Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 May 22;76(Pt 6):896–899. doi: 10.1107/S2056989020006441

Crystal structures of 6-cyclo­propyl-1,3-diphenylfulvene and 6-(2,3-di­meth­oxy­naphth­yl)-1,3-di­phenylfulvene

Loren C Brown a, Scott T Iacono a, Gary J Balaich a,*
PMCID: PMC7273991  PMID: 32523759

The title compounds were prepared from 1,3-di­phenyl­cyclo­penta­diene, pyrrolidine, and the corresponding aldehydes in an ethano­lic solution. Each compound crystallizes with one mol­ecule per asymmetric unit and exhibits the alternating short and long bond lengths typical of fulvenes. A network of C—H⋯C ring inter­actions as well as C—H⋯O inter­actions is observed, resulting in the compact packing found in each structure.

Keywords: crystal structure, fulvene, C—H⋯C ring inter­actions

Abstract

The title compounds, 6-cyclo­propyl-1,3-diphenylfulvene, C21H18, [systematic name: 5-(cyclo­propyl­methyl­idene)-1,3-di­phen­yl­cyclo­penta-1,3-diene], 1, and 6-(2,3-di­meth­oxy­naphth­yl)-1,3-diphenylfulvene, C30H24O2, {systematic name: 5-[(3,4-di­meth­oxy­naphthalen-2-yl)methyl­idene]-1,3-di­phenyl­cyclo­penta-1,3-di­ene}, 2, were prepared from 1,3-di­phenyl­cyclo­penta­diene, pyrrolidine, and the corresponding aldehydes in an ethano­lic solution. Each structure crystallizes with one mol­ecule per asymmetric unit and exhibits the alternating short and long bond lengths typical of fulvenes. A network of C—H⋯C ring inter­actions as well as C—H⋯O inter­actions is observed, resulting in the compact packing found in each structure.

Chemical context  

Penta­fulvenes are a unique class of cross-conjugated organic mol­ecules commonly synthesized using aldehyde and cyclo­penta­diene starting materials under a variety of conditions (Thiele, 1900; Stone & Little, 1984; Sieverding et al., 2019). Substituted and highly colored penta­fulvenes are of particular inter­est because of their unique optical and thermal properties and for their potential use in electronic applications (Peloquin et al., 2012; Godman et al., 2016; Shurdha et al., 2014). In synthetic organometallic chemistry, the fulvene unit is known to coordinate to metals, forming organometallic complexes of varying hapticity (Peloquin et al., 2018; Ma et al., 2011, 2012; Beckhaus, 2018). More recently, 1,3,6-tris­ubstituted fulvenes have been used as starting materials in the synthesis of bridged cyclo­penta­diene ligands and ansa-Ln complexes (Adas & Balaich, 2018). As a continuation of our work in this area, we report herein the crystal structures of 6-cyclo­propyl-1,3-diphenylfulvene, 1, and 6-(2,3-di­meth­oxy­naphth­yl)-1,3-diphenylfulvene, 2.graphic file with name e-76-00896-scheme1.jpg

Structural commentary  

Compounds 1 (Fig. 1) and 2 (Fig. 2) crystallize in the ortho­rhom­bic space groups Pbca and P212121, respectively. Both fulvenes crystallize with one mol­ecule per asymmetric unit (Z′ = 1), exhibit the expected alternating short–long bond lengths within the fulvene core and display very similar bond lengths and angles (Table 1). Similar tilt angles of the phenyl substituents from the plane of the fulvene ring are also observed for 1 [1-Ph, 44.88 (4)°; 3-Ph 13.34 (4)°] and 2 [1-Ph, 30.82 (7)°; 3-Ph 17.19 (7)°]. Surprisingly, the rotation of the 6-substituent from the cyclo­penta­dienyl core is greater for fulvene 1 [87.20 (6)°], than for the larger 2,3-di­meth­oxy­naphthalene substituent in fulvene 2, [55.63 (5)°].

Figure 1.

Figure 1

The mol­ecular structure of 1. Displacement ellipsoids are shown at the 50% probability level.

Figure 2.

Figure 2

The mol­ecular structure of 2. Displacement ellipsoids are shown at the 50% probability level.

Table 1. Selected bond distances and angles (Å) for fulvenes 1 and 2 .

  1 2
C1—C2 1.3577 (13) 1.357 (2)
C1—C5 1.4774 (13) 1.489 (2)
C2—C3 1.4699 (13) 1.475 (2)
C3—C4 1.3621 (13) 1.354 (2)
C4—C5 1.4538 (13) 1.455 (2)
C5—C6 1.3520 (13) 1.351 (2)
C1—C7 1.4721 (13) 1.475 (2)
C3—13 1.4704 (13) 1.469 (2)
C6—C19 1.4570 (13) 1.476 (2)
     
C2—C1—C5 107.36 (8) 106.64 (15)
C1—C2—C3 109.71 (8) 110.03 (15)
C2—C3—C4 107.70 (8) 107.90 (15)
C3—C4—C5 109.12 (8) 109.07 (16)
C4—C5—C1 106.08 (8) 106.34 (14)
C4—C5—C6 126.91 (9) 126.27 (16)
C1—C5—C6 126.72 (9) 127.15 (16)

Supra­molecular features  

Fulvene 1 packs side by side along the a-axis direction with mol­ecules oriented in such a way that the 6-cyclo­propyl groups are sandwiched between the 1-Ph and 3-Ph rings of adjacent fulvene mol­ecules. The closest contacts caused by this stacking sequence in the a-axis direction are between the 1-Ph ring atom H9 and the exocyclic C6 atom of an adjacent fulvene (C—H⋯C = 2.90 Å). Other C—H⋯C contacts (C12⋯H19 = 2.83, C2⋯H10 = 2.85, C14⋯H20B = 2.85, C11⋯H19 = 2.86 Å) lead to the formation of a network that results in sets of zigzag chains running perpendicular to the a-axis direction and that extend in the direction parallel to the bc plane (Fig. 3).

Figure 3.

Figure 3

The packing of 6-cyclo­propyl-1,3-di­phenyl­fulvene, 1, viewed along the c-axis direction. Hydrogen atoms are omitted for clarity.

Fulvene 2 packs so that the 1-Ph groups are oriented towards the space between the 2,3-di­meth­oxy­naphthyl groups and the 3-Ph rings of adjacent fulvene mol­ecules along the b-axis direction. A view down the a axis (Fig. 4) reveals layers of inter­laced 2,3-di­meth­oxy­naphthyl groups (H, head) oriented H–H and separated from layers of inter­laced 1,3-di­phenyl­fulvene groups (T, tail) oriented T–T, with the layers running perpendicular to the c-axis direction and producing a layer sequence of H–H–T–T along the c-axis direction. In the H–H layers, short inter­molecular contacts of the C—H⋯O type (O1⋯H22 = 2.50 and O2⋯H24 = 2.53 Å; Table 2) occur between adjacent 2,3-di­meth­oxy­naphthyl groups running along the b-axis direction (Fig. 4). The meth­oxy groups apparently prevent the naphthyl rings from forming any π–π stacking inter­actions, with the angle between the mean planes of the 2,3-di­meth­oxy­naphthyl groups oriented at 124.37 (5)° at least partially enforced by the C—H⋯O inter­actions.

Figure 4.

Figure 4

The packing of 6-(2,3-di­meth­oxy­naphth­yl)-1,3-di­phenyl­fulvene, 2, viewed along the a-axis direction (left) and C—H⋯O inter­actions (right). Hydrogen atoms are omitted for clarity (left).

Table 2. Hydrogen-bond geometry (Å, °) for 2 .

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22⋯O1i 0.95 2.50 3.429 (2) 164
C24—H24⋯O2i 0.95 2.53 3.241 (2) 131

Symmetry code: (i) Inline graphic.

Database survey  

A survey of the December 2019 release of the Cambridge Structural Database, with updates through November 2019, was made using the program Conquest (Groom et al., 2016). A search for 1,3-diphenyl-6-substituted fulvenes yielded 88 results. The bond lengths and angles in 1 and 2 are consistent with those in the previously reported literature.

Synthesis and crystallization  

Each compound was prepared according to the established literature procedure (Peloquin et al., 2012; Godman et al., 2016).

6-(Cyclo­prop­yl)-1,3-diphenylfulvene, 1. Orange crystals suitable for single crystal X-ray diffraction were obtained from petroleum ether by slow evaporation.

6-(2,3-Di­meth­oxy­napth­yl)-1,3-diphenylfulvene, 2. Red crystals suitable for single crystal X-ray diffraction were obtained from slow diffusion of petroleum ether into a DCM solution.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms were placed in calculated positions (0.95–1.00 Å) and refined as riding with U iso(H) = 1.2U eq(C) or 1.5U eq(C-meth­yl).

Table 3. Experimental details.

  1 2
Crystal data
Chemical formula C21H18 C30H24O2
M r 270.35 416.49
Crystal system, space group Orthorhombic, P b c a Orthorhombic, P212121
Temperature (K) 100 100
a, b, c (Å) 12.9844 (2), 11.9583 (1), 19.3729 (2) 7.3431 (1), 11.5468 (1), 25.7555 (3)
V3) 3008.06 (6) 2183.79 (4)
Z 8 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.07 0.08
Crystal size (mm) 0.38 × 0.25 × 0.15 0.27 × 0.15 × 0.13
 
Data collection
Diffractometer XtaLAB Synergy, Single source at offset/far, HyPix3000 XtaLAB Synergy, Single source at offset/far, HyPix3000
Absorption correction Empirical (using intensity measurements) (CrysAlis PRO; Rigaku OD, 2019) Empirical (using intensity measurements) (CrysAlis PRO; Rigaku OD, 2019)
T min, T max 0.404, 1.000 0.735, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 74031, 3353, 2967 54562, 4798, 4437
R int 0.030 0.036
(sin θ/λ)max−1) 0.648 0.647
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.036, 0.094, 1.08 0.034, 0.082, 1.04
No. of reflections 3353 4798
No. of parameters 190 291
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.19 0.16, −0.19
Absolute structure Flack x determined using 1774 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter −0.3 (4)

Computer programs: CrysAlis PRO (Rigaku OD, 2019), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) 1, 2. DOI: 10.1107/S2056989020006441/yk2129sup1.cif

e-76-00896-sup1.cif (3.8MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989020006441/yk21291sup2.hkl

e-76-00896-1sup2.hkl (268.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020006441/yk21291sup4.cdx

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989020006441/yk21292sup3.hkl

e-76-00896-2sup3.hkl (382.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020006441/yk21291sup5.cml

Supporting information file. DOI: 10.1107/S2056989020006441/yk21292sup6.cml

CCDC references: 2003795, 2003794

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

5-(Cyclopropylmethylidene)-1,3-diphenylcyclopenta-1,3-diene (1). Crystal data

C21H18 Dx = 1.194 Mg m3
Mr = 270.35 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbca Cell parameters from 50470 reflections
a = 12.9844 (2) Å θ = 2.1–27.4°
b = 11.9583 (1) Å µ = 0.07 mm1
c = 19.3729 (2) Å T = 100 K
V = 3008.06 (6) Å3 Block, orange
Z = 8 0.38 × 0.25 × 0.15 mm
F(000) = 1152

5-(Cyclopropylmethylidene)-1,3-diphenylcyclopenta-1,3-diene (1). Data collection

XtaLAB Synergy, Single source at offset/far, HyPix3000 diffractometer 3353 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source 2967 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.030
Detector resolution: 10.0000 pixels mm-1 θmax = 27.4°, θmin = 2.1°
ω scans h = −16→16
Absorption correction: empirical (using intensity measurements) (CrysAlisPro; Rigaku OD, 2019) k = −15→15
Tmin = 0.404, Tmax = 1.000 l = −24→24
74031 measured reflections

5-(Cyclopropylmethylidene)-1,3-diphenylcyclopenta-1,3-diene (1). Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036 H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.045P)2 + 0.7758P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
3353 reflections Δρmax = 0.20 e Å3
190 parameters Δρmin = −0.19 e Å3
0 restraints

5-(Cyclopropylmethylidene)-1,3-diphenylcyclopenta-1,3-diene (1). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

5-(Cyclopropylmethylidene)-1,3-diphenylcyclopenta-1,3-diene (1). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.44298 (7) 0.64490 (8) 0.32819 (5) 0.0198 (2)
C2 0.50655 (7) 0.60105 (8) 0.37681 (5) 0.0203 (2)
H2 0.5051 0.6191 0.4246 0.024*
C3 0.57790 (7) 0.52136 (8) 0.34441 (5) 0.0204 (2)
C4 0.55715 (7) 0.51958 (8) 0.27550 (5) 0.0227 (2)
H4 0.5918 0.4750 0.2422 0.027*
C5 0.47342 (7) 0.59679 (8) 0.26098 (5) 0.0216 (2)
C6 0.43760 (7) 0.62688 (8) 0.19814 (5) 0.0224 (2)
H6 0.3823 0.6788 0.1965 0.027*
C7 0.35860 (7) 0.72504 (8) 0.33954 (5) 0.0207 (2)
C8 0.26145 (8) 0.70904 (9) 0.30946 (5) 0.0249 (2)
H8 0.2502 0.6466 0.2801 0.030*
C9 0.18165 (8) 0.78343 (9) 0.32221 (5) 0.0293 (2)
H9 0.1163 0.7718 0.3013 0.035*
C10 0.19672 (8) 0.87480 (9) 0.36532 (6) 0.0316 (2)
H10 0.1422 0.9260 0.3737 0.038*
C11 0.29212 (8) 0.89076 (9) 0.39608 (6) 0.0298 (2)
H11 0.3026 0.9526 0.4260 0.036*
C12 0.37234 (8) 0.81683 (8) 0.38334 (5) 0.0242 (2)
H12 0.4373 0.8287 0.4046 0.029*
C13 0.65376 (7) 0.45139 (8) 0.38061 (5) 0.0214 (2)
C14 0.65376 (7) 0.44071 (8) 0.45261 (5) 0.0240 (2)
H14 0.6078 0.4848 0.4794 0.029*
C15 0.72009 (8) 0.36649 (8) 0.48540 (5) 0.0278 (2)
H15 0.7187 0.3597 0.5343 0.033*
C16 0.78805 (9) 0.30253 (9) 0.44717 (6) 0.0311 (2)
H16 0.8319 0.2503 0.4696 0.037*
C17 0.79200 (9) 0.31494 (9) 0.37585 (6) 0.0318 (2)
H17 0.8400 0.2727 0.3495 0.038*
C18 0.72593 (8) 0.38887 (8) 0.34322 (5) 0.0269 (2)
H18 0.7296 0.3974 0.2945 0.032*
C19 0.47766 (8) 0.58544 (8) 0.13271 (5) 0.0245 (2)
H19 0.5338 0.5284 0.1360 0.029*
C20 0.48463 (8) 0.66600 (9) 0.07225 (5) 0.0268 (2)
H20A 0.4598 0.7434 0.0795 0.032*
H20B 0.5447 0.6592 0.0411 0.032*
C21 0.40700 (9) 0.57559 (9) 0.07072 (5) 0.0298 (2)
H21A 0.4188 0.5125 0.0386 0.036*
H21B 0.3339 0.5968 0.0769 0.036*

5-(Cyclopropylmethylidene)-1,3-diphenylcyclopenta-1,3-diene (1). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0211 (4) 0.0180 (4) 0.0203 (4) −0.0038 (3) 0.0031 (3) −0.0006 (3)
C2 0.0216 (4) 0.0199 (4) 0.0194 (4) −0.0045 (4) 0.0023 (3) −0.0010 (3)
C3 0.0212 (4) 0.0181 (4) 0.0218 (5) −0.0036 (4) 0.0017 (4) 0.0002 (3)
C4 0.0256 (5) 0.0218 (5) 0.0208 (5) 0.0028 (4) 0.0020 (4) −0.0006 (4)
C5 0.0236 (5) 0.0202 (4) 0.0209 (5) −0.0002 (4) 0.0021 (4) −0.0007 (4)
C6 0.0236 (5) 0.0213 (5) 0.0223 (5) 0.0019 (4) 0.0016 (4) 0.0001 (4)
C7 0.0232 (5) 0.0203 (4) 0.0187 (4) −0.0013 (4) 0.0045 (4) 0.0026 (3)
C8 0.0246 (5) 0.0271 (5) 0.0230 (5) −0.0025 (4) 0.0035 (4) 0.0011 (4)
C9 0.0225 (5) 0.0363 (6) 0.0291 (5) 0.0013 (4) 0.0040 (4) 0.0068 (4)
C10 0.0300 (5) 0.0297 (5) 0.0350 (6) 0.0086 (4) 0.0107 (4) 0.0063 (4)
C11 0.0359 (6) 0.0217 (5) 0.0318 (5) 0.0025 (4) 0.0073 (4) −0.0014 (4)
C12 0.0267 (5) 0.0211 (5) 0.0248 (5) −0.0016 (4) 0.0026 (4) 0.0006 (4)
C13 0.0221 (4) 0.0184 (4) 0.0237 (5) −0.0039 (4) −0.0019 (4) −0.0003 (4)
C14 0.0234 (5) 0.0243 (5) 0.0244 (5) −0.0057 (4) −0.0002 (4) 0.0007 (4)
C15 0.0312 (5) 0.0272 (5) 0.0252 (5) −0.0087 (4) −0.0065 (4) 0.0046 (4)
C16 0.0321 (5) 0.0248 (5) 0.0366 (6) −0.0004 (4) −0.0138 (5) 0.0019 (4)
C17 0.0314 (6) 0.0292 (5) 0.0348 (6) 0.0074 (4) −0.0080 (4) −0.0071 (4)
C18 0.0290 (5) 0.0277 (5) 0.0240 (5) 0.0028 (4) −0.0036 (4) −0.0037 (4)
C19 0.0285 (5) 0.0250 (5) 0.0199 (5) 0.0059 (4) −0.0001 (4) −0.0002 (4)
C20 0.0300 (5) 0.0298 (5) 0.0207 (5) 0.0005 (4) 0.0025 (4) 0.0014 (4)
C21 0.0327 (5) 0.0344 (6) 0.0223 (5) −0.0031 (4) −0.0024 (4) −0.0032 (4)

5-(Cyclopropylmethylidene)-1,3-diphenylcyclopenta-1,3-diene (1). Geometric parameters (Å, º)

C1—C2 1.3577 (13) C11—C12 1.3882 (14)
C1—C5 1.4774 (13) C12—H12 0.9500
C1—C7 1.4721 (13) C13—C14 1.4008 (14)
C2—H2 0.9500 C13—C18 1.4006 (14)
C2—C3 1.4699 (13) C14—H14 0.9500
C3—C4 1.3621 (13) C14—C15 1.3903 (14)
C3—C13 1.4704 (13) C15—H15 0.9500
C4—H4 0.9500 C15—C16 1.3829 (16)
C4—C5 1.4538 (13) C16—H16 0.9500
C5—C6 1.3520 (13) C16—C17 1.3905 (16)
C6—H6 0.9500 C17—H17 0.9500
C6—C19 1.4570 (13) C17—C18 1.3847 (14)
C7—C8 1.4027 (14) C18—H18 0.9500
C7—C12 1.3988 (13) C19—H19 1.0000
C8—H8 0.9500 C19—C20 1.5193 (14)
C8—C9 1.3879 (14) C19—C21 1.5159 (14)
C9—H9 0.9500 C20—H20A 0.9900
C9—C10 1.3891 (16) C20—H20B 0.9900
C10—H10 0.9500 C20—C21 1.4784 (15)
C10—C11 1.3878 (16) C21—H21A 0.9900
C11—H11 0.9500 C21—H21B 0.9900
C2—C1—C5 107.36 (8) C14—C13—C3 121.79 (9)
C2—C1—C7 126.89 (9) C18—C13—C3 120.35 (9)
C7—C1—C5 125.75 (8) C18—C13—C14 117.80 (9)
C1—C2—H2 125.1 C13—C14—H14 119.6
C1—C2—C3 109.71 (8) C15—C14—C13 120.88 (9)
C3—C2—H2 125.1 C15—C14—H14 119.6
C2—C3—C13 125.97 (8) C14—C15—H15 119.9
C4—C3—C2 107.70 (8) C16—C15—C14 120.24 (10)
C4—C3—C13 126.23 (9) C16—C15—H15 119.9
C3—C4—H4 125.4 C15—C16—H16 120.1
C3—C4—C5 109.12 (8) C15—C16—C17 119.78 (10)
C5—C4—H4 125.4 C17—C16—H16 120.1
C4—C5—C1 106.08 (8) C16—C17—H17 120.0
C6—C5—C1 126.72 (9) C18—C17—C16 119.93 (10)
C6—C5—C4 126.91 (9) C18—C17—H17 120.0
C5—C6—H6 117.6 C13—C18—H18 119.4
C5—C6—C19 124.75 (9) C17—C18—C13 121.28 (10)
C19—C6—H6 117.6 C17—C18—H18 119.4
C8—C7—C1 121.23 (9) C6—C19—H19 115.9
C12—C7—C1 120.44 (9) C6—C19—C20 118.44 (9)
C12—C7—C8 118.28 (9) C6—C19—C21 119.97 (9)
C7—C8—H8 119.7 C20—C19—H19 115.9
C9—C8—C7 120.66 (10) C21—C19—H19 115.9
C9—C8—H8 119.7 C21—C19—C20 58.30 (7)
C8—C9—H9 119.8 C19—C20—H20A 117.7
C8—C9—C10 120.40 (10) C19—C20—H20B 117.7
C10—C9—H9 119.8 H20A—C20—H20B 114.8
C9—C10—H10 120.3 C21—C20—C19 60.74 (7)
C11—C10—C9 119.48 (10) C21—C20—H20A 117.7
C11—C10—H10 120.3 C21—C20—H20B 117.7
C10—C11—H11 119.8 C19—C21—H21A 117.7
C10—C11—C12 120.38 (10) C19—C21—H21B 117.7
C12—C11—H11 119.8 C20—C21—C19 60.96 (7)
C7—C12—H12 119.6 C20—C21—H21A 117.7
C11—C12—C7 120.79 (10) C20—C21—H21B 117.7
C11—C12—H12 119.6 H21A—C21—H21B 114.8

5-[(3,4-Dimethoxynaphthalen-2-yl)methylidene]-1,3-diphenylcyclopenta-1,3-diene (2). Crystal data

C30H24O2 Dx = 1.267 Mg m3
Mr = 416.49 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121 Cell parameters from 35583 reflections
a = 7.3431 (1) Å θ = 1.9–27.3°
b = 11.5468 (1) Å µ = 0.08 mm1
c = 25.7555 (3) Å T = 100 K
V = 2183.79 (4) Å3 Block, red
Z = 4 0.27 × 0.15 × 0.13 mm
F(000) = 880

5-[(3,4-Dimethoxynaphthalen-2-yl)methylidene]-1,3-diphenylcyclopenta-1,3-diene (2). Data collection

XtaLAB Synergy, Single source at offset/far, HyPix3000 diffractometer 4798 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source 4437 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.036
Detector resolution: 10.0000 pixels mm-1 θmax = 27.4°, θmin = 1.9°
ω scans h = −9→9
Absorption correction: empirical (using intensity measurements) (CrysAlisPro; Rigaku OD, 2019) k = −14→14
Tmin = 0.735, Tmax = 1.000 l = −32→32
54562 measured reflections

5-[(3,4-Dimethoxynaphthalen-2-yl)methylidene]-1,3-diphenylcyclopenta-1,3-diene (2). Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0415P)2 + 0.3848P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.082 (Δ/σ)max = 0.001
S = 1.04 Δρmax = 0.16 e Å3
4798 reflections Δρmin = −0.18 e Å3
291 parameters Absolute structure: Flack x determined using 1774 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraints Absolute structure parameter: −0.3 (4)
Primary atom site location: dual

5-[(3,4-Dimethoxynaphthalen-2-yl)methylidene]-1,3-diphenylcyclopenta-1,3-diene (2). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

5-[(3,4-Dimethoxynaphthalen-2-yl)methylidene]-1,3-diphenylcyclopenta-1,3-diene (2). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.44518 (18) 0.62766 (11) 0.68257 (5) 0.0247 (3)
O2 0.61050 (17) 0.49358 (11) 0.75201 (5) 0.0259 (3)
C1 −0.0406 (2) 0.65397 (15) 0.55785 (7) 0.0198 (4)
C2 −0.0799 (2) 0.59770 (15) 0.51299 (7) 0.0211 (4)
H2 −0.1346 0.6322 0.4834 0.025*
C3 −0.0254 (2) 0.47506 (15) 0.51698 (7) 0.0197 (4)
C4 0.0428 (3) 0.45757 (16) 0.56522 (6) 0.0207 (4)
H4 0.0855 0.3857 0.5784 0.025*
C5 0.0400 (2) 0.56652 (15) 0.59360 (6) 0.0196 (4)
C6 0.1117 (2) 0.58571 (15) 0.64113 (7) 0.0204 (4)
H6 0.1098 0.6635 0.6531 0.024*
C7 −0.0696 (2) 0.77839 (15) 0.56788 (7) 0.0201 (4)
C8 −0.1120 (3) 0.82200 (15) 0.61722 (7) 0.0232 (4)
H8 −0.1192 0.7705 0.6459 0.028*
C9 −0.1436 (3) 0.93976 (16) 0.62481 (8) 0.0276 (4)
H9 −0.1710 0.9678 0.6586 0.033*
C10 −0.1352 (3) 1.01607 (17) 0.58346 (8) 0.0302 (4)
H10 −0.1570 1.0963 0.5887 0.036*
C11 −0.0945 (3) 0.97418 (17) 0.53435 (8) 0.0302 (4)
H11 −0.0895 1.0260 0.5058 0.036*
C12 −0.0612 (3) 0.85764 (16) 0.52664 (7) 0.0252 (4)
H12 −0.0321 0.8307 0.4928 0.030*
C13 −0.0383 (2) 0.38948 (15) 0.47494 (6) 0.0198 (4)
C14 −0.1483 (3) 0.40870 (16) 0.43146 (7) 0.0240 (4)
H14 −0.2167 0.4783 0.4289 0.029*
C15 −0.1585 (3) 0.32715 (17) 0.39190 (7) 0.0274 (4)
H15 −0.2351 0.3408 0.3628 0.033*
C16 −0.0574 (3) 0.22612 (16) 0.39474 (7) 0.0252 (4)
H16 −0.0638 0.1707 0.3675 0.030*
C17 0.0532 (3) 0.20609 (16) 0.43754 (7) 0.0243 (4)
H17 0.1233 0.1371 0.4395 0.029*
C18 0.0617 (3) 0.28622 (16) 0.47734 (7) 0.0229 (4)
H18 0.1363 0.2711 0.5067 0.028*
C19 0.1926 (2) 0.49925 (15) 0.67648 (7) 0.0194 (4)
C20 0.3601 (2) 0.52592 (15) 0.69714 (7) 0.0206 (4)
C21 0.4485 (3) 0.45362 (15) 0.73404 (6) 0.0211 (4)
C22 0.3672 (3) 0.35129 (15) 0.74809 (7) 0.0216 (4)
H22 0.4269 0.3012 0.7719 0.026*
C23 0.1953 (3) 0.31938 (15) 0.72749 (6) 0.0198 (4)
C24 0.1143 (3) 0.21256 (16) 0.74162 (7) 0.0233 (4)
H24 0.1763 0.1620 0.7647 0.028*
C25 −0.0526 (3) 0.18134 (16) 0.72228 (7) 0.0254 (4)
H25 −0.1043 0.1087 0.7314 0.030*
C26 −0.1476 (3) 0.25666 (16) 0.68892 (7) 0.0250 (4)
H26 −0.2644 0.2353 0.6762 0.030*
C27 −0.0726 (2) 0.36052 (16) 0.67463 (6) 0.0222 (4)
H27 −0.1393 0.4111 0.6526 0.027*
C28 0.1027 (2) 0.39369 (15) 0.69210 (6) 0.0187 (4)
C29 0.5376 (3) 0.61847 (19) 0.63345 (8) 0.0317 (4)
H29A 0.4567 0.5819 0.6080 0.048*
H29B 0.6476 0.5714 0.6376 0.048*
H29C 0.5714 0.6960 0.6213 0.048*
C30 0.6930 (3) 0.42942 (18) 0.79361 (8) 0.0297 (4)
H30A 0.7212 0.3508 0.7817 0.044*
H30B 0.6085 0.4256 0.8230 0.044*
H30C 0.8055 0.4681 0.8045 0.044*

5-[(3,4-Dimethoxynaphthalen-2-yl)methylidene]-1,3-diphenylcyclopenta-1,3-diene (2). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0290 (7) 0.0200 (6) 0.0252 (6) −0.0041 (6) −0.0044 (6) 0.0013 (5)
O2 0.0258 (6) 0.0266 (7) 0.0251 (7) −0.0008 (6) −0.0095 (6) 0.0015 (5)
C1 0.0178 (8) 0.0220 (9) 0.0195 (8) −0.0005 (7) −0.0003 (7) 0.0025 (7)
C2 0.0220 (9) 0.0227 (9) 0.0186 (8) 0.0009 (8) −0.0026 (7) 0.0029 (7)
C3 0.0175 (8) 0.0227 (9) 0.0189 (8) −0.0013 (7) 0.0002 (7) 0.0006 (7)
C4 0.0225 (8) 0.0208 (9) 0.0187 (8) 0.0006 (7) −0.0008 (7) 0.0008 (7)
C5 0.0182 (8) 0.0218 (9) 0.0188 (8) −0.0006 (7) 0.0002 (7) 0.0022 (7)
C6 0.0214 (8) 0.0184 (8) 0.0212 (8) 0.0014 (7) −0.0005 (7) −0.0004 (7)
C7 0.0167 (8) 0.0206 (9) 0.0229 (9) −0.0004 (7) −0.0033 (7) 0.0032 (7)
C8 0.0244 (9) 0.0224 (9) 0.0226 (9) 0.0014 (8) −0.0031 (7) 0.0023 (7)
C9 0.0281 (10) 0.0264 (10) 0.0283 (10) 0.0029 (8) −0.0048 (8) −0.0039 (8)
C10 0.0294 (10) 0.0193 (9) 0.0420 (11) 0.0030 (8) −0.0075 (9) 0.0002 (8)
C11 0.0322 (10) 0.0247 (10) 0.0336 (10) −0.0016 (9) −0.0049 (9) 0.0108 (8)
C12 0.0250 (9) 0.0269 (10) 0.0239 (9) −0.0012 (8) −0.0017 (8) 0.0027 (7)
C13 0.0198 (8) 0.0220 (9) 0.0174 (8) −0.0025 (7) 0.0010 (7) 0.0013 (7)
C14 0.0258 (9) 0.0248 (9) 0.0215 (9) 0.0000 (8) −0.0017 (7) 0.0013 (7)
C15 0.0312 (10) 0.0309 (10) 0.0201 (9) −0.0032 (8) −0.0048 (8) −0.0002 (8)
C16 0.0294 (10) 0.0253 (9) 0.0211 (9) −0.0052 (8) 0.0031 (8) −0.0043 (7)
C17 0.0251 (9) 0.0227 (9) 0.0252 (9) 0.0000 (8) 0.0026 (8) −0.0002 (7)
C18 0.0249 (9) 0.0250 (9) 0.0189 (9) 0.0002 (8) −0.0010 (7) 0.0015 (7)
C19 0.0240 (9) 0.0186 (9) 0.0155 (8) 0.0026 (7) 0.0000 (7) −0.0027 (7)
C20 0.0251 (9) 0.0187 (9) 0.0179 (8) 0.0016 (8) 0.0005 (7) −0.0025 (7)
C21 0.0228 (9) 0.0235 (9) 0.0170 (8) 0.0039 (7) −0.0025 (7) −0.0038 (7)
C22 0.0257 (9) 0.0227 (9) 0.0164 (8) 0.0047 (7) −0.0025 (7) 0.0001 (7)
C23 0.0243 (9) 0.0207 (9) 0.0145 (8) 0.0031 (7) 0.0019 (7) −0.0016 (7)
C24 0.0295 (10) 0.0232 (9) 0.0172 (8) 0.0031 (8) 0.0007 (7) 0.0007 (7)
C25 0.0317 (10) 0.0233 (9) 0.0210 (9) −0.0039 (8) 0.0044 (8) 0.0011 (7)
C26 0.0236 (9) 0.0295 (10) 0.0219 (9) −0.0030 (8) 0.0000 (8) −0.0008 (7)
C27 0.0237 (9) 0.0248 (9) 0.0182 (8) 0.0027 (8) 0.0000 (7) 0.0005 (7)
C28 0.0219 (8) 0.0195 (8) 0.0148 (8) 0.0021 (7) 0.0016 (7) −0.0019 (6)
C29 0.0296 (10) 0.0336 (11) 0.0320 (10) −0.0052 (9) 0.0038 (9) 0.0054 (9)
C30 0.0308 (10) 0.0321 (11) 0.0261 (10) 0.0024 (9) −0.0096 (9) −0.0006 (8)

5-[(3,4-Dimethoxynaphthalen-2-yl)methylidene]-1,3-diphenylcyclopenta-1,3-diene (2). Geometric parameters (Å, º)

O1—C20 1.383 (2) C14—C15 1.389 (3)
O1—C29 1.439 (2) C15—H15 0.9500
O2—C21 1.357 (2) C15—C16 1.385 (3)
O2—C30 1.436 (2) C16—H16 0.9500
C1—C2 1.357 (2) C16—C17 1.389 (3)
C1—C5 1.489 (2) C17—H17 0.9500
C1—C7 1.475 (2) C17—C18 1.382 (3)
C2—H2 0.9500 C18—H18 0.9500
C2—C3 1.475 (2) C19—C20 1.375 (2)
C3—C4 1.354 (2) C19—C28 1.443 (2)
C3—C13 1.469 (2) C20—C21 1.422 (2)
C4—H4 0.9500 C21—C22 1.372 (3)
C4—C5 1.455 (2) C22—H22 0.9500
C5—C6 1.351 (2) C22—C23 1.418 (3)
C6—H6 0.9500 C23—C24 1.417 (3)
C6—C19 1.476 (2) C23—C28 1.425 (2)
C7—C8 1.402 (2) C24—H24 0.9500
C7—C12 1.403 (2) C24—C25 1.371 (3)
C8—H8 0.9500 C25—H25 0.9500
C8—C9 1.393 (3) C25—C26 1.408 (3)
C9—H9 0.9500 C26—H26 0.9500
C9—C10 1.384 (3) C26—C27 1.370 (3)
C10—H10 0.9500 C27—H27 0.9500
C10—C11 1.387 (3) C27—C28 1.417 (3)
C11—H11 0.9500 C29—H29A 0.9800
C11—C12 1.382 (3) C29—H29B 0.9800
C12—H12 0.9500 C29—H29C 0.9800
C13—C14 1.398 (2) C30—H30A 0.9800
C13—C18 1.402 (3) C30—H30B 0.9800
C14—H14 0.9500 C30—H30C 0.9800
C20—O1—C29 112.90 (14) C17—C16—H16 120.1
C21—O2—C30 116.64 (15) C16—C17—H17 119.9
C2—C1—C5 106.64 (15) C18—C17—C16 120.23 (18)
C2—C1—C7 125.79 (16) C18—C17—H17 119.9
C7—C1—C5 127.55 (15) C13—C18—H18 119.6
C1—C2—H2 125.0 C17—C18—C13 120.86 (17)
C1—C2—C3 110.03 (15) C17—C18—H18 119.6
C3—C2—H2 125.0 C20—C19—C6 116.56 (16)
C4—C3—C2 107.90 (15) C20—C19—C28 119.35 (16)
C4—C3—C13 126.85 (17) C28—C19—C6 124.01 (16)
C13—C3—C2 125.22 (15) O1—C20—C21 118.28 (16)
C3—C4—H4 125.5 C19—C20—O1 119.31 (16)
C3—C4—C5 109.07 (16) C19—C20—C21 122.39 (17)
C5—C4—H4 125.5 O2—C21—C20 115.38 (16)
C4—C5—C1 106.34 (14) O2—C21—C22 125.74 (16)
C6—C5—C1 127.15 (16) C22—C21—C20 118.88 (17)
C6—C5—C4 126.27 (16) C21—C22—H22 119.6
C5—C6—H6 116.4 C21—C22—C23 120.82 (16)
C5—C6—C19 127.22 (16) C23—C22—H22 119.6
C19—C6—H6 116.4 C22—C23—C28 120.52 (16)
C8—C7—C1 122.72 (16) C24—C23—C22 120.26 (17)
C8—C7—C12 117.49 (16) C24—C23—C28 119.22 (17)
C12—C7—C1 119.75 (16) C23—C24—H24 119.6
C7—C8—H8 119.5 C25—C24—C23 120.73 (18)
C9—C8—C7 120.99 (17) C25—C24—H24 119.6
C9—C8—H8 119.5 C24—C25—H25 119.9
C8—C9—H9 119.8 C24—C25—C26 120.15 (18)
C10—C9—C8 120.40 (18) C26—C25—H25 119.9
C10—C9—H9 119.8 C25—C26—H26 119.8
C9—C10—H10 120.3 C27—C26—C25 120.37 (18)
C9—C10—C11 119.30 (17) C27—C26—H26 119.8
C11—C10—H10 120.3 C26—C27—H27 119.4
C10—C11—H11 119.7 C26—C27—C28 121.11 (17)
C12—C11—C10 120.59 (18) C28—C27—H27 119.4
C12—C11—H11 119.7 C23—C28—C19 117.96 (16)
C7—C12—H12 119.4 C27—C28—C19 123.74 (16)
C11—C12—C7 121.22 (17) C27—C28—C23 118.30 (16)
C11—C12—H12 119.4 O1—C29—H29A 109.5
C14—C13—C3 121.39 (16) O1—C29—H29B 109.5
C14—C13—C18 118.22 (16) O1—C29—H29C 109.5
C18—C13—C3 120.38 (16) H29A—C29—H29B 109.5
C13—C14—H14 119.6 H29A—C29—H29C 109.5
C15—C14—C13 120.73 (17) H29B—C29—H29C 109.5
C15—C14—H14 119.6 O2—C30—H30A 109.5
C14—C15—H15 119.9 O2—C30—H30B 109.5
C16—C15—C14 120.21 (18) O2—C30—H30C 109.5
C16—C15—H15 119.9 H30A—C30—H30B 109.5
C15—C16—H16 120.1 H30A—C30—H30C 109.5
C15—C16—C17 119.73 (17) H30B—C30—H30C 109.5

5-[(3,4-Dimethoxynaphthalen-2-yl)methylidene]-1,3-diphenylcyclopenta-1,3-diene (2). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C22—H22···O1i 0.95 2.50 3.429 (2) 164
C24—H24···O2i 0.95 2.53 3.241 (2) 131

Symmetry code: (i) −x+1, y−1/2, −z+3/2.

Funding Statement

This work was funded by Air Force Office of Scientific Research grant . National Research Council grant .

References

  1. Adas, S. K. & Balaich, G. J. (2018). J. Organomet. Chem. 857, 200–206.
  2. Beckhaus, R. (2018). Coord. Chem. Rev. 376, 467–477.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Godman, N. P., Adas, S. K., Hellwig, K. M., Ball, D. W., Balaich, G. J. & Iacono, S. T. (2016). J. Org. Chem. 81, 9630–9638. [DOI] [PubMed]
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Ma, Z. H., Liu, X. H., Han, Z. G., Zheng, X. Z. & Lin, J. (2011). Transition Met. Chem. 36, 207–210.
  7. Ma, Z. H., Tian, L. J., Li, S. Z., Han, Z. G., Zheng, X. Z. & Lin, J. (2012). Transition Met. Chem. 37, 135–140.
  8. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  9. Peloquin, A. J., Smith, M. B., O’Connell, B. J., Ghiassi, K. B., Balaich, G. J. & Iacono, S. T. (2018). Acta Cryst. E74, 1190–1194. [DOI] [PMC free article] [PubMed]
  10. Peloquin, A. J., Stone, R. L., Avila, S. E., Rudico, E. R., Horn, C. B., Gardner, K. A., Ball, D. W., Johnson, J. E. B., Iacono, S. T. & Balaich, G. J. (2012). J. Org. Chem. 77, 6371–6376. [DOI] [PubMed]
  11. Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  12. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  13. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  14. Shurdha, E., Repasy, B. K., Miller, H. A., Dees, K., Iacono, S. T., Ball, D. W. & Balaich, G. J. (2014). RSC Adv. 4, 41989–41992.
  15. Sieverding, P., Osterbrink, J., Besson, C. & Kögerler, P. (2019). J. Org. Chem. 84, 486–494. [DOI] [PubMed]
  16. Stone, K. J. & Little, R. D. (1984). J. Org. Chem. 49, 1849–1853.
  17. Thiele, J. (1900). Ber. Dtsch. Chem. Ges. 33, 666–673.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) 1, 2. DOI: 10.1107/S2056989020006441/yk2129sup1.cif

e-76-00896-sup1.cif (3.8MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989020006441/yk21291sup2.hkl

e-76-00896-1sup2.hkl (268.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020006441/yk21291sup4.cdx

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989020006441/yk21292sup3.hkl

e-76-00896-2sup3.hkl (382.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020006441/yk21291sup5.cml

Supporting information file. DOI: 10.1107/S2056989020006441/yk21292sup6.cml

CCDC references: 2003795, 2003794

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES