Table 1.
Accuracy of models trained with various feature parameters added into AAC by 6-fold cross-validation.
Feature parameters added into AAC | Feature selection method | Added number of features/total number of features | Accuracy |
---|---|---|---|
CTD-C [10] | mRMR | 20/39 | 75.1547% |
CTriad [101] | mRMR | 30/343 | 71.0349% |
DPC [28] | ANOVA | 30/400 | 75.5569% |
DDE [28] | ANOVA | 30/400 | 67.0483% |
TPC [26] | ANOVA | 30/8000 | 75.5569% |
PseAAC [33] | ANOVA | 30/50 | 73.5075% |
Geary [30] | mRMR | 30/240 | 75.8706% |
CKSAAP (k = 0~5) | ANOVA | 30/2400 | 75.9282% |
CKSAAP (k = 0) | ANOVA | 30/400 | 75.7776% |
CKSAAP (k = 1) | ANOVA | 30/400 | 76.0885% |
CKSAAP (k = 2) | ANOVA | 30/400 | 75.7147% |
CKSAAP (k = 3) | ANOVA | 30/400 | 76.0878% |
CKSAAP (k = 4) | ANOVA | 30/400 | 75.8708% |
CKSAAP (k = 5) | ANOVA | 30/400 | 75.8701% |