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Localizing Components of Shared Transethnic
Genetic Architecture of Complex Traits
from GWAS Summary Data

Huwenbo Shi,1,2,3,11,* Kathryn S. Burch,1,11,* Ruth Johnson,4 Malika K. Freund,5 Gleb Kichaev,1

Nicholas Mancuso,6 Astrid M. Manuel,7 Natalie Dong,8 and Bogdan Pasaniuc1,5,9,10

Despite strong transethnic genetic correlations reported in the literature for many complex traits, the non-transferability of polygenic

risk scores across populations suggests the presence of population-specific components of genetic architecture. We propose an approach

that models GWAS summary data for one trait in two populations to estimate genome-wide proportions of population-specific/shared

causal SNPs. In simulations across various genetic architectures, we show that our approach yields approximately unbiased estimates

with in-sample LD and slight upward-bias with out-of-sample LD. We analyze nine complex traits in individuals of East Asian and Eu-

ropean ancestry, restricting to common SNPs (MAF > 5%), and find that most common causal SNPs are shared by both populations.

Using the genome-wide estimates as priors in an empirical Bayes framework, we perform fine-mapping and observe that high-posterior

SNPs (for both the population-specific and shared causal configurations) have highly correlated effects in East Asians and Europeans. In

population-specific GWAS risk regions, we observe a 2.83 enrichment of shared high-posterior SNPs, suggesting that population-specific

GWAS risk regions harbor shared causal SNPs that are undetected in the other GWASs due to differences in LD, allele frequencies, and/or

sample size. Finally, we report enrichments of shared high-posterior SNPs in 53 tissue-specific functional categories and find evidence

that SNP-heritability enrichments are driven largely by many low-effect common SNPs.
Introduction

Genetic and phenotypic variations among humans have

been shaped by many factors, including migration his-

tories, geodemographic events, and environmental back-

ground.1–5 As a result, the underlying genetic architecture

of a given complex trait—defined here in terms of ‘‘polyge-

nicity’’ (the number of variants with nonzero effects)6–10

and the coupling of causal effect sizes withminor allele fre-

quency (MAF),11,12 linkage disequilibrium (LD),13–15 and

other genomic features16—varies among ancestral popula-

tions. While the vast majority of genome-wide association

studies (GWASs) to date have been performed in individ-

uals of European descent,17–20 growing numbers of studies

performed in individuals of non-European ancestry21–27

have created opportunities for well-powered transethnic

genetic studies.21,22,24,26,28–33

Risk regions identified through GWASs tend to replicate

across populations,17,21,22,33–35 indicating that complex

traits have genetic components that are shared among pop-

ulations. Indeed, for certain post-GWAS analyses such as dis-

easemapping23,31,36 and statistical fine-mapping,28,37–40 un-

der the assumption that two populations share one or more

causal variants, population-specific LDpatterns can be lever-

aged to improve performance over approaches that model a
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single population. On the other hand, several studies have

shown that heterogeneity in genetic architectures limits

transferability of polygenic risk scores (PRSs) across popula-

tions;5,41–48 critically, if applied in a clinical setting, existing

PRSs may exacerbate health disparities among ethnic

groups.49 The population specificity of existing PRSs as well

as estimates of transethnic genetic correlations less than

one reported in the literature30,50–53 indicate that (1) LD

tagging and allele frequencies of shared causal variants vary

across populations, (2) that a sizeable number of causal

variants are population specific, and/or (3) that causal effect

sizes vary across populations due to, for example, different

gene-environment interactions. In a region with popula-

tion-specific LD, a single genetic variant that is significantly

associated with a trait in two populations may actually be

taggingdistinctpopulation-specificcausalvariants(Figure1).

Conversely, two distinct associations in two populations

may be driven by the same underlying causal variants (i.e.,

colocalization). Thus, identifying shared and population-

specific components of genetic architecture could help

improve transethnic analyses (e.g., transferability of PRSs

across populations19,41,42,45,46) and uncover novel disease

etiologies.

In this work, we introduce PESCA (population-specific/

shared causal variants), an approach that requires only
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Figure 1. Toy Examples to Illustrate How
Population-Specific LD Patterns Affect
GWAS Associations
(A) SNPs 3 and 5 are causal in both East
Asians and Europeans and have the same
causal effect size of 0.1. However, due to
different LD patterns in East Asians and Eu-
ropeans, SNPs 2 and 4 are observed to be
GWAS significant, respectively.
(B) Different SNPs are causal in East Asians
(SNPs 1 and 5) and Europeans (SNPs 2
and 4). However, due to population-spe-
cific LD, SNP 3 is observed to be GWAS sig-
nificant in both populations. The stars in
the rightmost plots represent the SNPs
with true nonzero effects; the GWAS-sig-
nificant SNP is highlighted in a darker
color.
GWASsummary association statistics andancestry-matched

estimates of LD to infer genome-wide proportions of popu-

lation-specific and shared causal variants for a single trait

in two populations. These estimates are then used as priors

in an empirical Bayes framework to localize and test for

enrichment of population-specific/shared causal variants

in regions of interest. In this context, a ‘‘causal variant’’ is a

variant measured in the given GWAS that either has a

nonzero effect on the trait (e.g., a nonsynonymous variant

that alters protein folding) or tags a nonzero effect at an un-

measured variant through LD. It is therefore important to

note that the set of ‘‘causal variants’’ that PESCA aims to

identify isdefinedwith respect to the setofvariants included

in theGWASandcancontainvariantswith indirect nonzero

effects that are statistical rather than biological in nature

(this is analogous to thedefinitionofSNP-heritability,which

is also a function of a specific set of SNPs11,54–56). We also

note that the definition of enrichment used here is related

to, but conceptually distinct from,definitionsof SNP-herita-

bility enrichment.13,16 Under our framework, an enrich-

ment of causal SNPs greater than 1 indicates that, compared

to the genome-wide background, there aremore causal SNPs

in that region than expected57,58 (Material andMethods). In

contrast, an enrichment of SNP-heritability greater than 1

indicates that the average per-SNP effect size in the region

is larger than the genome-wide average per-SNP effect size.

Through extensive simulations, we show that our

method yields approximately unbiased estimates of the

proportions of population-specific/shared causal variants

if in-sample LD is used and slightly upward-biased esti-
806 The American Journal of Human Genetics 106, 805–817, June 4, 2020
mates if LD is estimated from an

external reference panel. We then

show that using these estimates as

priors to perform fine-mapping (Mate-

rial and Methods) produces well-cali-

brated per-SNP posterior probabilities

and enrichment test statistics. We

apply our approach to publicly avail-

able GWAS summary statistics for

nine complex traits and diseases in in-
dividuals of East Asian (EAS) and European (EUR) ancestry

(average NEAS ¼ 94,621, NEUR ¼ 103,507) (Table 1), restrict-

ing to common SNPs (MAF > 5%) and using 1000 Ge-

nomes59,60 to estimate ancestry-matched LD. On average

across the nine traits, we estimate that approximately

80% (SD 15%) of common SNPs that are causal in EAS

and 84% (SD 8%) of those in EUR are shared by the other

population. Consistent with previous studies based on

SNP-heritability,55,61 we find that high-posterior SNPs are

distributed uniformly across the genome. We observe

that population-specific GWAS risk regions have, on

average across the 9 traits, a 2.83 enrichment of shared

high-posterior SNPs relative to the genome-wide back-

ground, suggesting that many EAS-specific and EUR-spe-

cific GWAS risk regions harbor shared causal SNPs that

are undetected in the other population due to differences

in LD, allele frequencies, and/or GWAS sample size. The ef-

fect sizes of SNPs with posterior probability > 0.8 of being

causal (for any causal configuration) are highly correlated

between EAS and EUR, concordant with replication slopes

between EAS and EUR marginal effects close to 1 that have

been reported for several complex diseases33 and with

strong transethnic genetic correlations previously reported

for the same traits analyzed in this work (averagebrg ¼ 0:7950:07 SEM across the 9 traits).51 Finally, we

show that regions flanking genes that are specifically ex-

pressed in trait-relevant tissues62 harbor a disproportionate

number of shared high-posterior SNPs. Many of the same

tissue-specific gene sets are also enriched with SNP-herita-

bility, implying that SNP-heritability enrichments are



Table 1. Estimated Numbers and Percentages of Population-Specific/Shared Common Causal SNPs for Nine Complex Traits

Trait Name
(abbrev.) Pop. Ref. bh2

g (SE) %
Sample
Size (n)

Total # SNPs
(MAF > 5%)

EAS-Specific
Causals (SE)

EUR-Specific
Causals (SE)

Shared
Causals (SE) brg (SE)51

Body mass
index (BMI)

EAS 22 19.8 (0.6) 224,698 258,130 982 (2); 0.4% 1,033 (2); 0.4% 25,641 (16); 10% 0.80 (0.02)

EUR 63 20.6 (0.9) 158,284

Mean corpuscular
hemoglobin (MCH)

EAS 21 18.6 (2.2) 108,054 480,684 1,165 (6); 0.2% 728 (3); 0.2% 3,082 (4); 0.6% 0.88 (0.05)

EUR 64 22.7 (3.2) 172,332

Mean corpuscular
volume (MCV)

EAS 21 21.0 (2.1) 108,256 480,678 1,004 (4); 0.2% 737 (5); 0.2% 3,256 (8); 0.7% 0.89 (0.05)

EUR 64 23.6 (3.1) 172,433

High-density
lipoprotein (HDL)

EAS 21 20.7 (3.0) 70,657 268,198 3,167 (12); 1% 652 (2); 0.2% 4,789 (9); 2% 0.89 (0.06)

EUR 65 16.4 (2.2) 89,614

Low-density
lipoprotein (LDL)

EAS 21 9.5 (1.3) 72,866 268,201 969 (5); 0.4% 742 (2); 0.3% 3,129 (6); 1% 0.66 (0.11)

EUR 65 13.6 (1.9) 85,491

Total cholesterol
(TC)

EAS 21 8.1 (0.8) 128,305 268,197 1,892 (3); 0.7% 1,493 (5); 0.6% 5,058 (12); 2% 0.91 (0.07)

EUR 65 22.5 (2.1) 89,865

Triglyceride (TG) EAS 21 13.5 (3.3) 105,597 268,198 2,245 (3); 0.8% 511 (4); 0.2% 3,432 (7); 1% 0.93 (0.07)

EUR 65 13.6 (2.2) 86,502

Major depressive
disorder (MDD)

EAS 66 35.6 (3.4) 10,640 389,593 88 (4); 0.02% 3,280 (6); 0.8% 7,830 (6); 2% 0.34 (0.07)

EUR 67 19.0 (1.8) 18,759

Rheumatoid
arthritis (RA)

EAS 36 28.9 (18.3) 22,515 526,206 3 (0.3); 6e�04% 124 (2); 0.02% 1,080 (6); 0.2% 0.87 (0.10)

EUR 36 9.5 (1.9) 58,284

We estimated genome-wide SNP-heritability using LD score regression54 with the intercept constrained to 1 (i.e., assuming no population stratification). Trans-
ethnic genetic correlation estimates (brg ) computed from a similar set of summary statistics were obtained from a previous study.51 Standard errors of the estimated
numbers of population-specific/shared causal SNPs were computed using the last 50 iterations of the EM-MCMC algorithm.
driven by many low-effect SNPs rather than a small

number of high-effect SNPs. Our results suggest that com-

mon causal SNPs have similar etiological roles in EAS and

EUR and that transferability of PRS and other GWAS find-

ings across populations can be improved by explicitly cor-

recting for population-specific LD and allele frequencies.
Material and Methods

Distribution of GWAS Summary Statistics in Two

Populations
For agivencomplex trait,wemodel thecausal statusesof SNP i in two

populations as a binary vector of size two,Ci ¼ ci1ci2,where eachbit,

ci1˛f0;1g and ci2˛f0;1g, represents the causal status of SNP i in pop-

ulations 1 and 2, respectively. Ci ¼ 00 indicates that SNP i is not

causal in either population; Ci ¼ 01 and Ci ¼ 10 indicate that SNP

i is causal only in the first and second population, respectively; and

Ci ¼ 11 indicates thatSNP i is causal inbothpopulations.Weassume

Ci follows a multivariate Bernoulli (MVB) distribution68,69

Ci � MVB
�
f00; f01; f10; f11

�
in order to facilitate optimization and interpretation (Supple-

mental Material and Methods). Assuming the causal status vector

of a SNP is independent from those of other SNPs (CitCj for is j),

the joint probability of the causal statuses of p SNPs is PrðC1;/;

CpÞ ¼ Qp
i¼1

PrðCiÞ.
The Ame
Given two genome-wide association studies with sample sizes n1

and n2 for the first and second populations, respectively, we derive

the distribution of Z-scores, Z1 and Z2 (both are p31 vectors), con-

ditional on the causal status vectors for each population,

c1 ¼ ðc11;/; cp1ÞT and c2 ¼ c12;/; cp2
� �T

. Although it is reason-

able to suspect that there are nonzero cross-population correla-

tions of effect sizes at shared causal SNPs, to facilitate inference,

we impose the (potentially strong) assumption that Z1 and Z2

are independent given c1 and c2. Thus, for population j,

Zj

��cj � MVN 0;V j þ s2
j V jdiag cj

� �
V j

� �
where V j is the p3p LD matrix for population j; diagðcjÞ is a diag-

onalmatrix in which the kth diagonal element is 1 if ckj ¼ 1 and 0 if

ckj ¼ 0; and s2j ¼ ðnjh
2
gj =
��cj��Þ, where h2

gj and
��cj�� are the SNP-herita-

bility of the trait and the number of causal SNPs, respectively, in

population j (Supplemental Material and Methods).

Finally, wederive the joint probability ofZ1 andZ2 by integrating

over all possible causal status vectors in the two populations:

Pr Z1;Z2; fð Þ ¼
X
c1

X
c2

"Yp
i¼1

PrðCi ¼ ci1ci2Þ

Y2
j¼1

MVN Zj; 0;V j þ s2
j V jdiag cj

� �
V j

� �#
(Equation 1)

where f ¼ f00; f01; f10; f11ð Þ is the vector of parameters of the MVB

distribution. In practice, we partition the genome into
rican Journal of Human Genetics 106, 805–817, June 4, 2020 807



approximately independent regions70 and model the distribution

of Z-scores at all regions as the product of the distribution of Z-

scores in each region (Supplemental Material and Methods).

Estimating Genome-wide Proportions of Population-

Specific/Shared Causal SNPs
We use expectation-maximization (EM) coupled with Markov

Chain Monte Carlo (MCMC) to maximize the likelihood function

in Equation 1 over the MVB parameters f . We initialize f to

f ¼ 0;�3:9;�3:9;3:9ð Þ which corresponds to 2% of SNPs being

causal in population 1, 2% being causal in population 2, and 2%

being shared causals. In the expectation step, we approximate

the surrogate function Q f jf tð Þ
� �

using an efficient Gibbs sampler;

in the maximization step, we maximize Q f jf tð Þ
� �

using analytical

formulae (Supplemental Material and Methods). From the esti-

mated f , denoted f �, we recover the proportions of population-

specific and shared causal SNPs. For computational efficiency, we

apply the EM algorithm to each chromosome in parallel and

aggregate the chromosomal estimates to obtain estimates of the

genome-wide proportions of population-specific/shared causal

SNPs.

Evaluating per-SNP Posterior Probabilities of Being

Causal in a Single or Both Populations
We estimate the posterior probability of each SNP to be causal in a

single population (population-specific) or both populations

(shared), using the estimated genome-wide proportions of popula-

tion-specific and shared causal variants (obtained from f �) as prior
probabilities in an empirical Bayes framework. Specifically, for

each SNP i, we evaluate the posterior probabilities PrðCi ¼ 01jZ1;

Z2; f
�Þ, PrðCi ¼ 10jZ1; Z2; f

�Þ, and PrðCi ¼ 11jZ1; Z2; f
�Þ. Since

evaluating these probabilities requires integrating over the poste-

rior probabilities of all 2ð2pÞ possible causal status configurations,

we use a Gibbs sampler to efficiently approximate the posterior

probabilities (Supplemental Material and Methods).

Estimating the Numbers of Population-Specific/Shared

Causal SNPs in a Region
We infer the posterior expected numbers of population-specific/

shared causal SNPs in a region (e.g., an LD block or a chromosome)

conditional on the Z-scores (Z1 and Z2) by summing, across all

SNPs in the region, the per-SNP posterior probabilities of being

causal in a single or both populations. For example, in a region

with p SNPs, the posterior expected number of shared causal

SNPs is E½q11
��Z1; Z2; f

�� ¼ Pp
i¼1

E½1fCi¼11g
��Z1; Z2; f

�� ¼ Pp
i¼1

PrðCi ¼

11jZ1; Z2; f
�Þ. Since SNPs in a region are highly correlated, inva-

lidating the use of jackknife to estimate standard errors, we refrain

from reporting standard errors of the posterior expected regional

numbers of population-specific/shared causal SNPs.
Defining LD Blocks that Are Approximately Independent

in Two Populations
For computational efficiency, PESCA assumes that, in both popu-

lations, a SNP in a given block is independent from all SNPs in all

other blocks. This assumption requires defining blocks of SNPs

that are approximately LD independent in both populations. To

this end, we first compute the ‘‘transethnic LD matrix’’ ðV transÞ
from the East Asian- and European-ancestry LD matrices (VEAS

and VEUR) by setting each element in the transethnic LD matrix
808 The American Journal of Human Genetics 106, 805–817, June 4,
to the larger of the East Asian-specific and European-specific pair-

wise LD; i.e., V trans;ij ¼ VEAS;ij if
��VEAS;ij

�� > ��VEUR;ij

�� and

V trans;ij ¼ VEUR;ij if
��VEUR;ij

�� > ��VEAS;ij

��. The resulting matrix V trans

is block diagonal due to shared recombination hotspots in both

populations; in practice, we apply this procedure to each chromo-

some separately to obtain 22 chromosome-wide transethnic LD

matrices. We then apply LDetect70 to define LD blocks within

the transethnic LD matrix. Applying this procedure using the

1000 Genomes Phase 3 reference panel59,60 to create the transeth-

nic LD matrix produces 1,368 LD blocks (average length of 2 Mb)

that are approximately independent in individuals of East Asian

and European ancestry.
Enrichment of Population-Specific/Shared Causal SNPs

in Functional Annotations
We define the enrichment of population-specific/shared causal

SNPs in a functional annotation as the ratio between the posterior

and prior expected numbers of population-specific/shared causal

SNPs. Specifically, we estimate the enrichment of population-spe-

cific/shared causal SNPs in a functional annotation k relative to

the genome-wide background as

bak;b ¼
E
h
qk;b

���Z1;Z2; f
�
i

E
h
qk;bjf �

i ¼
P

i ˛ jðkÞPrðCi ¼ bjZ1;Z2; f
�Þ

pkPrðCi ¼ bÞ

where b˛f01; 10; 11g, qk;b is the number of population-specific

(b ¼ 01 or b ¼ 10) or shared ðb¼ 11Þ causal variants, jðkÞ is the
set of SNPs in functional annotation k, and pk is the number of

SNPs in functional annotation k. The numerator, E½qk;b
���Z1; Z2;

f ��, and denominator, E½qk;b
���f ��, represent the posterior (condi-

tioned on Z-scores) and prior expected numbers of causal SNPs

in functional annotation k, respectively. We estimate the standard

error of bak;b using block jackknife over 1,368 non-overlapping

approximately LD-independent blocks across the entire genome.

The resulting enrichment test statistics, bak;b � 1
� �

=SE bak;b

� �
,

approximately follow a t-distribution with degrees of freedom

equal to the number of blocks minus 1.71 Since we are interested

in identifying categories of SNPs that harbormore population-spe-

cific/shared causal SNPs than expected (i.e., enrichment > 1), we

report p values from a one-tailed t test where the null hypothesis

is enrichment % 1.

We note that our definition of enrichment of causal SNPs is

related to, but conceptually different from, enrichment of

SNP-heritability.13,16,62 A positive enrichment of causal SNPs

in a functional category indicates that, compared to the

genome-wide background, there are more causal SNPs in that

category than expected; a positive enrichment of SNP-heritabil-

ity in a category indicates that the average per-SNP effect size in

the category is larger than the genome-wide average per-SNP ef-

fect size.
Simulation Framework
We used real chromosome 22 genotypes of 10,000 individuals of

East Asian ancestry from CONVERGE66 and 50,000 individuals

of white British ancestry from the UK Biobank72,73 to simulate

causal effects and phenotypes. First, we used PLINK74 (v.1.9) to re-

move redundant SNPs in the 1000 Genomes Phase 3 reference

panel59,60 such that there are no pairs of SNPs with r2ij > 0:95

ðisjÞ. We also removed strand-ambiguous SNPs and SNPs with
2020



MAF < 1% in either reference panel, resulting in a total of M ¼
8,599 SNPs on chromosome 22 to use in simulations.

Given genotypes at M SNPs for n1 and n2 individuals in popula-

tions 1 and 2, respectively, we assume the standard linear models

y1 ¼ X1b1 þ ε1 (population 1) and y2 ¼ X2b2 þ ε2 (population 2).

We assume the phenotypes are standardized within each popula-

tion such that E½y1� ¼ 0, Var½y1� ¼ I and E½y2� ¼ 0, Var½y2� ¼ I.

Given c1 and c2, the index sets of causal SNPs in each population,

the effects at the ith causal SNP in each population, b1i and b2i, are

drawn from

b1c1

�����c1 � MVN 0;
h2
g1

jc1jIc1
 !

; b2c2

��c2 � MVN 0;
h2
g2

jc2jIc2
 !

where jc1j ¼
PM
i¼1

ci1 and jc2j ¼
PM
i¼1

ci2 are the total numbers of causal

SNPs in each population, h2
g1 and h2

g2 are the total SNP-heritabil-

ities in each population, and E½b1ib1j� ¼ Cov½b1i; b1j� ¼ 0 and

E½b2ib2j� ¼ Cov½b2i; b2j� ¼ 0 for SNPs isj. The effects at non-causal

SNPs are set to 0. The environmental effects for the nth individual

in each population are drawn i.i.d. from e1n � N 0;1� h2
g1

� �
and

e2n � Nð0; 1 � h2
g2Þ.

Finally, given the real genotypes and simulated phenotypes for

each population, we compute Z-scores for all SNPs in population k

as Zk ¼ 1=ð ffiffiffiffiffi
nk

p ÞyT
k Xk.
Application to Nine Complex Traits and Diseases
We downloaded publicly available East Asian- and European-

ancestry GWAS summary statistics for body mass index (BMI),

mean corpuscular hemoglobin (MCH), mean corpuscular volume

(MCV), high-density lipoprotein (HDL), low-density lipoprotein

(LDL), total cholesterol (TC), triglycerides (TG), major depressive

disorder (MDD), and rheumatoid arthritis (RA) from various

sources (Table 1). The European-ancestry BMI GWAS is doubly cor-

rected for genomic inflation factor,63 which induces downward-

bias in the estimated SNP-heritability; we correct this bias by re-

inflating the Z-scores for this GWAS by a factor of 1.24. For all

traits, we restrict to SNPs with MAF > 5% in both populations to

reduce noise in the LD matrices estimated from 1000 Ge-

nomes.59,60 We use PLINK74 (v.19) to remove redundant SNPs

such that br2ij < 0:95 for all SNPs isj in both ancestry-matched

1000 Genomes59,60 reference panels. The resulting numbers of

SNPs that were analyzed for each trait are listed in Table 1.

For each trait, we test for enrichment of population-specific/

shared causal SNPs in 53 publicly available tissue-specific gene an-

notations,62 each of which represents a set of genes that are ‘‘spe-

cifically expressed’’ in a GTEx75 tissue (referred to as ‘‘SEG annota-

tions’’).We set the threshold for statistical significance to p value<

0.05/53 (Bonferroni correction for the number of tests performed

per trait).
Results

Performance of PESCA in Simulations

We assessed the performance of PESCA in simulations

starting from real genotypes of individuals with East

Asian66 (EAS) or European72,73 (EUR) ancestry (NEAS ¼
10K, NEUR¼ 50K,M¼ 8,599 SNPs) (Material andMethods).

First, we find that when in-sample LD from the GWAS is
The Ame
available, PESCA yields approximately unbiased estimates

of the numbers of population-specific/shared causal SNPs

(Figure 2, top panel). For example, in simulations where

we randomly selected 50 EAS-specific, 50 EUR-specific,

and 50 shared causal SNPs, we obtained estimates (and cor-

responding standard errors) of 37.8 (4.5) EAS-specific, 40.3

(4.9) EUR-specific, and 64.9 (6.3) shared causal SNPs,

respectively. When external reference LD is used (in this

case, from 1000 Genomes59,60), PESCA yields a slight up-

ward bias (Figure 2, bottom panel); on the same simulated

data, we obtained estimates of 48.0 (5.9) EAS-specific, 53.7

(7.44) EUR-specific, and 78.8 (7.6) shared causal SNPs.

We observe a slight decrease in accuracy as the effective

sample size, the product of SNP-heritability and sample

size (N3h2
g ), decreases (Figures S1–S5). This is expected

as the likelihood of the GWAS summary statistics is a

function of N3h2
g (Material and Methods)—as the ex-

pected per-SNP variance at causal SNPs (N3h2
g divided

by the number of causal SNPs) decreases, GWAS summary

statistics provide less information on the causal status of

each SNP. Since it is often the case that the sample size

of one GWAS is larger than that of the other, we perform

simulations in which SNP-heritability is fixed to 0.05 in

both populations, the EAS sample size is fixed to NEAS ¼
104, and the EUR sample size is varied such that the effec-

tive sample size of the EUR GWAS is 1–53 larger than that

of the EAS GWAS. We find that the genome-wide estima-

tors are relatively robust with in-sample LD; with external

estimates of LD, when effective sample size differs by a

factor of 2 or more, the estimator for the number of

EUR-specific causal SNPs becomes less biased while the

EAS-specific and shared causal estimators become increas-

ingly inflated (Figure S6). In addition, while it seems likely

that the effect sizes of shared causal SNPs would be posi-

tively correlated across populations, the PESCA model as-

sumes zero cross-population correlation in order to facili-

tate inference (Material and Methods). We therefore

perform simulations under an alternative model in which

EAS and EUR effect sizes at shared causal SNPs are posi-

tively correlated and find that our estimates of the

genome-wide numbers of shared and population-specific

causal SNPs become increasingly inflated and deflated,

respectively, as the correlation increases from 0 to 1

(Figure S7).

Next, we use the estimated genome-wide proportions of

population-specific/shared causal SNPs to evaluate per-

SNP posterior probabilities of being causal in a single pop-

ulation (EAS only or EUR only) or in both populations

(Material and Methods). For each of the three causal con-

figurations of interest (EAS only, EUR only, and shared),

we observe an increase in the average correlation between

the per-SNP posterior probabilities and the true causal sta-

tus vector for that configuration as N3h2
g increases and as

the total number of causal SNPs decreases (i.e., as per-SNP

causal effect sizes increase) (Figures S8 and S9). As ex-

pected, as the simulated proportion of shared causal

SNPs increases, the average correlation between the
rican Journal of Human Genetics 106, 805–817, June 4, 2020 809



Figure 2. Genome-wide Estimates of the Numbers of Population-Specific/Shared Causal SNPs in Simulations
The estimates are approximately unbiased when in-sample LD is used (top) and upward-biased when external reference LD is used (bot-
tom). For both populations, we simulate such that the product of SNP-heritability and GWAS sample size is 500. Mean and standard
errors were obtained from 25 independent simulations. Error bars represent 51.96 of the standard error.
posterior probabilities and true causal status vectors in-

creases for the shared causal configuration and decreases

for the population-specific causal configurations (Figures

S8 and S9). Since we did not have access to individual-

level genotypes sampled from an ancestral group with

shorter LD blocks (e.g., African-ancestry individuals), we

use the EAS and EUR LD scores of each SNP as proxies

for the strength of LD in the region housing the SNP to

investigate the impact of population-specific LD patterns

on the per-SNP posterior probabilities. Among the true

causal SNPs (shared or population-specific), the posterior

probabilities are relatively invariant to the magnitude of

the EAS and EUR LD scores (Figure S10). In other words,

under the PESCA framework, power to detect a given

true causal SNP does not depend on its LD score in either

population. Restricting to a set of ‘‘high-posterior SNPs’’

(defined here as SNPs with posterior probability greater

than some threshold t), we investigate whether PESCA

systematically misclassifies SNPs based on the magnitude

of their LD scores. Again, we observe that the average EAS

and EUR LD scores do not vary significantly between the

true and false positive classifications (Table S1). We then

assessed whether our proposed statistics for testing for

enrichment of population-specific/shared causal SNPs

in functional annotations (Material and Methods) are

well calibrated under the null hypothesis of no enrich-

ment. Overall, when both population-specific and shared

causal SNPs are drawn at random, the enrichment test

statistics are conservative at different levels of polygenic-

ity and GWAS power (N3h2
g ), irrespective of whether in-
810 The American Journal of Human Genetics 106, 805–817, June 4,
sample LD or external reference LD is used (Figures S11

and S16).

Finally, we evaluated the computational efficiency of

each stage of inference. In the first stage of inference—esti-

mating genome-wide proportions of population-specific/

shared causal SNPs—the maximization step of the EM al-

gorithm uses Gibbs sampling to efficiently sample from

the posterior of the causal status vectors (Supplemental

Material and Methods). We set both the number of burn-

in iterations and the number of samples to 5,000 for the

MCMC within the maximization step and found that the

overall EM typically converged within 200 iterations (Fig-

ures S17–S19). Run-time per EM-iteration increases with

the number of causal SNPs (Figure S20); for example, in

simulations with a total of 8,589 SNPs, when the

maximum number of EM iterations was set to 200, PESCA

took an average of 90 min to obtain estimates in simula-

tions with 20 randomly selected causal variants and

360 min in simulations with 100 randomly selected causal

SNPs. This is expected because the likelihood function be-

ing maximized is proportional to the Bayes factor of only

the causal SNPs (Supplemental Material and Methods). In

the second stage of inference—evaluating posterior proba-

bilities for each SNP—we set both the number of burn-in

iterations and the number of samples to 5,000 for the

MCMC and, to ensure stable estimates of the posterior

probability, we report the average posterior probability

from 20 iterations of the Gibbs sampling procedure. The

average run-time was 5 min in simulations with 20 causal

variants and 28 min in simulations with 100 causal
2020



Figure 3. Distributions of the Numbers of
Population-Specific/Shared Causal SNPs
across 1,368 Regions that are Approxi-
mately Independent in Both EAS and EUR
Each violin plot represents the distribution
of the posterior expected number of popula-
tion-specific (red/green) or shared (blue)
causal SNPs per region; details on how the
regions were defined can be found in the
Material and Methods. For a single region,
the posterior expected number of SNPs in
a given causal configuration is estimated
by summing, across all SNPs in the region,
the per-SNP posterior probabilities of hav-
ing that causal configuration. The dark lines
mark the means of the distributions. The
traits are sorted on the x-axis by the average
number of shared high-posterior SNPs per
region.
variants (Figure S20). We note that both stages of inference

can be parallelized to decrease run time.

Expected Genome-wide Proportions of Shared Causal

SNPs for Nine Complex Traits

We obtained publicly available GWAS summary statistics

for nine (non-independent) complex traits and diseases

in individuals of EAS and EUR ancestry (average NEAS ¼
94,621, NEUR ¼ 103,507) (Table 1) and applied PESCA to

estimate the genome-wide proportions of population-spe-

cific/shared common causal SNPs (Material and Methods).

To ensure convergence, we applied 750 EM iterations for

each trait (Figures S21–S23). Across the nine traits, the esti-

mated proportions of common causal SNPs in each popu-

lation (the sum of the numbers of population-specific and

shared causal SNPs) are consistent with previously reported

estimates of polygenicity in single populations.7,8,55,76,77

For example, we estimate that approximately 10% of com-

mon SNPs have nonzero effects on BMI in both EAS and

EUR and that 2%–3% have nonzero effects on the lipids

traits (Table 1). The low estimates for major depressive dis-

order and rheumatoid arthritis may be explained in part by

their small GWAS sample sizes. While there is heterogene-

ity in the estimated proportions of shared causal SNPs

across the nine traits, we find that most common causal

SNPs are shared between the populations, consistent

with findings from previous studies.33 For example, for

BMI, we estimate that approximately 96% of common

causal SNPs in each population are also causal in the other;

for total cholesterol (TC), we estimate that 73% of com-

mon causal SNPs in EAS and 77% of those in EUR are

shared by both populations (Table 1).

High-Posterior SNPs Are Distributed Nearly Uniformly

across the Genome

We define 1,368 regions that are approximately LD inde-

pendent in both populations and estimate the posterior
The Ame
expected numbers of population-specific/shared causal

SNPs in each region (Material and Methods). For all nine

traits, high-posterior SNPs for both the population-specific

and shared causal configurations are spread nearly uni-

formly across the genome (Figures 3 and S24–S31). For

example, mean corpuscular hemoglobin (MCH) harbored,

on average, 0.68 (SD 0.42) EAS-specific, 0.53 (SD 0.40)

EUR-specific, and 2.19 (SD 1.46) shared high-posterior

SNPs per region (Figures 3 and S29). Aggregating posterior

probabilities by chromosome, we find that the posterior

expected numbers of EAS-specific, EUR-specific, and

shared causal SNPs per chromosome are highly correlated

with chromosome length (Figures S32–S34), recapitulating

previous findings based on regional SNP-heritability.55,61
Distributions of High-Posterior SNPs across GWAS Risk

Regions

We aggregate per-SNP posterior probabilities within GWAS

risk regions that are EAS-specific, EUR-specific, or shared by

both populations and find that most GWAS risk regions

harbor two or more shared high-posterior SNPs (Figures 4

and S35–S39), concordant with previous findings on allelic

heterogeneity of complex traits.55,78,79 On average across

the 9 traits, we observe a 2.83 enrichment of shared

high-posterior SNPs in population-specific GWAS risk re-

gions relative to the genome-wide background. For

example, for MCH, the EAS-specific and EUR-specific

GWAS risk regions harbor an average of 3.0 (SD 1.7) and

3.3 (SD 1.5) shared high-posterior SNPs per region, respec-

tively, whereas the average number of shared high-poste-

rior SNPs per region across all regions is 2.0 (SD 1.3)

(Figure 4). While BMI, the blood traits (MCH and MCV),

and rheumatoid arthritis have similar numbers of EAS-spe-

cific and EUR-specific high-posterior SNPs in their popula-

tion-specific GWAS risk regions, the lipids traits (HDL,

LDL, total cholesterol, and triglycerides) have significantly
rican Journal of Human Genetics 106, 805–817, June 4, 2020 811



Figure 4. Distributions of the Numbers of Population-Specific/
Shared Causal Variants at GWAS Risk Regions for Mean Corpus-
cular Hemoglobin (MCH)
Each violin plot represents the distribution of the posterior
expected number of population-specific (red/green) or shared
(blue) causal SNPs at regions with significant associations
(pGWAS < 5310�8) in EAS GWAS only, EUR GWAS only, both
EAS and EUR, and neither GWAS. The dark lines mark the means
of the distributions.
more EAS-specific high-posterior SNPs in all GWAS risk re-

gions (Figures 4 and S35–S39).

For each causal configuration (EAS-specific, EUR-spe-

cific, or shared), we examine the effect sizes of high-

posterior SNPs (posterior probability > 0.8) in EAS and

EUR (Figure 5). Across the 9 traits, the majority of EAS-

specific high-posterior SNPs are nominally significant

(pGWAS < 5310�6) either in the EAS GWAS only or in

both GWASs. While five EUR-specific high-posterior

SNPs are nominally significant in only the EAS GWAS,

the majority are nominally significant either in the EUR

GWAS only or in both GWASs. We observe strong correla-

tions between the effect sizes in EAS and EUR for all three

sets of high-posterior SNPs (Pearson r2 of 0.79 [EAS-spe-

cific], 0.73 [EUR-specific], and 0.80 [shared]) that are

driven by SNPs that are nominally significant in both

GWASs (Figure 5). Taken together, these results suggest

that most population-specific GWAS risk regions harbor

shared causal variants that are undetected in the other

population due to heterogeneity in LD structures, allele

frequencies, and/or GWAS sample sizes.

Enrichment of High-Posterior SNPs near Genes

Expressed in Trait-Relevant Tissues

Motivated by recent work that found enrichment of

SNP-heritability in regions near genes that are ‘‘specifically

expressed’’ in trait-relevant tissues and cell types (referred

to as ‘‘SEG annotations’’), we tested for enrichments of

population-specific and shared causal SNPs in the same

53 tissue-specific SEG annotations.62 For a given causal

configuration, the enrichment of causal SNPs in an anno-

tation is defined as the ratio between the posterior and

prior expected numbers of causal SNPs in the annotation

(Material andMethods). For 8 of the 9 traits, we find signif-

icant enrichment of shared high-posterior SNPs in at least

one SEG annotation (p value < 0.05/53 to correct for 53
812 The American Journal of Human Genetics 106, 805–817, June 4,
tests per trait) (Figures S40–S44). All SEG annotations

with significant enrichments of population-specific high-

posterior SNPs are also enriched with shared high-posterior

SNPs for the same trait, providing additional evidence that

many signatures of population-specific genetic architec-

ture are induced by population-specific LD and allele fre-

quencies rather than distinct genetic etiologies. We do

not find enrichment of any high-posterior SNPs in any

SEG annotation for major depressive disorder (MDD)

(Figure S44), which could be due to low GWAS sample sizes

(Table 1). Finally, for each SEG annotation, we obtain a

meta-analyzed transethnic SNP-heritability enrichment

by computing the inverse-variance weighted average of

the EAS and EUR SNP-heritability enrichments (estimated

separately using stratified LD score regression13,16). We

observe a strong correlation between the meta-analyzed

SNP-heritability enrichments and the enrichments of

shared high-posterior SNPs (Figure 6), suggesting that

SNP-heritability enrichments are largely driven by many

low-effect SNPs rather than a small number of high-effect

SNPs.
Discussion

We have presented PESCA, a method for estimating the

genome-wide proportions of SNPs with nonzero effects

in a single population (population-specific) or in two pop-

ulations (shared) from GWAS summary statistics and esti-

mates of LD. We applied PESCA to EAS and EUR GWAS

summary statistics for nine complex traits and find that,

while the lipids traits have significantly more EAS-specific

common causal SNPs compared to the remaining traits,

the majority of common causal SNPs are shared by both

populations. Regions that harbor statistically significant

GWAS associations for one population are enriched with

SNPs with high-posterior probability of being causal in

both populations. Morever, high-posterior SNPs (posterior

probability> 0.8 for any causal configuration) have highly

correlated effect sizes in EAS and EUR, recapitulating find-

ings of previous studies.33 For all traits except MDD, we

identify tissue-specific SEG annotations62 enriched with

shared high-posterior SNPs and observe that all SEG anno-

tations enriched with population-specific high-posterior

SNPs are a subset of those enriched with shared high-pos-

terior SNPs. Taken together, our results indicate that most

population-specific GWAS risk regions contain shared

common causal SNPs that are undetected in the second

population due to differences in LD or allele frequencies.

This suggests that localizing shared components of genetic

architecture and explicitly correcting for population-spe-

cific LD and allele frequencies may help improve transfer-

ability of results from well-powered European-ancestry

studies to other understudied populations. Based on the

simulation results in Figure S1 (in which 100% of causal

SNPs are shared) and our estimates of SNP-heritability for

the traits in Table 1, we recommend applying PESCA to
2020



A B C Figure 5. Marginal Regression Coeffi-
cients of High-Posterior SNPs for Nine
Complex Traits
Each plot corresponds to one of the three
causal configurations of interest: EAS-spe-
cific (A), EUR-specific (B), and shared (C).
Each point represents a SNP with posterior
probability > 0.8 for a single trait. The x-
axis and y-axis mark the estimated marginal
effect sizes in EAS and EUR, respectively.
The colors indicate whether the SNP is

nominally significant (pGWAS < 5310�6) in both GWASs (purple), the EAS GWAS only (orange), the EUR GWAS only (green), or in
neither GWAS (gray). The gray band marks the 95% confidence interval of the regression line.
summary statistics for which the effective per-SNP sample

size,N3h2
g divided by the number of causal SNPs, is at least

3 for both GWASs. For a typical quantitative trait (e.g., Ta-

ble 1), this corresponds to a total effective sample size of

approximately N3h2
g > 10;000.

We conclude by discussing the caveats and limitations of

our analyses. First, the estimated proportions of causal

SNPs must be interpreted with caution as they can be influ-

enced by gene-environment interactions. For example, if a
Figure 6. Enrichments of Shared High-Posterior SNPs in 53 Tis-
sue-Specific Functional Categories are Highly Correlated with
SNP-Heritability Enrichments
Each point is a trait-tissue pair; each tissue-specific functional cate-
gory (SEG annotation) is a set of genes that are ‘‘specifically ex-
pressed’’ in one of 53 GTEx tissues. The x-axis is the estimated
enrichment of shared high-posterior SNPs in the SEG annotation
from PESCA. The y-axis is the meta-analyzed transethnic SNP-her-
itability explained by the SEG annotation, defined as the inverse-
variance weighted average of the EAS and EUR SNP-heritability en-
richments (estimated separately using stratified LD score regres-
sion). The points are colored by whether the trait has a statistically
significant enrichment of shared high-posterior SNPs in the corre-
sponding SEG annotation (FDR < 0.1). The gray band marks the
95% confidence interval of the regression line. Enrichment esti-
mates and standard errors for each trait-tissue pair can be found
in Figures S40–S44.

The Ame
SNP has a nonzero effect on a trait only in the presence of

environmental factors that are specific to EAS-ancestry in-

dividuals, PESCA will interpret that SNP as an EAS-specific

causal SNP even though it would have a nonzero effect in

EUR-ancestry individuals in the presence of the same envi-

ronmental factors.

Second, we chose to analyze a set of traits for which EAS

and EUR GWAS summary statistics were publicly avail-

able. Since most publicly available summary statistics of

large-scale GWAS are meta-analyses of smaller studies,

in-sample LD is often unavailable. While PESCA with in-

sample LD is relatively robust to differential GWAS power,

with external LD, performance decreases when the GWAS

effective sample sizes differ by more than a factor of 23.

We note, however, that for the real traits analyzed in

this work, effective sample size differs by a maximum fac-

tor of 23 (mean corpuscular hemoglobin; Table 1). Addi-

tionally, PESCA currently cannot be applied to admixed

populations if in-sample LD is unavailable. An extension

of PESCA to properly account for external/noisy estimates

of LD would thus increase its utility; we defer a thorough

investigation of this to future work. In parallel, in light of

ongoing efforts at several institutions to establish bio-

banks,72,73,80–82 we believe that well-powered GWASs

(with in-sample LD) will become increasingly available

for diverse and admixed populations. Another challenge

is that many publicly available summary statistics were

computed from fixed-effect meta-analyses or linear mixed

models. Since the PESCA model is defined with respect to

GWAS marginal effects estimated by ordinary least-

squares (OLS) regression, it is unclear whether PESCA is

sensitive to non-OLS association statistics, which have

different statistical properties. We defer a thorough inves-

tigation of this to future work.

Third, we restricted our analyses to SNPs with MAF >

5% in both populations to reduce noise in the LD

matrices estimated from external reference panels. Conse-

quently, the estimates we report in this work do not cap-

ture effects of low frequency or rare variants that are not

well-tagged by common SNPs. Furthermore, since most

common variants are shared across continental popula-

tions and rarer variants tend to localize among closely

related populations,60 our study design undersamples

population-specific causal variants. We note, however,

that lower MAF thresholds can be used if in-sample LD
rican Journal of Human Genetics 106, 805–817, June 4, 2020 813



is available. We also note that for the purpose of

improving transferability of polygenic risk scores (PRSs)

across populations, prediction accuracy depends largely

on the accuracy of the PRS weights at common SNPs

(the average per-SNP contribution to total SNP-heritability

is larger for common SNPs than for low frequency or rare

variants11).

Finally, PESCA can be sensitive to model misspecifica-

tion. For computational efficiency, PESCA relies on having

regions that are approximately LD independent in both

populations; if there is LD leakage between regions, the

estimated proportions of causal SNPs will be biased. We

therefore recommend defining LD blocks for each pair of

populations one analyzes. Similarly, to facilitate inference,

PESCA does not explicitly model cross-population correla-

tions of effect sizes at shared causal variants. We conjecture

that modeling these correlations can further improve

performance.
Supplemental Data

Supplemental Data can be found online at https://doi.org/10.

1016/j.ajhg.2020.04.012.
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Web Resources

Biobank Japan summary statistics, http://jenger.riken.jp/en/result

CONVERGE genotype data, https://www.ebi.ac.uk/eva/?eva-

study¼PRJNA289433

GIANT summary statistics, http://portals.broadinstitute.org/

collaboration/giant

GWAS summary statistics for hematological traits, http://www.

bloodcellgenetics.org

LD score regression, https://github.com/bulik/ldsc

PESCA, https://github.com/huwenboshi/pesca

PLINK 1.9, https://www.cog-genomics.org/plink/1.9/

Popcorn, https://github.com/brielin/Popcorn

SEG annotations, https://data.broadinstitute.org/alkesgroup/

LDSCORE/LDSC_SEG_ldscores
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