Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 May 5;76(Pt 6):807–810. doi: 10.1107/S2056989020005964

Crystal structure and Hirshfeld surface analysis of 1,3-diethynyladamantane

Kostiantyn V Domasevitch a,*, Anna S Degtyarenko a
PMCID: PMC7273986  PMID: 32523744

The title compound exhibits exceptionally weak inter­molecular C—H⋯π hydrogen bonding of the ethynyl groups, with the corresponding H⋯π separations [2.91 (2) and 3.12 (2) Å] exceeding normal vdW distances. This bonding compliments distal contacts of the CH (aliphatic)⋯π type [H⋯π = 3.12 (2)–3.14 (2) Å] to sustain supra­molecular layers.

Keywords: crystal structure, C—H⋯π hydrogen bond, Hirschfeld surface analysis, adamantane, terminal alkyne

Abstract

The title compound, C14H16, exhibits exceptionally weak inter­molecular C—H⋯π hydrogen bonding of the ethynyl groups, with the corresponding H⋯π separations [2.91 (2) and 3.12 (2) Å] exceeding normal vdW distances. This bonding complements distal contacts of the CH (aliphatic)⋯π type [H⋯π = 3.12 (2)–3.14 (2) Å] to sustain supra­molecular layers. Hirshfeld surface analysis of the title compound suggests a relatively limited significance of the C⋯H/H⋯C contacts to the crystal packing (24.6%) and a major contribution from H⋯H contacts accounting 74.9% to the entire surface.

Chemical context  

Terminal alkynes provide self-complementary hydrogen-bond donor and acceptor functionality to sustain weak C—H⋯π inter­actions (Nishio, 2004). The latter dominate the crystal structure of acetyl­ene (McMullan et al., 1992). In the case of polyfunctional species, the significance of such C—H⋯π inter­actions is rather low, since only 13.3% of related structures exhibit this kind of bonding (Allen et al., 2013). This may be associated with the specific geometry demands that concern an orthogonal orientation of the donor and acceptor alkyne groups. It is not surprising that examples for C—H⋯π-driven self-assembly of terminal diynes are particularly rare. These examples are restricted to a few structures of hydro­carbons lacking stronger supra­molecular inter­actions. Most of the literature precedents, such as 1,4-diethynyl­benzene (Weiss et al., 1997), 1,4-diethynylcubane (Eaton et al., 1994) and α,ω-octa- and deca­diynes (Bond, 2002) feature collinear orientations of the ethynyl groups within the molecules, which are beneficial for the generation of the simplest of supra­molecular patterns. In the case of angular diynes, the demands of dense mol­ecular packing may be less compatible with highly directional orthogonal inter­actions of C≡CH (donor) and C≡CH (acceptor) groups. One can anti­cipate the essential distortion and weakening (if not elimination at all) of the C—H⋯π bonding.graphic file with name e-76-00807-scheme1.jpg

In this context, we have examined the angular compound 1,3-diethynyladamantane and report its crystal structure herein. The crystal packing of 1,3-disubstituted adamantanes also recently attracted attention in the context of polymorphism and the formation of plastic phases (Negrier et al., 2020).

Structural commentary  

The mol­ecular structure of the title compound is shown in Fig. 1. The bonds lengths in the carbocyclic framework [1.5213 (19)–1.5418 (15) Å; mean C—C = 1.532 (2) Å] are typical for adamantane derivatives, for example 1,3-di­phenyl­adamantane with mean C—C = 1.530 (6) Å (Tukada & Mochizuki, 2003). At the same time, these bonds are slightly shorter than those observed for an adamantane-1,3-diyl core bearing two electron-donor groups, such as 1,3-dimethyl- [mean C—C = 1.562 (6) Å] and 1,3-di­hydroxy­adamantanes [mean C—C = 1.563 (2) Å] (Negrier et al., 2020). The alkyne fragments C5—C1≡C2 and C7—C3≡C4 are linear, with the corresponding bond angles being 177.47 (13) and 178.31 (12)°, respectively. The geometries of these fragments [C1≡C2 = 1.1763 (17); C3≡C4 = 1.1812 (19) Å and C1—C5 = 1.4708 (15), C3—C7 = 1.4673 (16) Å] are consistent with the data for non-conjugated terminal alkynes, for example 1,7-octa­diyne [1.186 (2) and 1.464 (2) Å, respectively; Bond, 2002].

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 40% probability level and the H atoms are shown as small spheres of arbitrary radii.

Supra­molecular features  

Hydrogen-bond inter­actions of the alkyne groups are exceptionally weak and there are no H⋯π separations (π is defined as a centroid of the triple-bonded atoms) falling into the inter­val of 2.39–2.90 Å suggested by Allen et al. (2013). Even the shortest related contact [C1C2H⋯C4i = 2.905 (18) Å; symmetry code: (i) x, −Inline graphic − y, Inline graphic + z], is longer than the normal vdW separation of 2.87 Å (Zefirov, 1997). In particular, the distal inter­actions of the C3≡C4H donors [H⋯π = 3.12 (2) Å] do not differ in geometry from a set of H⋯π contacts established by the methyl­ene (C6 and C10) and methyne (C12) groups (Table 1). Both ethynyl groups are donors of such CH⋯π bonding, whereas their acceptor functions are not uniform. The C3≡C4H groups accept two C≡CH⋯π bonds and establish an additional comparable contact with an aliphatic donor, while the C1≡C2H groups maintain only two distal contacts with the aliphatic CH portion. Mutual bonding of C3≡C4H groups [H⋯π = 3.12 (2) Å; symmetry code: (ii) −x, −Inline graphic + y, −Inline graphic − z] as well as contacts with the methyne groups C12H⋯Cg(C1C2)v [H⋯π = 3.14 (2) Å; Cg is a group centroid; symmetry code: (v) x, 1 + y, z] link the mol­ecules into zigzag chains along the b-axis direction (Fig. 2). These aggregate into layers, which are parallel to the bc plane with a set of the above bonds involving C1≡C2H donors and C3≡C4H (x, −Inline graphic − y, Inline graphic + z) acceptors. The shortest contacts between successive layers concern inter­actions involving the methyl­ene groups C10H⋯Cg(C1C2)iv [H⋯π = 3.14 (2) Å; symmetry code: (iv) 1 − x, Inline graphic + y, Inline graphic − z; Fig. 3].

Table 1. Geometry of the shortest C—H⋯π contacts (Å, °).

Cg is a group centroid.

D—H⋯π D—H H⋯π DA D—H⋯π
Contacts with ethyne CH donors
C2—H2⋯Cg(C3C4)i 0.927 (19) 2.91 (2) 3.679 (2) 140.7 (14)
C4—H4⋯Cg(C3C4)ii 0.96 (2) 3.12 (2) 3.958 (2) 146.5 (14)
         
Contacts with aliphatic CH donors
C6—H6BCg(C3C4)iii 0.970 (13) 3.12 (2) 4.030 (2) 155.9 (10)
C10—H10ACg(C1C2)iv 0.957 (16) 3.14 (2) 3.853 (2) 133.0 (10)
C12—H12⋯Cg(C1C2)v 0.967 (16) 3.14 (2) 3.904 (2) 136.7 (12)

Symmetry codes: (i) x, −Inline graphic − y, Inline graphic + z; (ii) −x, −Inline graphic + y, −Inline graphic − z; (iii) −x, −y, −z; (iv) 1 − x, Inline graphic + y, Inline graphic − z; (v) x, 1 + y, z.

Figure 2.

Figure 2

Fragment of the title crystal structure showing two zigzag chains (marked in blue and grey) running along the b-axis direction in the crystal, with a set of shortest C—H⋯π contacts indicated by dashed lines [symmetry codes: (i) x, −Inline graphic − y, Inline graphic + z; (ii) −x, −Inline graphic + y, −Inline graphic − z; (v) x, 1 + y, z].

Figure 3.

Figure 3

Packing of the C—H⋯π-bonded chains with the formation of layers, which are parallel to the bc plane. The blue color identifies a single chain that is marked in a similar manner in Fig. 2, and dashed lines indicate C—H⋯π contacts within the layer and methyl­ene⋯π contacts between adjacent layers. [Symmetry codes: (i) x, −Inline graphic − y, Inline graphic + z; (ii) −x, −Inline graphic + y, −0.5 − z; (iv) 1 − x, Inline graphic + y, Inline graphic − z.]

The C≡CH⋯π geometries reported here are only approximately comparable with the parameters of much stronger and more directional supra­molecular bonding in 1,4-diethynyl­benzene [H⋯π = 2.72 Å; C—H⋯π = 175°] (Weiss et al., 1997). More important is that even very weak and bifurcated C—H⋯π bonds in α,ω-octa- and deca­diynes [H⋯π = 2.99–3.03 Å; Bond, 2002] are superior to those reported here based upon single and well-defined acceptors. The weakness of the C≡CH⋯π bonds in the title structure and their limited significance are best illustrated by their peer inter­play and competition with aliphatic C–H⋯π contacts, with the corresponding inter­atomic separations exceeding the sum of vdW radii.

Hirshfeld analysis  

The supra­molecular inter­actions in the title structure have been further investigated and visualized by Hirshfeld surface analysis (Spackman & Byrom, 1997; McKinnon et al., 2004; Hirshfeld, 1977) performed with CrystalExplorer17 (Turner et al., 2017). The Hirshfeld surface of the mol­ecule, mapped over d norm in the color range 0.0957 to 1.3378 a.u., indicates only a set of normal vdW contacts (white regions) corresponding to the closest inter­actions (Fig. 4). The two-dimensional fingerprint plot is appreciably reminiscent of the one for adamantane itself (Spackman & McKinnon, 2002), but accompanied by two additional diffuse features appearing as wings at the top left and bottom right of the plot (Fig. 5). These wings correspond to a series of C⋯H/H⋯C contacts. Nevertheless, H⋯H contacts (the shortest ones are at the d e = d i = 1.2 Å level) are by far the major contributors (74.9%) to the entire surface, while the fraction of C⋯H/H⋯C contacts accounts for only 24.6%. The latter value may be compared with contributions of 40.0 and 32.4% calculated for α,ω-octa- and deca­diynes (Bond, 2002) and this significant suppression of the C⋯H/H⋯C contacts is in line with the very weak C—H⋯π bonding in the title structure, as described above. There are no stacking inter­actions of the ethynyl groups: the contribution of the C⋯C contacts to the entire surface does not exceed 0.5%.

Figure 4.

Figure 4

The Hirshfeld surface of the title compound mapped over d norm in the color range 0.0957 to 1.3378 a.u. showing the shortest H⋯π contact with the normalized C—H distance.

Figure 5.

Figure 5

The two-dimensional fingerprint plot for the title compound, and those delineated into H⋯H (74.9%), C⋯H/H⋯C (24.6%) and C⋯C (0.5%) contacts.

Synthesis and crystallization  

The title compound was synthesized in a three-step reaction sequence starting with selective dibromination of adamantane (Degtyarenko et al., 2014). The reaction product was crystallized from methanol.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The non-H atoms were refined with anisotropic displacement parameters. All hydrogen atoms were located in a difference maps and then freely refined with isotropic displacement parameters [C—H (ethyn­yl) = 0.927 (19) and 0.96 (2) Å; C—H (methyne) = 0.967 (16) and 0.971 (16) Å; C—H (methyl­ene) = 0.952 (14)–1.013 (19) Å].

Table 2. Experimental details.

Crystal data
Chemical formula C14H16
M r 184.27
Crystal system, space group Monoclinic, P21/c
Temperature (K) 213
a, b, c (Å) 11.3214 (9), 6.7426 (6), 14.9478 (12)
β (°) 107.234 (9)
V3) 1089.82 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.06
Crystal size (mm) 0.26 × 0.23 × 0.20
 
Data collection
Diffractometer Stoe IPDS
No. of measured, independent and observed [I > 2σ(I)] reflections 9458, 2593, 1885
R int 0.039
(sin θ/λ)max−1) 0.661
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.044, 0.124, 0.99
No. of reflections 2593
No. of parameters 191
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.29, −0.17

Computer programs: IPDS Software (Stoe & Cie, 2000), SHELXS97 (Sheldrick, 2008), SHELXL2018/1 (Sheldrick, 2015), DIAMOND (Brandenburg, 1999) and WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989020005964/lh5958sup1.cif

e-76-00807-sup1.cif (802.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020005964/lh5958Isup2.hkl

e-76-00807-Isup2.hkl (207.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020005964/lh5958Isup3.cml

CCDC reference: 2000259

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C14H16 F(000) = 400
Mr = 184.27 Dx = 1.123 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 11.3214 (9) Å Cell parameters from 8000 reflections
b = 6.7426 (6) Å θ = 3.3–28.0°
c = 14.9478 (12) Å µ = 0.06 mm1
β = 107.234 (9)° T = 213 K
V = 1089.82 (16) Å3 Prism, colorless
Z = 4 0.26 × 0.23 × 0.20 mm

Data collection

Stoe IPDS diffractometer Rint = 0.039
Radiation source: fine-focus sealed tube θmax = 28.0°, θmin = 3.3°
φ oscillation scans h = −14→14
9458 measured reflections k = −8→8
2593 independent reflections l = −19→19
1885 reflections with I > 2σ(I)

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: difference Fourier map
wR(F2) = 0.124 All H-atom parameters refined
S = 0.99 w = 1/[σ2(Fo2) + (0.086P)2] where P = (Fo2 + 2Fc2)/3
2593 reflections (Δ/σ)max < 0.001
191 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.17 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.28206 (10) −0.04337 (17) 0.21845 (8) 0.0389 (3)
C2 0.27667 (12) −0.1572 (2) 0.27676 (9) 0.0504 (3)
C3 0.11946 (10) 0.07256 (18) −0.11933 (8) 0.0398 (3)
C4 0.05502 (13) 0.0009 (2) −0.18880 (10) 0.0543 (4)
C5 0.28328 (9) 0.09619 (15) 0.14311 (7) 0.0322 (2)
C6 0.20113 (9) 0.01414 (14) 0.04951 (7) 0.0303 (2)
C7 0.19844 (9) 0.15694 (15) −0.03144 (7) 0.0314 (2)
C8 0.33158 (10) 0.18505 (18) −0.03602 (9) 0.0396 (3)
C9 0.41216 (11) 0.2689 (2) 0.05677 (9) 0.0456 (3)
C10 0.41510 (10) 0.1250 (2) 0.13649 (9) 0.0435 (3)
C11 0.23145 (13) 0.29881 (17) 0.16114 (9) 0.0421 (3)
C12 0.22953 (13) 0.44094 (16) 0.08120 (9) 0.0457 (3)
C13 0.14768 (11) 0.35843 (16) −0.01119 (9) 0.0406 (3)
C14 0.36049 (14) 0.46899 (19) 0.07563 (11) 0.0548 (4)
H2 0.2661 (16) −0.248 (3) 0.3202 (13) 0.077 (5)*
H4 0.0043 (17) −0.063 (3) −0.2445 (14) 0.072 (5)*
H6A 0.2336 (11) −0.1137 (19) 0.0358 (9) 0.036 (3)*
H6B 0.1179 (12) −0.0042 (17) 0.0536 (9) 0.036 (3)*
H8A 0.3640 (14) 0.055 (2) −0.0489 (10) 0.049 (4)*
H8B 0.3328 (12) 0.269 (2) −0.0870 (10) 0.042 (3)*
H9 0.4956 (14) 0.283 (2) 0.0525 (11) 0.057 (4)*
H10A 0.4668 (14) 0.175 (2) 0.1950 (11) 0.053 (4)*
H10B 0.4484 (14) −0.008 (2) 0.1243 (11) 0.052 (4)*
H11A 0.1490 (15) 0.280 (2) 0.1688 (11) 0.058 (4)*
H11B 0.2825 (14) 0.356 (2) 0.2211 (11) 0.052 (4)*
H12 0.1974 (14) 0.567 (2) 0.0945 (11) 0.056 (4)*
H13A 0.1440 (14) 0.445 (2) −0.0645 (11) 0.055 (4)*
H13B 0.0615 (15) 0.340 (2) −0.0080 (11) 0.055 (4)*
H14A 0.3613 (15) 0.561 (2) 0.0255 (12) 0.061 (4)*
H14B 0.4157 (17) 0.527 (3) 0.1360 (14) 0.074 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0379 (5) 0.0402 (6) 0.0369 (6) −0.0020 (4) 0.0086 (5) 0.0026 (5)
C2 0.0523 (7) 0.0520 (7) 0.0450 (7) −0.0029 (6) 0.0112 (6) 0.0153 (6)
C3 0.0396 (6) 0.0448 (6) 0.0369 (6) 0.0016 (5) 0.0142 (5) 0.0037 (5)
C4 0.0516 (7) 0.0702 (9) 0.0391 (7) −0.0116 (6) 0.0102 (6) −0.0021 (6)
C5 0.0346 (5) 0.0304 (5) 0.0328 (6) −0.0021 (4) 0.0120 (4) 0.0029 (4)
C6 0.0315 (5) 0.0256 (5) 0.0353 (6) 0.0008 (4) 0.0122 (4) 0.0014 (4)
C7 0.0329 (5) 0.0306 (5) 0.0327 (5) 0.0022 (4) 0.0127 (4) 0.0018 (4)
C8 0.0381 (6) 0.0458 (6) 0.0404 (7) −0.0007 (5) 0.0202 (5) 0.0029 (5)
C9 0.0362 (6) 0.0577 (7) 0.0459 (7) −0.0133 (5) 0.0166 (5) 0.0038 (6)
C10 0.0323 (5) 0.0549 (7) 0.0413 (7) −0.0056 (5) 0.0079 (5) 0.0046 (5)
C11 0.0579 (7) 0.0335 (6) 0.0404 (7) −0.0029 (5) 0.0232 (6) −0.0043 (5)
C12 0.0689 (8) 0.0238 (5) 0.0505 (7) 0.0003 (5) 0.0271 (6) −0.0015 (5)
C13 0.0486 (6) 0.0308 (5) 0.0461 (7) 0.0097 (5) 0.0197 (5) 0.0088 (5)
C14 0.0748 (9) 0.0412 (7) 0.0505 (8) −0.0249 (6) 0.0218 (7) −0.0010 (6)

Geometric parameters (Å, º)

C1—C2 1.1763 (17) C8—H8B 0.952 (14)
C1—C5 1.4708 (15) C9—C10 1.5293 (18)
C2—H2 0.927 (19) C9—C14 1.530 (2)
C3—C4 1.1812 (19) C9—H9 0.971 (16)
C3—C7 1.4673 (16) C10—H10A 0.957 (16)
C4—H4 0.96 (2) C10—H10B 1.012 (15)
C5—C6 1.5354 (15) C11—C12 1.5269 (16)
C5—C10 1.5370 (14) C11—H11A 0.982 (15)
C5—C11 1.5418 (15) C11—H11B 0.988 (16)
C6—C7 1.5396 (14) C12—C14 1.5213 (19)
C6—H6A 0.982 (13) C12—C13 1.5222 (19)
C6—H6B 0.970 (13) C12—H12 0.967 (16)
C7—C13 1.5396 (14) C13—H13A 0.980 (16)
C7—C8 1.5408 (13) C13—H13B 0.999 (16)
C8—C9 1.5250 (18) C14—H14A 0.976 (17)
C8—H8A 0.993 (14) C14—H14B 1.013 (19)
C2—C1—C5 177.47 (13) C10—C9—H9 108.6 (9)
C1—C2—H2 175.6 (11) C14—C9—H9 110.9 (9)
C4—C3—C7 178.31 (12) C9—C10—C5 109.45 (10)
C3—C4—H4 177.5 (11) C9—C10—H10A 110.9 (9)
C1—C5—C6 109.07 (8) C5—C10—H10A 109.2 (8)
C1—C5—C10 111.08 (9) C9—C10—H10B 110.3 (9)
C6—C5—C10 108.93 (9) C5—C10—H10B 108.7 (8)
C1—C5—C11 110.04 (9) H10A—C10—H10B 108.3 (12)
C6—C5—C11 108.63 (9) C12—C11—C5 109.71 (9)
C10—C5—C11 109.04 (9) C12—C11—H11A 112.4 (9)
C5—C6—C7 110.88 (8) C5—C11—H11A 109.1 (9)
C5—C6—H6A 110.0 (7) C12—C11—H11B 109.6 (8)
C7—C6—H6A 107.8 (7) C5—C11—H11B 110.6 (9)
C5—C6—H6B 109.0 (7) H11A—C11—H11B 105.4 (12)
C7—C6—H6B 109.6 (7) C14—C12—C13 109.69 (10)
H6A—C6—H6B 109.4 (10) C14—C12—C11 109.43 (11)
C3—C7—C6 109.04 (9) C13—C12—C11 110.14 (10)
C3—C7—C13 110.74 (9) C14—C12—H12 109.6 (9)
C6—C7—C13 108.60 (8) C13—C12—H12 110.0 (10)
C3—C7—C8 110.64 (8) C11—C12—H12 108.0 (9)
C6—C7—C8 108.67 (9) C12—C13—C7 109.79 (10)
C13—C7—C8 109.10 (9) C12—C13—H13A 112.7 (9)
C9—C8—C7 109.55 (9) C7—C13—H13A 107.3 (9)
C9—C8—H8A 110.4 (9) C12—C13—H13B 110.1 (9)
C7—C8—H8A 108.9 (8) C7—C13—H13B 108.9 (9)
C9—C8—H8B 111.2 (8) H13A—C13—H13B 107.9 (13)
C7—C8—H8B 110.8 (8) C12—C14—C9 109.43 (9)
H8A—C8—H8B 106.0 (11) C12—C14—H14A 110.6 (10)
C8—C9—C10 110.04 (10) C9—C14—H14A 109.3 (9)
C8—C9—C14 109.64 (11) C12—C14—H14B 110.7 (10)
C10—C9—C14 109.70 (10) C9—C14—H14B 109.7 (10)
C8—C9—H9 108.0 (9) H14A—C14—H14B 107.1 (13)
C1—C5—C6—C7 179.35 (8) C11—C5—C10—C9 −59.23 (13)
C10—C5—C6—C7 −59.25 (11) C1—C5—C11—C12 −178.36 (10)
C11—C5—C6—C7 59.41 (10) C6—C5—C11—C12 −59.03 (12)
C5—C6—C7—C3 179.79 (8) C10—C5—C11—C12 59.57 (13)
C5—C6—C7—C13 −59.44 (11) C5—C11—C12—C14 −60.35 (13)
C5—C6—C7—C8 59.12 (10) C5—C11—C12—C13 60.31 (13)
C3—C7—C8—C9 −178.86 (10) C14—C12—C13—C7 60.10 (12)
C6—C7—C8—C9 −59.18 (12) C11—C12—C13—C7 −60.41 (12)
C13—C7—C8—C9 59.07 (12) C3—C7—C13—C12 178.84 (9)
C7—C8—C9—C10 60.81 (13) C6—C7—C13—C12 59.14 (11)
C7—C8—C9—C14 −59.92 (12) C8—C7—C13—C12 −59.15 (11)
C8—C9—C10—C5 −60.73 (13) C13—C12—C14—C9 −60.41 (14)
C14—C9—C10—C5 59.97 (14) C11—C12—C14—C9 60.52 (14)
C1—C5—C10—C9 179.33 (10) C8—C9—C14—C12 60.44 (13)
C6—C5—C10—C9 59.17 (13) C10—C9—C14—C12 −60.51 (14)

Funding Statement

This work was funded by Ministry of Education and Science of Ukraine grant 19BF037-05 to Kostiantyn V. Domasevitch.

References

  1. Allen, F. H., Wood, P. A. & Galek, P. T. A. (2013). Acta Cryst. B69, 281–287. [DOI] [PubMed]
  2. Bond, A. D. (2002). Chem. Commun. pp. 1664–1665. [DOI] [PubMed]
  3. Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  4. Degtyarenko, A. S., Handke, M., Krämer, K. W., Liu, S.-X., Decurtins, S., Rusanov, E. B., Thompson, L. K., Krautscheid, H. & Domasevitch, K. V. (2014). Dalton Trans. 43, 8530–8542. [DOI] [PubMed]
  5. Eaton, P. E., Galoppini, E. & Gilardi, R. (1994). J. Am. Chem. Soc. 116, 7588–7596.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129–138.
  8. McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668. [DOI] [PubMed]
  9. McMullan, R. K., Kvick, Å. & Popelier, P. (1992). Acta Cryst. B48, 726–731.
  10. Negrier, P., Ben Hassine, B., Barrio, M., Romanini, M., Mondieig, D. & Tamarit, J.-L. (2020). CrystEngComm, 22, 1230–1238.
  11. Nishio, M. (2004). CrystEngComm, 6, 130–158.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  14. Spackman, M. A. & Byrom, P. G. A. (1997). Chem. Phys. Lett. 267, 215–220.
  15. Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.
  16. Stoe & Cie (2000). IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany.
  17. Tukada, H. & Mochizuki, K. (2003). J. Mol. Struct. 655, 473–478.
  18. Weiss, H.-C., Bläser, D., Boese, R., Doughan, B. M. & Haley, M. M. (1997). Chem. Commun. pp. 1703–1704.
  19. Zefirov, Y. V. (1997). Crystallogr. Rep. 42, 865–886.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989020005964/lh5958sup1.cif

e-76-00807-sup1.cif (802.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020005964/lh5958Isup2.hkl

e-76-00807-Isup2.hkl (207.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020005964/lh5958Isup3.cml

CCDC reference: 2000259

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES