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ABSTRACT 

COVID-19 has circled the globe, rapidly expanding into a pandemic within a matter of 

weeks. While early studies revealed important features of SARS-CoV-2 transmission, 

the role of variation in free-living virus survival in modulating the dynamics of outbreaks 

remains unclear and controversial. Using an empirically determined understanding of 

the natural history of SARS-CoV-2 infection and detailed, country-level case data, we 

elucidate how variation in free-living virus survival influences key features of COVID-19 

epidemics. Our findings suggest that environmental transmission can have a subtle, yet 

significant influence on COVID-19’s basic reproductive number (ℛ0) and other key 

signatures of outbreak intensity. Summarizing, we propose that variation in 

environmental transmission may explain some observed differences in disease 

dynamics from setting to setting, and can inform public health interventions. 
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INTRODUCTION 

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the etiological 

agent of coronavirus disease 2019 (COVID-19), has caused one of the most 

devastating pandemics of the last century. The complex set of epidemiological 

characteristics defining COVID-19 outbreaks presents a number of challenges for 

controlling this disease. As a consequence, countries have achieved varying levels of 

success in reducing transmission and protecting vulnerable populations, often with 

dramatic variation from setting to setting in the epidemic growth rate, intensity, and/or 

severity. Developing a mechanistic understanding of how SARS-CoV-2 is transmitted in 

different settings is thus essential for guiding ongoing and future non-pharmaceutical 

interventions. 

 

The basic reproductive number (ℛ0) (1-3), fatality rate (4-5), incubation period (4, 6-8), 

transmission interval (9), prevalence of super-spreading events (10-11) and other 

relevant aspects of COVID-19 epidemiology provide a mechanistic window into how 

SARS-CoV-2 is transmitted in different settings. However, one feature of SARS-CoV-2 

transmission that was validated in laboratory settings (12), but whose epidemiological 

role remains controversial, is SARS-CoV-2 free-living survival. Specifically, while 

several laboratory and epidemiological findings have suggested that environmental 

transmission may play a role in some settings (11, 13-14), none have fully investigated 

how this route of transmission may influence features of outbreaks.  

 

In this study, we identify key laboratory and epidemiologically validated parameters 

associated with SARS-CoV-2 environmental transmission. We then integrate these 

findings into a mechanistic transmission model of SARS-CoV-2 to evaluate the potential 

for variability in environmentally-mediated transmission to explain variability in COVID-

19 outbreak intensity. This framework includes parameters corresponding to the 

transmission of the virus from both presymptomatic/asymptomatic and clinical 

(symptomatic) carriers of SARS-CoV-2, and the possibility that susceptible hosts can 

acquire infection through environmental reservoirs. We examine how outbreak 
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dynamics can be influenced by differences in SARS-CoV-2 free-living survival that 

include empirical values for survival on various abiotic surfaces (e.g. plastic, copper, 

steel, cardboard) (12). 

 

Using confirmed case data from seventeen countries from around the world with large 

outbreaks, we propose that the role of environmental SARS-CoV-2 transmission on 

COVID-19 epidemics can vary from setting to setting. Our findings highlight the need to 

incorporate the potential for environmental transmission into COVID-19 non-

pharmaceutical intervention plans and forecasting models. Specifically, we propose that 

environmental transmission—including the particulars of how free-living virus survives 

on different abiotic surfaces, and in aerosol form—should be a greater focus in 

emerging infectious disease outbreaks, as undertreatment of this route can obfuscate 

essential properties of how the disease is spreading and potential avenues for 

intervention.  

 

A Waterborne, Abiotic, and other Indirectly Transmitted (WAIT) model of SARS-

CoV-2 transmission. Several models have been engineered to explore aspects of 

COVID-19 dynamics. For example, models have been used to investigate the role of 

social distancing (2, 15), social mixing (16), the importance of undocumented infections 

(17), the role of mobility in the early spread of disease in China (18), and the potential 

for contact tracing as a solution (19). Only a few notable models of SARS-CoV-2 

transmission incorporate features of indirect or environmental transmission (13-14, 19), 

and none consider the dynamical properties of viral free-living survival in the 

environment. Such a model structure would provide an avenue towards exploring how 

variation in free-living survival influences disease outbreaks. Environmental 

transmission models are aplenty in the literature and serve as a theoretical foundation 

for exploring similar concepts in SARS-CoV-2 transmission (20-29). 

 

Here, we parameterize and validate an SEIR-W model: Susceptible (S), Exposed (E), 

Infectious (I), Recovered (R), and WAIT (W) model. Here W represents the 

environmental component of the transmission cycle during the early stage of the SARS 
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CoV-2 pandemic. This model is derived from a framework previously developed called 

the “WAIT” modeling framework—which stands for Waterborne, Abiotic, and other 

Indirectly Transmitted—that incorporates an environmental reservoir where a pathogen 

can sit and wait for hosts to interact with it (30-31). 

 

METHODS 

Building the SEIR-W model framework for SARS-CoV-2. Here W represents the 

environmental component of the early stage of the SARS CoV-2 pandemic (Figure 1). In 

the context of SARS CoV-2, this environmental compartment refers to reservoirs that 

people may have contact with on a daily basis, such as doorknobs, tables, chairs, mail 

packages, and non-circulating air indoors). The W compartment of our model 

represents the fraction of these environmental reservoirs that house some sufficiently 

transmissible amount of infectious virus. We emphasize that the W compartment is 

meant to only represent surfaces that are common sites for interaction with people. 

Thus, inclusion of the W compartment allows us to investigate the degree to which the 

environment is infectious at any given point, and its impact on the transmission 

dynamics of SARS CoV-2. We will sometimes use the term “environment” and 

“surfaces” or “objects” interchangeably.  

 

Model parameters are described in detail in Table 1. The system of equations in the 

proposed mathematical model corresponding to these dynamics are defined in 

equations 1-6: 
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Infection trajectories. In addition to including a compartment for the environment (W), 

our model also deviates from traditional SEIR form by splitting the infectious 

compartment into an IA-compartment (A for asymptomatic), and an IS-compartment (S 

for symptomatic). The former represents an initial infectious stage (following the non-

infectious, exposed stage), from which individuals will either move on to recovery 

directly (representing those individuals who experienced mild to no symptoms) or move 

on to the IS-compartment (representing those with a more severe response). Finally, 

individuals in the IS-compartment will either move on to recovery or death due to the 

infection. This splitting of the traditional infectious compartment is motivated by 

mounting evidence of asymptomatic transmission of SARS CoV-2 (17, 33-36). Thus, we 

consider two trajectories for the course of the disease, similar to those employed by 

(15): (1) E → IA → R and (2) E → IA → IS → R (or death). More precisely, once in the E 

state, an individual will transition to the infectious state IA, at a per-person rate of ε. A 

proportion p will move from IA to the recovered state R (at a rate of p �). A proportion (1 

- p) of individuals in the IA state will develop more severe systems and transition to Is (at 

a rate of (1 - p) �). Individuals in the Is  state recover at a per-person rate of � or die at a 

per-person rate μS. In each state, normal mortality of the individual occurs at the per-

person rate μ and newly susceptible (S) individuals enter the population at a rate μN. 

The important differences between these two trajectories are in how likely an individual 

is to move down one path or another, how infectious individuals are (both for people 

and for the environment), how long individuals spend in each trajectory, and how likely 

death is along each trajectory. 

 

Interactions between the environment and people. The model couples the 

environment and people in two ways: (1) people can deposit the infectious virus to 

environmental reservoirs (e.g. physical surfaces, and in the case of aerosols, the 

ambient air) and (2) people can become infected by interacting with these reservoirs 

(infecting the people). While the gist of our study is focused on physical surfaces, we 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 9, 2020. .https://doi.org/10.1101/2020.05.04.20090092doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.04.20090092
http://creativecommons.org/licenses/by-nc/4.0/


6 
 

also include data and analysis of SARS-CoV-2 survival in aerosols.  While aerosols are 

very likely a crucial source of person-to-person transmission, they also contain an 

indirect means of transmitting. For example, in indoor settings where someone deposits 

infectious SARS-CoV-2 into aerosols, which then remain suspended in the air, whereby 

other individuals can contract the infection, without ever having to be in especially close 

physical proximity to the aerosol emitter. In this setting, the free-living survival of SARS-

CoV-2 in aerosol form is a very relevant aspect of transmission.  

 

Environmental reservoirs infect people through the βW term (equations 1 and 2), a proxy 

for a standard transmission coefficient, corresponding specifically to the probability of 

successful infectious transmission from the environment to a susceptible individual (the 

full rate term being βWW·S). Hence, the βW factor is defined as the fraction of people 

who interact with the environment daily, per fraction of the environment, times the 

probability of transmitting infection from environmental reservoir to people. The factor 

βWW (where W is the fraction of surfaces infected) represents the daily fraction of 

people that will interact with the infected portion of the environment and become 

infected themselves. The full term βWW·S is thus the total number of infections caused 

by the environment per day.  

 

In an analogous manner, we model the spread of infection to the environment with the 

two terms �A IA·(1 - W) / N and �S IS·(1 - W) / N representing deposition of infection to 

the environment by asymptomatic individuals, in the former, and symptomatic 

individuals, in the latter. In this case, �A (and analogously for �S) gives the fraction of 

surfaces/reservoirs that interact with people at least once per day, times the probability 

that a person (depending on whether they are in the IA or the IS compartment) will 

deposit an infectious viral load to the surface/object. Thus, �A IA / N and �S IS / N (where 

N is the total population of people) represent the daily fraction of the environment that 

interacts with asymptomatic and symptomatic individuals, respectively. Lastly, the 

additional factor of (1 - W) gives the fraction of surfaces/objects in the environment that 

have the potential for becoming infected, and so �A IA·(1 - W) / N (and analogously for 

IS) gives the fraction of the environment that becomes infected by people each day. We 
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use W to represent a fraction of the environment, although one could also have 

multiplied the W equation by a value representing the total number of surfaces/objects 

in the environment (expected to remain constant throughout the course of the epidemic, 

assuming no intervention strategies). 

 

Parameter values estimation. Table 1 displays information on the population 

definitions and initial values in the model. Tables 2 and 3 contain the fixed and 

estimated values and their sources (respectively). Because this model iteration is 

relatively underexplored with regards to COVID-19, we have worked to justify its use in 

various ways. The model’s estimated parameters are based on model fits to 17 

countries with the highest cumulative COVID-19 cases (of the 181 total countries 

affected) as of 03/30/2020, who have endured outbreaks that had developed for at least 

30 days following the first day with ≥10 cumulative infected cases within each country 

(37) (See Supplemental Tables S1 – S3). In addition, we compare country fits of the 

SEIR-W model to fits with a standard SEIR model. Lastly, we compare how various 

iterations of these mathematical models compare to one another with regards to the 

general model dynamics. For additional details, see the Supplemental Information.  

 

Estimation of fixed parameters. There are 6 fixed parameters, 6 fitted parameters, 

and one parameter (�) dependent on the values of one of the fixed parameters (�) and 

one of the fitted parameters (�). These fixed parameters are �, �, �S, �, k, & p. The first, 

�, is the incubation period) (6, 38), and we assume that the expected time in the E state 

(1/�) and the expected time in the IA state (1/�) sums to �, i.e. � = 1/� + 1/�. Fixing � 

constrains one of the two parameters, � or �, and the other can be fitted; we choose to 

fit � and therefore constrain �. The second fixed parameter �, the normal death rate, 

was calculated by taking the reciprocal of the average life expectancy (in days) of the 17 

countries sampled, weighted by population size. We calculated a value of 80.3 years, 

based on data from individual countries (39). The third parameter �S is the sum of the 

normal death rate and an additional death rate due to a more severe form of the 

infection. We assumed a death rate of 3.8% (38) and that death follows after initial 

symptoms between 3 and 4 weeks (38). Thus �S = � + 0.038/(3.5 * 7), where we use 
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the average of 3 and 4 weeks and we convert to days with the factor of 7. The fourth 

fixed parameter �, the recovery rate once in the symptomatic state, was assumed to be 

the reciprocal of the average of 3 and 6 weeks (the range of recovery times) (4, 38) 

times the fraction of individuals in the symptomatic state that do not die, i.e. 1 - 0.038, 

so � = (1 - 0.038)/(4.5 * 7). The fifth fixed parameter k, the rate of viral decay in the 

environment, is the reciprocal of the average time that SARS-CoV-2 is expected to 

survive in the environment across a set of physical surfaces, based on the survival 

times across a handful of materials (19). The sixth fixed parameter p, the fraction of 

individuals in the IA state that move on to recovery without experiencing severe 

symptoms, was taken to be 0.956 (2). 

 

We fit our model variations to the daily new cases data provided (See: Supplemental 

Information) starting on the day when there were ≥10 cumulative infected cases in that 

region. We choose the starting point of 10 cumulative cases in order to allow the 

outbreak to settle into a more consistent doubling time while also providing enough of 

an early-on window to capture the dynamics relevant to the ℛ0 and force of infection 

estimations. 

 

We calculate the number of daily new infections in our model by numerically integrating 

the influx rate of new symptomatic infections over the course of a single day (i.e. ∫ (1 - p) 

� IA dt). We perform this calculation for each of 30 consecutive days and fit these values 

to the daily new cases data. We use the influx rate of symptomatic infections, as 

opposed to the total rate of new infection (including asymptomatic individuals), as we 

expect that the large majority of reported cases in the early COVID-19 outbreak to be 

symptomatic. And we expect that—in the outbreaks—almost all asymptomatic cases go 

unreported (17). 

 

Initial conditions. For each country, we use the first cumulative count that is ≥10 as a 

proxy for the initial number of active symptomatic cases IS0. We can justify this by 

proposing that, given that the doubling time is expected to fall between 3 and 6 days 

(40) then the exponential growth rate parameter of the infection (r in exp(rt)) would fall 
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between 0.231 days-1 and 0.116 days-1 respectively. And, assuming 1 initial infected 

individual, the time to reach 10 cases for the former rate would be about 10.0 days 

(~log(10)/0.231) and the time for the latter would be 19.8 days (~log(10)/0.116). Thus, 

since recovery of symptomatic individuals, which takes between 3 and 6 weeks (36, 38) 

exceeds this interval, we expect that at the point when 10 cases have accumulated, all 

cases are still active. Lastly, in fitting the data to our model, we initialize all fitting 

parameters to a value of 1.5, in whatever units are appropriate for that parameter 

(expected to be close to the true value for most of the fitting parameters). 

As an estimate for the initial number active asymptomatic cases, we take IA0 = IS0. That 

is, we expect that there are approximately as many asymptomatic cases as 

symptomatic cases early on. This assumption appears to be consistent with empirical 

findings. For example, data from the Diamond Princess cruise liner (11, 41), where all 

passengers were tested, revealed that approximately half of positively-testing cases 

were asymptomatic. Lastly, we assumed that the initial number of exposed individuals 

was approximately ℛ0· (IA0 + IS0), based on the supposition that each of the initially 

infectious individuals (IA0 + IS0) will have exposed the infection to approximately ℛ0 other 

individuals. We take the value of ℛ0 in this case to be 2.5, based on prior studies (15, 

17). The R population is assumed to be 0 in the early stage of the outbreak, given the 

(average) 3 to 6-week recovery delay of COVID-19. The W population is assumed to be 

1%. 
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Symbols Initial Values Units Definitions Sources 

S0 Varies by 

country 

people Susceptible individuals Vary 

E0 ℛ0 · (IA0 + IS0) people Exposed individuals Deduced 

IA0 IS0 people Asymptomatic individuals Deduced 

IS0 Varies people Symptomatic individuals Deduced 

Rec0 0 people Recovered individuals Deduced 

W0 1% unitless % of viruses in environment Deduced 

Table 1. Model population definitions and initial values denoted with subscript 0 for 
each state variable. Here we present definitions for the population groups represented 
by each compartment as well as their initial values. The initial value of the S and IS 
populations vary by country, as shown in Table 2. We take the initial value of the IA 
population to be the same as the initial value of symptomatic individuals as a 
conservative estimate. The initial value of the E population is computed by assuming 
that all initially-infected people (IA0 + IS0) have exposed the virus to approximately 

ℛ0 (≈ 2.5) other people. 
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    Symbols    Values  Units Definitions Sources 

   � /   (80.3 x 365) 1/day Natural Death Rate (Reciprocal of  
the average life expectancy of 

17 countries sampled) 

   (37, 42) 

   �S   0.00159 1/day Infected death rate                  (4, 32) 

   �   5.5 days SARS-CoV-2 Incubation Period     (38) 

   1/�     � - ε-1 days Expected time in the  
asymptomatic state 

    Fitted and dependent on � 

  �   0.031 1/day Recovery rate (Average of  
3 to 6 weeks) 

(38) 

   p 

 

  0.956 unitless Fraction that move along the “mild” recovery 
track 

 (2) 

   k   0.649 1/day Viral decay rate in environment 
(using average of all material values, wood, 

steal, cardboard, plastic) 

       (12) 

Table 2. Fixed parameter values estimated based on available published literature. 
These estimated values derived from the existing COVID-19 and SARS-CoV-2 
literature. 
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Symbols 

Average 

values 

(SEIR-W) 

Standard 

Deviation 

(SEIR-W) 

Average 

values 

(SEIR) 

Standard 

Deviation 

(SEIR) 

  

Units 

  

Definitions 

βA 0.550 0.345 0.429 0.751 1/day (Contact rate of people with 

people) x (transmission 

probability of people to 

people by an asymptomatic 

person) 

βS 0.491 1.260 8.019 5.972 1/day (Contact rate of people with 

people) x (transmission 

probability of people to 

people by I-person) 

βW 0.031 0.039 0.0 -- 1/day (Contact rate of person with 

environment) x 

(transmission probability of 

environment to people) 


A 3.404 6.662 0.0 -- 1/day (Contact rate of person with 

environment) x 

(probability of shedding by 

asymp.-person to 

environment) 


S 13.492 18.849 0.0 -- 1/day (Contact rate of person with 

environment) x 

(probability of shedding by 

symp.-person to 

environment) 

1/ε 2.478 1.325 2.381 2.249 days Average number of days 

before infectious 

Table 3. Estimated parameter values, averaged across countries. Here we provide a 
table of the average values of the fitted parameters used in this model. These averages 
are taken across all of the selected 17 countries. See Supplementary Information for 
more details on country data and parameter estimation. 
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Basic reproductive ratios (ℛ0). We can express the ℛ0 (eq. 7) in a form that makes 
explicit the contributions from the environment and from person-to-person interactions. 
In this way, the full ℛ0 is observed to comprise two ℛ0 sub-components: one the number 
of secondary infections caused by a single infected person through person-to-person 
contact alone (Rp) and the other is the number of secondary infections caused by 
exchanging infection with the environment (Re). 
 

�� �
�� � ���

�  � � ��
�

�                                                     (7) 
 

where Rp and Re are defined in equations 8a and 8b. 
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�� � 
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� 
� � 	�
� � ��
�� � 
�                     (8a, 8b) 

 

Note that when Rp = 0, the ℛ0 reduces to Re and when Re = 0, the ℛ0 reduces to Rp. 

Thus, when person-to-person transmission is set to zero, the ℛ0 consists only of terms 

associated with transmission from the environment, and when transmission from the 

environment is set to zero, the ℛ0 consists only of infection directly between people. 

When both routes of transmission are turned on, the two ℛ0-components combine in the 

manner in equation 7. 

  

While Re represents the component of the ℛ0 formula associated with infection from the 

environment, the square of this quantity Re
2 represents the expected number of people 

who become infected in the two-step infection process: people → environment → people, 

representing the flow of infection from people to the environment, and then from the 

environment to people. Thus, while Rp gives the expected number of people infected by 

a single infected person when the environmental transmission is turned off, Re
2 gives 

the expected number of people infected by a single infected person by way of the 

environmental route exclusively (no direct person-to-person transmission). Also note 

that Re
2/(Re

2 + Rp) can be used to measure the extent of transmission that is mediated 

by the environment exclusively. This proportion can be used as a proxy for how 
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important environmental transmission is in a given setting.   

 

Elaboration on formulas 8a-b—and associated derivation-discussions—appear in the 

Supplemental Information. 

 

RESULTS 

The results section covers the following sets of tests and analyses: 

1. The process through which parameters were estimated through fits to country-level 

outbreak data.  

2. Sensitivity analysis, to discuss how variation in parameters influences key aspects of 

COVID-19 epidemiology. 

3.  An interrogation of how, mathematically, the SARS-CoV-2 model incorporates 

environmental transmission, discussing a calculation of the proportion of the 

transmission in a given setting can be attributed to environmental transmission.  

4.  Simulations of “surface world” scenarios, where the environmental transmission 

value is set to one of the environmental settings for which there are published findings 

(12). This is designed to identify how hypothetical settings comprising SARS-CoV-2 

environmental transmission of a certain kind influences disease dynamics.  

 

Establishing features of environmental transmission using country outbreak data. 

Using the Akaike information criterion (AIC), SEIR models with an environmental 

compartment (SEIR-W) provide a strong relative fit to country incidence data. As 

discussed in the Methods, we compared the performance of models with (SEIR-W) and 

without (SEIR) environmental transmission across multiple countries to assess the role 

of environmental transmission in different contexts. Using the fitted parameters provided 

in Tables 1-3, and S1-S3, we calculate AIC values for the two mechanistic models: the 

standard SEIR model and the SEIR-W model. Table S4 displays the summary of the 

AIC values for each model-type fit to the first 30 days after the first day with total counts 

≥10. In 10/17 countries (including 9/11 European countries), the SEIR-W model 

provided a better fit to the country data. In Figure 2, we display the comparative 
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individual country fit results for 4 of the countries with the fastest 30-day case growth 

rates—Spain, Italy, Iran, and Switzerland. The SEIR-W variant provides a better fit 

(significantly lower AIC score) than the standard SEIR model for all of these. Note that, 

as features of independent country epidemics are myriad and difficult to disentangle, 

several aspects independent of the model structure could explain the superior fit of the 

SEIR-W models. Results for additional country fits can be found in the Supplemental 

Information, Figure S1.  

 

Sensitivity analysis reveals how environmental transmission may modulate 

aspects of COVID-19 epidemiology. Partial Rank Correlation Coefficient (PRCC) 

analyses for the four examined features of the outbreak—(i) ℛ0, (ii) total number of 

infected individuals after 30 days, (iii) time to peak number of infected individuals, and 

(iii) size of peak number of infected individuals. Figure 3 demonstrates the PRCC 

calculations for all four of these outbreak characteristics. For ℛ0, we observe that the 

model was strongly sensitive to several aspects related to virus transmission— βA, βS, 

βw——as well as the rate at which asymptomatic individuals develop symptoms (�), the 

rate of recovery (�) and SARS-CoV-2 free-living survival rate (k).  

 

One can also observe how some parameters are better suited to modify the peak of the 

infection, such as the recovery rate (�; which includes in it the swiftness of diagnosing 

and treating the virus). Others modulate the timing of the peak, such as ε, the rate of 

leaving the “exposed” compartment (or equally well, the reciprocal of the average time 

spent in the exposed compartment). Note that across all features, the fraction of cases 

that move along the “mild” route (p), from E→IA→R, has a powerful influence on all 

factors. 

 

The SARS-CoV-2 ℛ0 comprises person-to-person and environmental 

transmission.  In the Methods, we described how the ℛ0 is composed of two sub-ℛ0 

components, corresponding to different infectious interactions: person to person (Rp), 

person to environment and environment to person (Re). Tornado plots were constructed 
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that demonstrate how the ℛ0-components have their own architecture and sensitivity 

(Figure 4).  

 

In Figure 5, we observe how variation in free-living survival (1/k) influences four 

characteristics of a SARS-CoV-2 outbreak: ℛ0, total number of infected individuals after 

30 days, time to peak number of infected and symptomatic individuals, and maximum 

number of symptomatic individuals in the first 30 days. Note the annotations on the 

figure that highlight where the empirically-determined survival times of SARS-CoV-2 on 

a range of reservoir types (aerosol, copper, plastic, cardboard, stainless steel) (12). 

Also note that the quantitative relationships between 1/k and various outbreak features 

are slightly different. For example, the ℛ0 increases more gradually across a wider 

range of free-living survival values than some of the other features (Figure 5).  

 

We should reemphasize some aspects of the underlying physics of the simulations in 

this study that were introduced in the Methods section.  In reality aerosol transmission 

likely contributes to person-to-person transmission. There, however, scenarios where 

aerosols serve as environmental reservoir, capable of transmitting between individuals 

in an “indirect” way.  In this study, we use it in an analogous way to surfaces, where air 

may be exchanged in the same room where infected individuals were, rather than 

exchanging infectious particles on a surface.  

 

Surface composition modulates outbreak dynamics. Figure 6 (simulations) depict 

the results of “surface world” simulations, where the k values correspond to those from 

a 2020 study highlighting the survival of SARS-CoV-1 and SARS-CoV-2 on different 

physical surfaces (12). The summary of these simulations (Figure 6) highlights that the 

surface composition of a setting has a meaningful impact on several features of 

outbreak dynamics. Of the “surface world” simulations, “aerosol world” (5a) and “copper 

world” (Figure 5c) takes the longest amount of time (91.5 and 88.4 days, respectively) to 

rise to the peak number of infected-symptomatic individuals, indicating an outbreak 

which is slower to develop. Relatedly, the ℛ0 values are much different in the different 

“surface world” scenarios: The “aerosol world” simulation has an ℛ0 of 2.38, the “copper 
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world” simulation an ℛ0 of 2.4, and the “plastic world” simulation an ℛ0 of 3.18 (Figure 7 

and Table S5). In addition, the total number of individuals infected after 30 days of the 

outbreak, and the total number dead after 30 days are both significantly lower in the 

“aerosol world” and “copper world” setting (Figure 7 and Table S5). The peak value of 

infected individuals is not dramatically different across “surface worlds.” That is, while 

many features associated with severity differ greatly across “surface world” settings, we 

observed significantly less variation in the peak of the epidemic as compared with the 

time to the peak of the epidemic (Table S5). Maybe the most noteworthy of the 

differences is the vast disparity in the number of deaths in the first 30 days of the 

outbreak, where the “plastic world” setting has more than 30 times the number of deaths 

as the “copper world” scenario (1,814 vs. 55, respectively; Figure 7 and Table S5).  

 

Lastly, comparisons of the metric, Re
2/(Re

2 + Rp), which measures the extent to which 

transmissions can be attributed to the environmental route, further highlights how 

different environmental reservoirs influence disease transmission (Figure 7). The 

“aerosol world” and “copper world” settings comprise 4.6% and 6% of transmission 

events occurring through non-person to person transmission. This differs dramatically 

from the “plastic world” setting, where 52% of transmission events are occurring through 

the environmental route.  

 

 

DISCUSSION 

In any emerging infectious disease, determining the role of viral free-living 

survival on disease transmission should be the focus of early inquiry. In this 

study, we introduce a model for SARS-CoV-2 transmission that rigorously incorporates 

environmental transmission, labeled SEIR-W. We demonstrate that the SEIR-W model 

is often superior to SEIR models with regards to fitting the empirical data for the early 

trajectory of outbreaks across the world. That the SEIR-W model fits certain country 

data relative to others may be the consequence of many characteristics of an epidemic 

(e.g. quality of data, testing capacity), none of which represents anything meaningful 

about the mechanism of an outbreak. However, given that features of environmental 
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transmission can influence central properties of disease dynamics, we should consider 

the possibility that variation in free-living survival may contribute to variation in aspects 

of disease dynamics. The model is strongly sensitive to several aspects related to virus 

transmission, including the rate at which both symptomatic and asymptomatic 

individuals transmit infection to susceptible hosts, the rate at which asymptomatic 

individuals develop symptoms, the rate of recovery (�) and SARS-CoV-2 decay rate (k). 

 

Deconstructing the basic reproductive number (ℛ0) into subcomponent reveals 

the role of environmental transmission. By deconstructing the basic reproductive 

number into components, we can better understand how variation in the ℛ0—by setting, 

time, or geography—may reside in how these contexts are driven by environmental 

transmission. Many of these effects may be (as they are in this study) localized to one 

component of the ℛ0, labeled Re
2 in this study. Notably, the Re

2 component is highly 

sensitive to the transmission interaction between people and the environment (
w), and 

the decay rate of virus in the environment (k). Interestingly, the Re
2 is relatively robust to 

the rate of infectious virus shed into the environment from the asymptomatic infected 

individuals (the parameter called σA in this model). Also, deconstructing the ℛ0 value 

into these components facilitates the creation of new metrics that quantify how much a 

given epidemic is driven by certain routes. As many viral diseases may contain multiple 

transmission routes, being able to properly quantify their relative contribution may be 

useful for public health interventions.  

 

SARS-CoV-2 dynamics in different “surface world” settings resemble essentially 

different outbreaks. Analysis of the ℛ0 and its subcomponents highlights that many 

aspects of outbreak dynamics are sensitive to the parameter associated with 

environmental decay rate (k in the model presented in this study). Analysis of 

hypothetical settings purely comprising substances of a certain kind (“surface world”) 

fortifies the significance of free-living survival on physical surfaces and environmental 

transmission in outbreak dynamics. While our findings cannot speak to the outbreak 

dynamics in any particular setting in the real world, they do reveal that the surface 

composition of a setting can significantly influence the behavior of an outbreak. For 
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example, The SARS-CoV-2 ℛ0 in the “plastic world” simulation (ℛ0 = 3.18) is over 1.3 

times the ℛ0 in the “copper world” simulation (ℛ0 = 2.4). Many other differences between 

these outbreaks come as a consequence of the different ℛ0 values. For example, the 

“plastic world” simulation reaches a peak number of symptomatic infectious individuals 

almost 1.7 times faster than the “copper world” simulation, and kills over 30 times more 

people in the first 30 days (1,814 deaths in “plastic world” vs. 55 deaths in the “plastic 

world”). 

 

These differences are so significant that they might be naively interpreted as completely 

different outbreaks early on in an outbreak. Note, however, that the maximum value of 

the infected- symptomatic populations are roughly equivalent across “surface worlds,” 

and so the influence of SARS-CoV-2 survival on physical surfaces (mediated by 

difference in free-living survival) doesn’t affect all aspects of outbreak dynamics equally.  

 

Despite the breadth of differences observed across surfaces, a very notable finding 

regards the similarity between the “aerosol world” and “copper world” results. That is, an 

outbreak in a hypothetical world where there are no physical surfaces, but only 

transmission via aerosols would be only slightly more intense than an outbreak where 

indirect transmission was driven entirely by copper (using ℛ0 as a quick proxy, “aerosol 

world” = 2.38, and “copper world” = 2.4).  The implications here are subtle, but worth 

elaborating on: while a lot of public debate has focused on a dichotomy between 

aerosol-mediated transmission and environmental transmission, our findings suggest 

that the differences between aerosol transmission and some physical surfaces is so 

minute that the epidemiological signature for differences between them may be 

indistinguishable. Consequently, the more productive debates would focus, not on 

whether environmental transmission is occurring at all, but how the combination of 

aerosols and surfaces contribute to non-contact transmission events.   

 

Public health implications. As of June 1, 2020, the scientific community remains in the 

fact-finding phase of SARS-CoV-2 biology and COVID-19 understanding. A significant 

source of fear and speculation in the pandemic involves the plausibility that SARS-CoV-
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2 has undergone local adaptation in certain settings, translating to different 

epidemiological properties. While there is no currently convincing molecular or clinical 

support for local adaptation in SARS-CoV-2, our findings highlight how easy it is to 

conflate an environmental (or ecological) difference for a genetic one: the same virus, 

spreading in populations of identical size and behavior, differing only in the composition 

of physical surfaces where the virus can be transmitted through the environment, can 

have ℛ0 values between 2.4 and 3.18, with early death rates 30 times apart. 

 

These disparities may underlie the difficulty in predicting outbreaks of a single type from 

setting to setting, a property that has recently been captured by a concept called 

permutation entropy (43). Even more, settings composed of certain physical surfaces 

(plastic-like in our model) may be associated with phenomenon resembling a 

“superspreading” event, where individual variation in contagiousness can drive 

unusually large numbers of infections (44). Perhaps a better understanding of how, and 

on what surfaces, viral populations survive may one day improve the predictability of 

outbreak trajectories.  

 

Our findings suggest that the effect of social distancing in ameliorating pandemics can 

be amplified by limiting interactions between susceptible individuals and surfaces, rather 

than solely interactions between individuals. Said differently, it is not enough that 

individuals remain separated from other individuals during a pandemic like COVID-19, 

but also that individuals remain protected from surfaces where other infectious 

individuals may have interacted. This further highlights the importance of measures like 

the wearing of masks in stemming COVID-19 outbreaks, as they may minimize the 

existence of infectious environment in the air, or on surfaces where infectious virus can 

survive.  
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DATA AND CODE AVAILABILITY 
Data are either available or the source is referenced in the main text and supplemental 
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Figure 1. SEIR-W model for COVID-19. Compartmental diagram with dynamic 
information, where the green highlighted arrows represent how the infection couples 
with the environment, and the red highlighted arrows represent the progression of the 
infection through individuals. The model is referred to as SEIR-W throughout the text.  
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Figure 2. Illustrative model fit comparisons for SEIR-W and standard SEIR to case 
counts in early windows of the outbreak. The model fits are comparable across four 
countries with the largest early epidemics. These were chosen based having the highest 
cumulative number of infected cases after 30 days, following the first day when case 
counts were greater than or equal to 10. The four countries are (a,b) Spain, (c,d) Italy, 
(e,f) Iran and (g,h) Switzerland. These constitute a subset of 17 countries that had the 
highest number of cumulative COVID-19 cases (of the 181 total countries affected) as 
of March 30, 2020. Data come from the European Centre for Disease Control and 
Prevention, and from ourworldindata.org (37, 42). See Supplemental Information for 
more details.  
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Figure 3. A Partial Rank Correlation Coefficient (PRCC) sensitivity analysis was 
performed with respect to (A) ℛ0, (B) total number of infected (and symptomatic) after 
30 days of outbreak, (C) time to peak number of symptomatic individuals (tmax), and (D) 
peak number of symptomatic individuals. This analysis highlights the intercorrelated 
sensitivities of each of the model parameters. The blue bars show the mean value of 
each PRCC, with error bars at one standard deviation. This analysis was performed by 
sampling over uniform distributions of 4.5% around the nominal model parameter 
values. Parameters correspond to the fixed ones in Table 3, and the average fitted 
parameters values in Table S5. The red line marks PRCC values of +/- 0.50 and helps 
identify parameters that are more influential (greater than 0.50 or less than - 0.50). See 
Supplemental Information for more details.  
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Figure 4. ℛ0 subcomponents have different parameter architecture.  We compare the 
parameter architecture for the two ℛ0 components that compose the full ℛ0 expression, 
(a) Rp, (b) Re

2 and (c) ℛ0.  Parameters are colored according to their relation with the 
environment or people: green parameters refer to the environment, blue parameters 
strictly refer to people, and black parameters are neutral in this regard. Black bars show 
the extent to which the component after changed when the parameter values are 
increased by 4.5%, The white bars show the same except for a decrease of 4.5%. For 
clarity, the single parameter that most influences the ℛ0 and its subcomponents is the 
faction of cases that move through the mild route (p) has been removed. For more 
details on how this parameter influences the ℛ0 and other features of the outbreak, see 
the PRCC analysis as discussed in the Methods and Supplemental Information.  
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Figure 5. Various features of an outbreak change as a function of 1/k  (where k is the 
rate of decay of SARS-CoV-2 survival in the environmental compartment): to (A) ℛ0, (B) 
total number of infected (and symptomatic) after 30 days of outbreak, (C) time to peak 
number of symptomatic individuals (tmax), and (D) peak number of symptomatic 
individuals. The black dashed lines show the value of the respective plotted value at the 
average value of 1/k (~ 1.5 days), used in the fits from above. The top red line shows 
the maximum of plotted value for either the smallest value of 1/k chosen ( = 1 hr) or the 
largest value of 1/k chosen ( = 3 days), depending on whether the plotted value 
decreases or increases with 1/k, and the bottom red line shows the plotted value at the 
other extreme of 1/k.    
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Figure 6. Hypothetical “surface world” simulations feature differing dynamics. 
Population and environmental dynamics of SEIR-W model COVID-19 outbreaks in 
hypothetical settings composed of pure substances where SARS-CoV-2 can survive 
and be transmitted. (A,B) “aerosol world,” (C,D) “copper world,” “ (E,F) cardboard 
world,”  (G,H) “stainless steel world,” and (I,J) “plastic world.” Environment 
infectiousness corresponds to the proportion of the environment that contains infectious 
SARS-CoV-2. Note that the surface where the viral decay is strongest (Copper), the 
peak of the epidemic is pushed farthest from the origin. Also note the ℛ0 values graphs 
A, C, E, and G, which highlight that the different “surface worlds” behave like 
fundamentally different outbreaks in several ways.  
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Figure 7. Summary of the “surface world” outbreak intensity measures. Graphs 
correspond to the attributes of simulated epidemics where environments are entirely 
composed of a given physical surface, and larger values correspond to various aspects 
of outbreak intensity. A) ℛ0, (B) total number of infected (and symptomatic) after 30 
days of outbreak, (C) the inverse time to peak number of symptomatic individuals (tmax

-1; 
larger values = shorter times to reach peak), (D) peak number of symptomatic 
individuals, (E) deaths after 30 days, and (F) environmental transmission fraction. Note 
the log scales on the y-axis in (B), (D) and (E). 
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