting that differential errors in reporting or testing for COVID-19 may not have exerted 

much influence on these findings. Third, although we controlled for many potential confounders such as 

population density, we cannot rule out the possibility that NO2 might be a proxy of urbanicity. The 

exclusion of climate meteorological variables and SES – two factors that have received substantial 

attention regarding the outbreak – did not alter the main results. In addition, testing data only came from 
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state or federal agencies, while tests from private labs were not available. Due to the lack of county-level 

data, we could not account for the percentage of hospitalized cases or ICU use among cases or deaths, the 

number of available ventilators, and the underlying health conditions of cases likely to increase death risk 

(e.g., chronic obstructive pulmonary disease). Also, as a classic traffic related air pollutant, NO2 can 

exhibit spatial variation within a county, which may not be captured in our analysis. Identification of NO2 

pollution hotspots within a county may be warranted. 

Conclusions 

We found statistically significant, positive associations between long-term exposure to NO2 and COVID-

19 case-fatality rate and mortality rate, independent of PM2.5 and O3. Prolonged exposure to this urban 

traffic-related air pollutant may be an important risk factor of severe COVID-19 outcomes. The results 

support targeted public health actions to protect residents from COVID-19 in heavily polluted regions 

with historically high NO2 levels. Moreover, continuation of current efforts to lower traffic emissions and 

ambient air pollution levels may be an important component of reducing population-level risk of COVID-

19 deaths. 
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Table 1 Descriptive Statistics* on County-Level COVID-19 Fatality Rate* and Long-Term Air Pollution Level in 3,122 US Counties 

State 

# of 
County 

with 
Cases 

Total 
Case # 

Total 
Death # 

COVID-
19 

Fatality 
Rate (%) 

Mean 
NO2 
Level 
(ppb) 

Mean PM2.5 

Level 
(ug/m3) 

Mean 
Ozone 
Level 
(ppb) 

# of ICU 
Beds per 

1k ppl 

# of 
Hospital 
Beds per 
1k ppl 

# of Medical 
Doctors 

per 1k ppl 

Total 2,810 1,027,799  58,489 3.7 ± 7.0 11.5 ± 4.5 39.8 ± 2.6 8.1 ± 1.9 0.15 ± 0.59 2.7 ± 3.5 1.3 ± 1.7 
Alabama 67 6925 262 2.8 ± 2.8 8.8 ± 2.1 9.6 ± 0.5 41 ± 1.5 0.18 ± 0.18 2.8 ± 2.7 1 ± 1 
Alaska 12 349 8 1.2 ± 2 11.7 ± 2.2 3.7 ± 1.9 51.7 ± 2.8 0.1 ± 0.12 2.4 ± 1.9 1.8 ± 1.1 
Arizona 15 7202 302 3.2 ± 3.8 15.5 ± 5.3 4.5 ± 1.2 51.3 ± 1.7 0.14 ± 0.12 1.7 ± 0.9 1.3 ± 0.9 
Arkansas 73 3040 59 2.3 ± 5.4 9.7 ± 2.7 9.2 ± 0.7 42.3 ± 1.2 0.12 ± 0.18 2.4 ± 2.5 0.9 ± 1 
California 54 48792 1944 2.6 ± 2.7 12.9 ± 5.6 6.8 ± 2.6 46.2 ± 7 0.15 ± 0.09 2.1 ± 1.8 2.1 ± 1.3 
Colorado 56 14613 763 4.8 ± 8.2 15.2 ± 9.6 4.3 ± 1.7 50.7 ± 1.5 0.58 ± 3.69 2.5 ± 4.2 1.5 ± 1.1 
Connecticut 8 26260 2165 7.9 ± 3.5 17.2 ± 4.9 7.1 ± 0.7 42.3 ± 0.7 0.15 ± 0.06 2.3 ± 1.5 2.7 ± 1.6 
Delaware 3 4629 144 3.2 ± 0.7 15.7 ± 5.6 9 ± 0.6 45.1 ± 0.7 0.18 ± 0.03 2.3 ± 1.2 2 ± 0.9 
District of Columbia 1 4106 205 5  25.1  9.2  45.3  0.44  6.2  7.8  
Florida 67 33186 1218 3.7 ± 4 10.9 ± 2.1 7.4 ± 0.8 35.8 ± 2.5 0.17 ± 0.16 2.3 ± 2.9 1.5 ± 1.4 
Georgia 157 24127 1081 4.4 ± 4.3 10.2 ± 3.3 9.4 ± 1 41.5 ± 2.1 0.13 ± 0.22 2.7 ± 4.1 1 ± 1.1 
Hawaii 4 605 16 1.8 ± 2.2 7.9 ± 1 5.3 ± 1.4 35.7 ± 0.8 0.13 ± 0.02 2.2 ± 0.5 2.4 ± 0.8 
Idaho 33 1984 60 1.9 ± 5 11.4 ± 3.9 5.5 ± 1.3 46 ± 2.1 0.07 ± 0.11 1.7 ± 1.6 0.9 ± 0.8 
Illinois 96 50001 2215 3.1 ± 4.7 14.4 ± 4.7 9.7 ± 0.3 43.1 ± 1.3 0.12 ± 0.16 2.3 ± 2.1 1.1 ± 1.1 
Indiana 92 17391 964 5.4 ± 5.5 14.5 ± 3.8 10.3 ± 0.6 42.5 ± 1.4 0.15 ± 0.19 1.9 ± 2.2 1.1 ± 1.2 
Iowa 86 6823 148 2.5 ± 11.1 11.4 ± 2.3 8.6 ± 0.6 41 ± 0.5 0.09 ± 0.16 2.8 ± 2.4 0.9 ± 1.5 
Kansas 78 3739 128 2.3 ± 7.6 12 ± 3.2 7.6 ± 1 46 ± 1.8 0.12 ± 0.21 6.2 ± 6.8 1 ± 0.8 
Kentucky 113 4484 235 2.8 ± 5.5 10 ± 2.7 9.6 ± 0.9 43.2 ± 1.2 0.15 ± 0.25 2.3 ± 2.7 1 ± 1.1 
Louisiana 64 27599 1802 6.6 ± 4.9 11.2 ± 3.6 8.9 ± 0.6 40.8 ± 1.7 0.16 ± 0.19 3.4 ± 5.2 1.2 ± 1.5 
Maine 16 1054 52 2.9 ± 5.8 10.4 ± 2.3 5 ± 0.6 35.2 ± 2.1 0.15 ± 0.13 2.5 ± 1.5 2.1 ± 1.2 
Maryland 24 20849 911 4 ± 2.5 16.2 ± 5.1 8.8 ± 0.9 45.4 ± 0.6 0.15 ± 0.19 2.4 ± 2.2 2.5 ± 2.3 
Massachusetts 14 59808 3400 6.3 ± 3.3 16 ± 4.6 6.4 ± 0.8 40.6 ± 1.1 0.15 ± 0.14 2.5 ± 1.6 3.7 ± 3.1 
Michigan 78 39010 3631 8.2 ± 9.1 11.2 ± 4.9 7.7 ± 1.6 40.8 ± 1.3 0.16 ± 0.24 2.3 ± 2 1.3 ± 1.6 
Minnesota 79 4637 319 3 ± 7.5 11.3 ± 2.2 6.7 ± 1.1 39.1 ± 1.6 0.1 ± 0.21 3.7 ± 5 1.4 ± 2.7 
Mississippi 81 6569 250 4.2 ± 4 8.7 ± 2.2 9.4 ± 0.5 40.9 ± 1.8 0.14 ± 0.22 3.9 ± 3.3 1 ± 1.2 
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Missouri 96 7402 318 2.5 ± 5.4 10.3 ± 3.9 8.7 ± 0.6 43.3 ± 1 0.12 ± 0.19 2.2 ± 2.5 0.9 ± 1.5 
Montana 30 454 16 2.4 ± 5.4 6.7 ± 1.7 4.9 ± 0.9 43.5 ± 2.2 0.07 ± 0.12 5.7 ± 6.9 1.4 ± 1 
Nebraska 60 3759 72 2.9 ± 13.2 10.8 ± 2.6 7.5 ± 1.3 43.4 ± 2.5 0.08 ± 0.18 4 ± 3.8 0.9 ± 0.8 
Nevada 12 4933 231 4.7 ± 9.4 14.1 ± 6 4.2 ± 1.2 50.3 ± 1.7 0.14 ± 0.22 2.5 ± 2.1 1.1 ± 0.9 
New Hampshire 10 2050 66 1.9 ± 2.3 11.9 ± 0.8 5.4 ± 0.6 38.6 ± 1.1 0.19 ± 0.17 2.2 ± 1.4 3.2 ± 3.8 
New Jersey 21 115647 6770 5.7 ± 2.2 22.9 ± 6.2 8.7 ± 0.7 43.2 ± 1.1 0.19 ± 0.09 2.7 ± 1.1 2.6 ± 1.4 
New Mexico 30 3213 112 5.5 ± 18.5 11.4 ± 3.7 4.3 ± 1.1 50 ± 1.2 0.13 ± 0.12 2 ± 2.1 1.2 ± 1 
New York 62 299691 21732 4.9 ± 5.8 15.1 ± 7.8 7.1 ± 1 41.2 ± 1.3 0.15 ± 0.11 3.2 ± 2.1 2.1 ± 2 
North Carolina 98 9516 354 3.7 ± 6.1 10.6 ± 2.7 8.3 ± 1 42.2 ± 1.2 0.15 ± 0.17 1.8 ± 1.6 1.5 ± 1.9 
North Dakota 35 1033 9 6.2 ± 23.5 7.1 ± 1.9 5.6 ± 0.5 40.3 ± 0.9 0.07 ± 0.18 6.5 ± 8.3 0.9 ± 1.1 
Ohio 88 17303 937 5.6 ± 6.4 15.4 ± 3.7 10.2 ± 0.6 43.3 ± 1.1 0.17 ± 0.15 2.1 ± 1.7 1.2 ± 1.2 
Oklahoma 70 3473 214 5.6 ± 8.7 10.5 ± 2.3 8.3 ± 0.9 46 ± 1.9 0.1 ± 0.16 2.8 ± 2.8 0.6 ± 0.6 
Oregon 32 2446 101 2.4 ± 4.7 9.8 ± 2.6 4.8 ± 1.1 39.5 ± 3.8 0.12 ± 0.13 1.7 ± 1.5 1.7 ± 1.3 
Pennsylvania 67 44366 2195 3.4 ± 3.4 13.9 ± 4.4 9.2 ± 1.2 43 ± 0.9 0.21 ± 0.29 3.3 ± 5.1 2.2 ± 4.6 
Rhode Island 5 7182 146 1.2 ± 1.4 15.5 ± 3.5 6.3 ± 0.8 42.2 ± 0.2 0.14 ± 0.14 1.6 ± 1.2 3.7 ± 1.8 
South Carolina 46 5881 232 4.1 ± 4.4 10.1 ± 2.2 8.7 ± 0.5 39.7 ± 2 0.17 ± 0.15 2.1 ± 2 1.3 ± 1.3 
South Dakota 45 2372 13 1.3 ± 4.7 8.2 ± 2.2 6.3 ± 1.4 42.7 ± 1.2 0.08 ± 0.17 4.2 ± 4.8 1.1 ± 1.3 
Tennessee 93 10090 191 1.9 ± 3.1 8.8 ± 3 9.1 ± 0.6 43 ± 1.1 0.13 ± 0.19 2.3 ± 2.5 1 ± 1.3 
Texas 207 27054 732 2.9 ± 6 10.2 ± 3 8.5 ± 1.3 43.3 ± 4.7 0.1 ± 0.17 2.2 ± 4.1 0.9 ± 0.9 
Utah 24 4500 45 0.9 ± 1.7 13.2 ± 6.7 4.6 ± 1.9 50.3 ± 1.1 0.08 ± 0.1 1.9 ± 1.4 1.2 ± 1.1 
Vermont 14 859 47 2.8 ± 2.7 11.1 ± 1 5.3 ± 0.5 38.8 ± 0.8 0.1 ± 0.12 1.8 ± 1.5 2.6 ± 1.8 
Virginia 119 14766 518 3.1 ± 4.6 12.2 ± 4 8.3 ± 0.6 42.9 ± 1.1 0.16 ± 0.29 2.9 ± 5.8 1.9 ± 3 
Washington 38 13994 801 3.5 ± 4.4 10.6 ± 2.9 4.9 ± 1.2 38.5 ± 4.2 0.1 ± 0.11 2 ± 2.1 1.4 ± 1 
West Virginia 50 1109 40 2.8 ± 8.1 9.4 ± 1.7 8 ± 1.3 42.5 ± 1.4 0.19 ± 0.28 3.4 ± 3.5 1.3 ± 1.8 
Wisconsin 66 6520 308 5.8 ± 9.7 11.4 ± 3.9 7.6 ± 1.2 39.7 ± 1.6 0.13 ± 0.15 1.8 ± 1.2 1.5 ± 1.4 
Wyoming 21 404 7 0.7 ± 2.1 6.8 ± 2.9 3.7 ± 0.7 46.4 ± 2.3 0.13 ± 0.14 4.5 ± 3.2 1.4 ± 0.9 

* Descriptive statistics was conducted on 3,122 US counties using data reported as of April 29, 2020 
**COVID-19 case fatality rate was calculated by the number of deaths divided by the number of cases, reported as of April 29, 2020 
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Figure 1 County-level COVID-19 Case-fatality Rate (A) and Mortality Rate per 1 Million people (B) as of April 29, 2020.
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Figure 2 County-level Annual Average Concentrations of Nitrogen Dioxide (NO2, A), Fine 
Particulate Matter (PM2.5, B), and Ozone (C) for the period 2010-2016.  
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Figure 3 Percent Change in County-level COVID-19 Case-fatality Rate (A) and Mortality Rate (B) 
Per Inter Quartile Range (IQR) increase in Long-Term Air Pollutant Concentrations. Effect 
estimates and 95% confidence interval were calculated using county-level concentrations of nitrogen 
dioxide (NO2, red), ozone (green), and fine particulate matter (PM2.5, blue) averaged between 2010-2016, 
controlling for covariates including county-level number of case per 1000 people, social deprivation index, 
population density, percent of residents over 60 years old, percent of male, body mass index, smoking rate, 
number of regular hospital beds per 1000 people, number of intensive units beds per 1000 people, number 
of medical doctors per 1000 people, average mobility index assessed in March and April 2020, average 
temperature and humidity between January 22 to April 29, 2020, state-level COVID-19 test positive rate 
as of April 29, 2020, and spatial smoother with a degree freedom of 5 for both latitude and longitude. 
IQRs of NO2, PM2.5, and O3 averaged between 2010-2016 were 4.6 parts per billion (ppb), 3.4 ug/m3, and 
2.8 ppb, respectively.
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Supplementary Tables and Figures 
 
Table S1 Model Effect Estimates on Zero-inflated Negative Binomial Mixed Models to Examine the 
Associations between Long-term Exposure to Air Pollution and COVID-19 case-fatality rate or 
mortality 

 COVID-19 Case-Fatality COVID-19 Mortality 

Pollutant 
Main Effect 
Estimate* 

95% 
Confidence 
Interval 

p-values 
Main Effect 
Estimate 

95% 
Confidence 
Interval 

p-values 

Single Pollutant Model—Non-zero Components 
NO2 1.015 1.003 to 1.028 0.02 1.023 1.007 to 1.039 <0.001 
PM2.5 0.996 0.953 to 1.041 0.87 1.049 0.995 to 1.107 0.08 
O3 0.993 0.975 to 1.010 0.42 0.986 0.964 to 1.008 0.22 

3- Pollutant Model—Non-zero Components 
NO2 1.016 1.003 to 1.029 0.02 1.022 1.005 to 1.038 <0.001 
PM2.5 0.991 0.947 to 1.037 0.70 1.054 0.996 to 1.115 0.07 

O3 0.992 0.974 to 1.010 0.36 0.979 0.957 to 1.002 0.08 
Single Pollutant Model—Zero Components 
NO2 0.963 0.938 to 0.988 <0.001 0.943 0.917 to 0.969 <0.001 

PM2.5 0.843 0.779 to 0.912 <0.001 0.689 0.630 to 0.754 <0.001 
O3 0.860 0.828 to 0.892 <0.001 0.792 0.760 to 0.825 <0.001 
3-Pollutant Model—Zero Components 
NO2 0.969 0.945 to 0.994 0.02 0.949 0.922 to 0.978 <0.001 
PM2.5 0.902 0.831 to 0.980 0.01 0.772 0.703 to 0.848 <0.001 
O3 0.869 0.838 to 0.902 <0.001 0.804 0.772 to 0.838 <0.001 

 
*Effect estimate based on per unit increase in air pollutants 
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Table S2 Moran’s I test for spatial autocorrelation in residuals from tri-pollutant models for 
COVID-19 Case-fatality Rate and Mortality Rate for each US state 

 Case-fatality Rate Mortality Rate 

State Moran’s I p-value Moran’s I p-value 

Alabama 0.023005 0.666791 -0.016454 0.997143 
Arizona -0.069966 0.971086 0.159086 0.183565 
Arkansas -0.045066 0.776283 0.045421 0.548356 
California 0.024098 0.498309 0.058227 0.219995 
Colorado -0.019308 0.900768 -0.069735 0.60085 
Connecticut -0.249311 0.733068 -0.213497 0.835009 
Delaware -0.338612 1 NA NA 
District of 
Columbia 

NA NA NA NA 

Florida -0.033006 0.771992 -0.046262 0.617719 
Georgia 0.056318 0.172308 0.051514 0.200098 
Idaho -0.053368 0.95988 -0.003237 0.717008 
Illinois 0.056139 0.412049 0.096366 0.177248 
Indiana -0.116814 0.169918 0.172651 0.02579 
Iowa -0.054103 0.568083 -0.027161 0.8795 
Kansas 0.07953 0.061874 -0.03842 0.901546 
Kentucky -0.047995 0.623543 0.062124 0.36778 
Louisiana -0.029227 0.902967 0.035875 0.539011 
Maine -0.135679 0.44648 -0.141616 0.384822 
Maryland 0.028251 0.611963 0.236883 0.041622 
Massachusetts -0.041547 0.826158 -0.096154 0.947948 
Michigan -0.03011 0.730351 0.038998 0.252498 
Minnesota 0.019843 0.417719 -0.01777 0.986115 
Mississippi 0.096789 0.043456 0.044718 0.271883 
Missouri 0.030381 0.500362 0.073753 0.192159 
Montana 0.052994 0.060993 0.076018 0.031501 
Nebraska -0.040916 0.86608 -0.059581 0.722833 
Nevada 0.337241 0.038866 0.38327 0.035115 
New Hampshire 0.131492 0.042746 0.103783 0.081307 
New Jersey 0.175217 0.087009 0.126441 0.178484 
New Mexico -0.045416 0.979142 0.153729 0.258981 
New York 0.013377 0.579773 -0.033898 0.807794 
North Carolina -0.050907 0.34774 -0.032161 0.647075 
North Dakota 0.109892 0.49598 0.354751 0.100111 
Ohio -0.041737 0.707563 0.107715 0.139459 
Oklahoma 0.06193 0.010202 0.102011 0.000142 
Oregon 0.007053 0.350889 0.019009 0.24168 
Pennsylvania 0.108983 0.133666 0.348912 0.000011 
Rhode Island -0.256215 0.973717 -0.225587 0.897816 
South Carolina 0.062342 0.49757 0.102716 0.23941 
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South Dakota -0.034629 0.740424 -0.059895 0.913713 
Tennessee -0.007701 0.958532 0.110452 0.166716 
Texas 0.00567 0.215483 -0.00599 0.965107 
Utah 0.445684 0.000382 0.152707 0.073403 
Vermont 0.019688 0.629256 0.269936 0.117271 
Virginia 0.410102 0.000001 0.298699 0.000003 
Washington 0.005076 0.781592 0.05457 0.507951 
West Virginia 0.112795 0.000103 0.187581 0.06824 
Wisconsin -0.039313 0.67382 0.095091 0.018566 
Wyoming -0.215725 0.005326 -0.148779 0.047632 
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Figure S1 Percent Change in COVID-19 Case-fatality Rate Per Inter Quartile Range (IQR) 
increase in (A) NO2, (B) PM2.5, and (C) Ozone Concentrations in the Sensitivity Analysis. The red 
line represents the estimated effects in the main analysis. All results were derived from the tri-pollutant 
models. 
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Figure S2 Percent Change in COVID-19 Mortality Rate Per Inter Quartile Range (IQR) Increase 
in (A) NO2, (B) PM2.5, and (C) Ozone Concentrations in the Sensitivity Analysis. The red line 
represents the estimated effects in the main analysis. All results were derived from the tri-pollutant 
models.
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Appendix-Technical Appendix 

COVID-19 case-fatality rate: We obtained the number of daily county-level COVID-19 confirmed cases 

and deaths that occurred from January 22, 2020, the day of first confirmed case in the US, through April 

29, 2020 in the US from three databases: the New York Times, the USAFACTS, and 1Point3Acres.com. 

Each of these databases provide real-time data by retrieving information on official reports from state and 

local health agencies. After data acquisition from these sources, we compared the number of confirmed 

COVID-19 cases and deaths in each US county (identified by the Federal Information Processing 

Standards, FIPS code) across all databases for accuracy and consistency. In case of discrepancy, county-

level case and death number were corrected by manually checking the data reported from the 

corresponding state and local health department websites. We calculated county-level COVID-19 case-

fatality rate by dividing the number of deaths over the number of people diagnosed with COVID-19 for 

each US county with at least 1 or more confirmed case, as reported by April 29, 2020. Of all the data 

reported as of April 29, 2020, confirmed cases and deaths with unassigned counties were excluded in the 

analysis. 

Air pollution: Three major criteria ambient air pollutants were included in the analysis, including NO2, a 

traffic-related air pollutant and a major component of urban smog, PM2.5, and O3. We recently estimated 

daily ambient PM2.5, NO2, and O3 levels at 1 km2 spatial resolution across the contiguous US an ensemble 

machine learning model with ground measurements, satellite-data products, chemical transport model 

output, meteorological and land-use information as predictors22,23. We calculated the daily average for 

each county based on all covered 1 km2 grid cells, and then further calculated the annual mean (2010-

2016) for PM2.5 and NO2 and the warm-season mean (2010-2016) for O3, defined as May 1 to October 31, 

as surrogates for long-term PM2.5, NO2, and O3 exposures, respectively. More recent exposure data were 

not available at the time of this analysis. However, county-specific mean values of an air pollutant among 

different years are highly correlated.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 7, 2020. .https://doi.org/10.1101/2020.05.04.20090746doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.04.20090746
http://creativecommons.org/licenses/by-nc-nd/4.0/


Covariates: We compiled county-level information for several covariates that could also explain 

heterogeneity in the observed COVID-19 rates and may confound associations with long-term air 

pollution exposure. Healthcare capacity was measured by the number of intensive care unit (ICU) beds, 

hospital bed, and active medical doctors per 1000 people. Number of ICU beds were based on Kaiser 

Health News analysis of 2018 and 2019 hospital cost reports filed to the Centers for Medicare & 

Medicaid Services. Numbers of active medical doctors and hospital bed of 2017 were obtained 

from the Area Health Resources Files. Based on the number of COVID-19 tests performed in each 

state, we calculated a positive rate (i.e., the percentage of specimens tested that are positive for COVID-

19). Travel mobility index, based on anonymized location data from smartphones, was used to account for 

changes in travel distance in reaction to the COVID-19 pandemic. Socioeconomic status (SES) was 

measured by social deprivation index, a composite measure of area-level deprivation that takes into 

account income, education, employment, housing, household characteristics, transportation, and 

demographics. Sociodemographic covariates included population density, percentage of elderly (age ≥ 

60), and percentage of male. We also obtained behavioral risk factors including population mean BMI 

and smoking rate, and meteorological variables including air temperature and relative humidity 

(converted from specific humidity). All covariates were linked to the COVID-19 data using FIPS code 

and additional details on data source and process are given in the Supplementary Appendix. 

Statistical methods: We fit zero-inflated negative binomial mixed models (ZINB) to examine the 

associations between long-term exposure to PM2.5, NO2, and O3 and COVID-19 case-fatality rate or 

mortality. The ZINB model comprises a negative binomial log-linear count model and a logit model for 

predicting excess zeros30,31. The former was used to describe the associations between air pollutants and 

COVID-19 case-fatality rate among counties with at least one reported COVID-19 case. The latter can 

account for excess zeros in counties that have not observed a COVID-19 death as of April 29, 2020. We 

fit single-pollutant, bi-pollutant, and tri-pollutant models, with all analyses conducted at the county level. 

For the negative binomial count component, results are presented as percent change in case-fatality rate or 
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mortality rate per interquartile range (IQR) increase in each air pollutant concentration. IQR was 

calculated on national levels. Similar results are presented as odds ratio for the excess zero component. 

We included a random intercept for each state because observations within the same state tend to be 

correlated due to similar COVID-19 responses, quarantine and testing policies, healthcare capacity, 

sociodemographic, and meteorological conditions.  

As different testing practices may bias outcome ascertainment, we adjusted for state-level 

COVID-19 test positive rate (i.e. high positive rate might imply that the confirmed case numbers were 

limited by the ability of testing, and the case-fatality can be biased high). To model how different counties 

may be at different time points of the epidemic curve (i.e., phase-of-epidemic), we adjusted for days both 

since the first case and since the 100th case (i.e., case counts reaching 100) within a county through April 

29 as a measure of epidemic timing. To account for how people may have reacted to the social distancing 

guidelines imposed during the COVID-19 outbreak, we adjusted for county-level travel mobility index. In 

addition, we considered potential confounding by county-level healthcare capacity, sociodemographic, 

SES, behavior risk factors, and meteorological factors. Because county-specific population densities span 

5 orders of magnitude, we adjusted for density using a logarithmic transformation. To control for 

potential residual spatial trends and confounding, we included spatial smoothers within the model using 

natural cubic splines with 5 degrees freedom for both county centroid latitude and longitude. We further 

calculated Moran’s I of the standardized residuals of tri-pollutant main models for each state, to examine 

the presence of spatial autocorrelation in the residuals. 

Data sources on covariates:  We adjusted for three county-level healthcare capacity covariates, 

including the number of intensive care unit (ICU) beds, hospital bed, and active medical doctor per 1000 

people. Number of ICU beds were based on Kaiser Health News analysis of 2018 and 2019 hospital cost 

reports filed to the Centers for Medicare & Medicaid Services. Numbers of active medical doctors and 

hospital beds of 2017 were obtained from the Area Health Resources Files. State-level number of 

COVID-19 tests performed up to April 29, 2020 was derived from the Covid Tracking Project, based on 
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which we calculated the positive rate in each state, i.e. the percentage of tests performed that are positive 

for COVID-19. The travel distance mobility data were released from the Descartes Labs and mapped by 

the GeoDS Lab using anonymized location data from smartphones (Warren and Skillman, 2020; Gao et 

al., 2020). The travel mobility index was a measure to compare the daily individual-level travel distance 

pattern to that in February. To enhance privacy, individual data are de-identified and aggregated to the 

county level. We calculated the county-level mean mobility index from March 1, 2020 to April 29, 2020 

to represent the dramatic mean human mobility changes in reaction to the COVID-19. County-level 

socioeconomic status (SES) in 2015 was measured by social deprivation index, which is a composite 

measure of area-level deprivation based on seven characteristics, including income, education, 

employment, housing, household characteristics, transportation, and demographics. SDI has commonly 

served as an area-level composite measure of SES in other studies of health and health outcomes. County-

level sociodemographic covariates in 2017 such as percentage of elderly (age≥60) and percentage of male 

were derived from Area Health Resource Files, and population density was derived from the 2018 US 

Census. County-level behavioral risk factors, including population mean BMI (an indicator of obesity) 

and percentage of ever smokers, were derived from the 2011 US CDC Behavioral Risk Factor 

Surveillance System (BRFSS). From Phase 2 of the North American Land Data Assimilation System 

(NLDAS-2), we acquired hourly 1/8th degree gridded near-surface air temperature and specific humidity 

data from January 22, 2020 through April 29, 2020 (Xia et al., 2012), based on which we calculated the 

mean temperature and relative humidity for each 1/8th degree grid. We linked each county’s centroid to 

the nearest 1/8th degree grid and assigned the mean temperature and relative humidity.  

Sensitivity analyses: We also conducted a series of sensitivity analyses to test the robustness of our 

results to outliers, confounding adjustment, and epidemic timing (Supplementary Appendix Figures S1 

and S2). Given that New York city has far higher COVID-19 cases and deaths than any other regions in 

the US, which can be a very influential observation, we excluded all five counties within New York city 

and repeated the analysis. In another set of sensitivity analyses, we restricted the study only to the most 
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recent 4 weeks (April 1 to April 29), when the case count and death count may be more reliable and 

accurate than earlier periods and when COVID-19 tests were more available. We also conducted 

sensitivity analysis by using air pollution data averaged between 2000 to 2016. To assess the impact of 

potential bias of individual covariates, we fit models by omitting a different set of covariates for each 

model iteration while comparing effect estimates. Statistical tests were 2-sidedand statistical significance 

was determined with an alpha of 0.05. All statistical analyses were conducted used R version 3.4. 

Technical Appendix Reference 
 
The New York Times; 2020. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html. 
Accessed 04/19/2020. 
 
USAFACTS; 2020. https://usafacts.org/visualizations/coronavirus-covid-19-spread-map/. Accessed 
04/19/2020. 
 
1Point3Acres.com; 2020. https://coronavirus.1point3acres.com/. Accessed 04/19/2020. 
 
Area Health Resources Files; 2019. https://data.hrsa.gov/topics/health-workforce/ahrf. Accessed 
04/19/2020. 
 
Social Deprivation Index. Robert Graham Center; 2019. https://www.graham-center.org/rgc/maps-data-
tools/sdi/social-deprivation-index.html. Accessed 04/25/2019. 
 
Warren, M.S. and Skillman, S.W., 2020. Mobility Changes in Response to COVID-19. arXiv preprint 
arXiv:2003.14228. 
 
Gao, S., Rao, J., Kang, Y., Liang, Y. and Kruse, J., 2020. Mapping county-level mobility pattern changes 
in the United States in response to COVID-19. Available at SSRN 3570145. 
 
Xia, Y., K. Mitchell, M. Ek, J. Sheffield, B. Cosgrove, E. Wood, L. Luo, C. Alonge, H. Wei, J. Meng, B. 
Livneh, D. Lettenmaier, V. Koren, Q. Duan, K. Mo, Y. Fan, and D. Mocko, (2012), Continental-scale 
water and energy flux analysis and validation for the North American Land Data Assimilation System 
project phase 2 (NLDAS-2): 1. Intercomparison and application of model products, J. Geophys. Res., 117, 
D03109, doi:10.1029/2011JD016048. 
 
 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 7, 2020. .https://doi.org/10.1101/2020.05.04.20090746doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.04.20090746
http://creativecommons.org/licenses/by-nc-nd/4.0/

