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• Differences in PM2.5 chemical species
and sources since lockdown were re-
ported.

• Primary emission reduced while sec-
ondary formation enhanced since lock-
down.

• Emission reduction dominated the im-
provement of air quality in Wuhan dur-
ing lockdown.
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Wuhan was the first city to adopt the lockdown measures to prevent COVID-19 spreading, which improved the
air quality accordingly. This study investigated the variations in chemical compositions, source contributions, and
regional transport of fine particles (PM2.5) during January 23–February 22 of 2020, compared with the same pe-
riod in 2019. The averagemass concentration of PM2.5 decreased from72.9 μgm−3 (2019) to 45.9 μgm−3 (2020),
by 27.0 μg m−3. It was predominantly contributed by the emission reduction (92.0%), retrieved from a random
forest tree approach. The main chemical species of PM2.5 all decreased with the reductions ranging from
0.85 μg m−3 (chloride) to 9.86 μg m−3 (nitrate) (p b 0.01). Positive matrix factorization model indicated that
the mass contributions of seven PM2.5 sources all decreased. However, their contribution percentages varied
from −11.0% (industrial processes) to 8.70% (secondary inorganic aerosol). Source contributions of PM2.5

transported from potential geographical regions showed reductions with mean values ranging from 0.22 to
4.36 μg m−3. However, increased contributions of firework burning, secondary inorganic aerosol, road dust,
and vehicle emissions from transboundary transport were observed. This study highlighted the complex and
nonlinear response of chemical compositions and sources of PM2.5 to air pollution control measures, suggesting
the importance of regional-joint control.
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Table 1
Mean and standard deviation (SD) of the six criteria air pollutants (μg m−3), main PM2.5

chemical species including water-soluble ions (μg m−3), trace elements (ng m−3), carbo-
naceous components (μg m−3), and meteorological parameters including ambient tem-
perature (Temp, °C), atmospheric pressure (P, hPa), wind speed (WS, m s−1), relative
humidity (RH, %), mixing layer height (MLH, m), and solar irradiation (SI, W m−2) for
the one-month lockdown period of Wuhan in 2020 and the same period in 2019.

Variables 2019 2020 Variables 2019 2020

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

CO 1.02 ± 0.37 0.98 ± 0.31 Fe 292 ± 235 153 ± 135
NO2 40.7 ± 28.6 18.1 ± 15.6 Cu 26.6 ± 28.3 11.1 ± 6.48
O3 29.7 ± 21.1 40.9 ± 18.0 Zn 90.2 ± 70.7 32.5 ± 24.2
PM10 76.0 ± 42.4 50.4 ± 28.0 As 11.8 ± 10.9 4.99 ± 4.87
PM2.5 72.9 ± 35.4 45.9 ± 26.9 Se 5.00 ± 3.16 2.36 ± 2.12
SO2 6.15 ± 6.10 4.52 ± 3.30 Ag 5.80 ± 2.54 3.62 ± 2.07
Na+ 0.21 ± 0.17 0.24 ± 0.08 Cd 4.11 ± 2.12 4.47 ± 2.25
NH+

4 14.4 ± 6.65 9.59 ± 6.06 Ba 78.7 ± 128 36.0 ± 55.7
Mg2+ 0.21 ± 0.26 0.01 ± 0.01 Hg 1.95 ± 0.80 1.13 ± 0.87
K+ 2.02 ± 2.13 1.22 ± 1.11 Pb 47.7 ± 36.8 17.3 ± 12.1
Ca2+ 0.48 ± 0.39 0.08 ± 0.10 OC 10.4 ± 4.21 8.09 ± 3.52
Cl− 2.82 ± 1.85 1.96 ± 1.62 EC 2.19 ± 1.23 1.15 ± 0.70
NO-

3 23.9 ± 12.3 14.1 ± 9.49 Temp 4.12 ± 3.51 8.97 ± 3.90
SO2–4 13.4 ± 6.40 10.3 ± 6.48 P 1023 ± 5.34 1019 ± 5.12
K 2038 ± 2026 1163 ± 1053 WS 2.08 ± 1.53 0.99 ± 0.79
Ca 173 ± 222 105 ± 104 RH 84.3 ± 15.1 73.2 ± 19.3
Cr 2.73 ± 2.44 1.28 ± 1.81 MLHa 318 ± 232 415 ± 381
Mn 23.3 ± 19.3 8.17 ± 5.78 SIa 126 ± 140 195 ± 180

a MLH and SI were derived from the HYSPLIT calculation.
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1. Introduction

The air quality in China and other countries has improved a lot after
the outbreak of the COVID-19 (Sharma et al., 2020; Tobías et al., 2020;
Zhang et al., 2020a). For instance, after two weeks of lockdown, the
urban air pollutant concentrations in Barcelona markedly decreased
by 28– 51% (Tobías et al., 2020). Similarly, the air pollutant concentra-
tions decreased by 18– 43% during the lockdown period compared to
previous years in India (Sharma et al., 2020).

In China, the quarantine period began since 2020-01-23 and lasted
until the end of February. Due to the restriction measures (Huang
et al., 2020) and Spring Festival effects (Kong et al., 2015), many facto-
rieswere shut down, the traffic volume on roads and construction activ-
ities reduced obviously, and the fireworks burning was banned
especially in urban regions, etc. The substantial reductions of human ac-
tivities have reduced the anthropogenic emissions and thus improved
the air quality (Fig. S1). Despite obvious emission reductions due to
COVID-19, air pollutions still occurred in the North China Plain due to
the unfavorable meteorological conditions (Wang et al., 2020). Further
research found that the haze events during the lockdown were driven
by the enhancement of secondary pollution as the increase of atmo-
spheric oxidizing ability (Huang et al., 2020). Till now, the variations
of chemical compositions and local or regional-transported sources of
PM2.5 were still unclear for the lockdown period.

Previous studies have revealed the role of pollution control mea-
sures on air quality improvement (Cai et al., 2017; Kong et al., 2018;
Wang et al., 2019; Zheng et al., 2019a). Elemental carbon (EC), organic
matter (OM), sulphate, nitrate, and ammonium (SNA) levels in autumn
and winter decreased by N50% from 2013 to 2017 in Beijing, due to the
implementation of the Air Pollution Prevention Control and Action Plan
in China (Wang et al., 2019). Another factor influencing the variations in
aerosol compositions and levels is meteorology, which impacts the
transportation, dispersion, accumulation, and deposition of air pollut-
ants (Whiteaker et al., 2002; Zhang et al., 2015; Bei et al., 2016). Gener-
ally, emission dominates the interannual variability of air pollutants
(Chen et al., 2019; Zhai et al., 2019; Zhang et al., 2019a; Zheng et al.,
2020), while meteorology dominates the day-to-day variations of
them (Zhang et al., 2012; He et al., 2016, 2017). It was estimated that
the anthropogenic emission reductions explained 91% of the PM2.5 de-
crease in China from 2013 to 2017 (Zhang et al., 2019a). Meteorology,
however, explained N70% variances of daily average pollutant levels
over China during 2014 and 2015 (He et al., 2017). The impacts of
strictest lockdownmeasures andmeteorology on PM2.5 levels, composi-
tions, and sources were still unknown.

This study used the onlinemonitoring datasets to investigate the im-
pacts of lockdown and meteorology on the chemical components and
sources of PM2.5 for two periods (one-month (01/23– 02/22) since the
lockdown ofWuhan in 2020 and the same period in 2019). Positivema-
trix factorization (PMF) model was adopted to apportion PM2.5 sources.
A random forest tree method was used to separate the contributions of
emission reduction andmeteorology to the changes of PM2.5 concentra-
tions, chemical species, and sources. A backward trajectory-based
method was used to study the impact of regional transport on PM2.5

in Wuhan.

2. Materials and methods

2.1. Observation datasets

Hourly observations of PM2.5 chemical compositions including
water-soluble ions (WSIs), trace elements (TE), organic carbon (OC),
and EC were conducted using on-line instruments during 2020/01/23
00:00 to 2020/02/22: 23:00 at an environmental monitoring supersite
in Wuhan. The measurements for the same period in 2019 were also
conducted and more details about the instruments were described in
Text S1. The site (114.38° E, 30.52° N) is located in the urban center,
which is a residential/commercial site, with no obvious industrial emis-
sions at surroundings. Time series of the main chemical species for the
two periods are shown in Fig. S2. Additionally, synchronous in-situ ob-
servations of six criteria air pollutants (CO, NO2, O3, PM10, PM2.5, and
SO2) were conducted. CO, NOx (NOx = NO + NO2), O3, and SO2 were
measured with a correlation infrared absorption analyzer (TAPI,
model: 300E, USA), a chemiluminescence trace level NO-NO2-NOx ana-
lyzer (Casella, model: ML9841B, UK), an UV photometric O3 analyzer
(TEI, model: 49i, USA), and a pulsed UV fluorescence SO2 analyzer
(Casella,model:ML9850B,UK), respectively. PM10 and PM2.5weremea-
sured by an oscillating balance analyzer (TH-2000Z, China) with two
separate inlets. Time series of the six criteria air pollutants for the two
periods are shown in Fig. S3. In-situ meteorological parameters includ-
ing ambient temperature (Temp), atmospheric pressure (P), wind
speed (WS), wind direction (WD), and relative humidity (RH) are
shown in Fig. S4. The mean and standard deviations of air pollutants,
chemical compositions, and meteorological parameters for the two pe-
riods are listed in Table 1.
2.2. De-weather model

The variations of air pollutants are controlled by bothmeteorological
conditions and emissions. To isolate the trend resulted from emissions,
an R package “normalweatherr” was used to remove the influence of
meteorology (Grange et al., 2018; Vu et al., 2019; Zhang et al., 2020b).
The package used a boosted regression tree (RF) approach to model
the air pollutant concentrations. The algorithm solved the relationship
between air pollutant levels and their predictors including meteorolog-
ical parameters and time variables such as day of the year (Julian day),
day of the week (Monday to Sunday), and hour of a day (0– 23)
(Grange et al., 2018). The input dataset was randomly divided into a
training dataset (i.e., 70% of input dataset) for constructing the RF
model and a testing dataset (30% of input dataset) for testing the perfor-
mance of the RF model with an unseen dataset. After the building of the
RF model, the weather normalized technique was used for predicting
the air pollutant level at a certain measured time point (i.e., 2020/01/
23 10:00) with randomly selected meteorological parameters for 1000
times. For each prediction, the independent variables (meteorological
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parameters and time variables except for the trend term)were sampled
without replacement and were randomly allocated to a dependent var-
iable observation. The meteorologically normalized trend at a specific
observation time was then calculated as the arithmetic mean of 1000
predictions. More details about the model can be found elsewhere
(https://github.com/skgrange/normalweatherr).

In this study, the RF model was independently applied to the
datasets for the study period in 2019 and 2020, respectively. The
six criteria air pollutants, main PM2.5 chemical species including
chloride, sulphate, nitrate, ammonium, trace elements, OC, EC, and
source contributions derived from the receptor model (see
Section 2.3 and Section 3.3 for details) were meteorologically nor-
malized. The predictors (independent variables) included meteoro-
logical parameters (ambient temperature, atmospheric pressure,
wind speed, relative humidity, mixing layer height, and solar irradi-
ation) and temporal variables such as an hour of a day, day of a week,
and day of a year.

2.3. Source apportionment

Positive matrix factorization (PMF 5.0) has been widely used in
PM2.5 source apportionment (Bressi et al., 2014; Kong et al., 2018;
Zheng et al., 2019a; Zhang et al., 2019b). WSIs, OC, EC, and several
trace elements were input into the model. Species were grouped into
strong, weak, and bad according to their single-noise ratio and percent-
ages below detection limits (Callén et al., 2014; Zheng et al., 2018). The
species classification is listed in Table S1. Due to the instrumentmainte-
nance or incomplete chemical compositions of PM2.5, a small part of
samples was excluded from the PMF analysis. Finally, a dataset of 728
(sample) × 21 (species) for 2019 and a dataset of 719 (sample) × 18
(species) for 2020 were input into the PMF model, respectively.

To find the optimal factor number, it was tested from 3 to 9. The di-
agnostic parameters such as the Pearson correlation coefficient, Qrobust,
and Qtrue/Qexp were calculated to co-determine the optimal solution.
Qtrue/Qexp is an indicator of the optimal solution that if the factor number
is properly estimated, it approaches 1. Qrobust/Qtrue is an indicator of the
number of an outlierwith scaled residuals larger than 4 and it is equal to
1 when there are no outliers. As shown in Table S2, the Pearson correla-
tion coefficient between the observed and modelled concentrations in-
creased with the factor number increasing, suggesting better fitting
results as a large factor number. The Qtrue/Qexp decreased with the in-
creasing of factor number and it approached 1 for the 7-factor solution.
To evaluate the uncertainty associated with random and rotational am-
biguity, the bootstrap-displacement (BS-DISP)methodwas used. In this
study, the percentage of cases accepted in BS-DISP decreased with the
factor number increasing. The cases accepted in BS-DISP for 7-factor
was higher than 6-factor and 8-factor solutions for the dataset in
2020, while it was lower than 6- and 8-factor solutions for the dataset
in 2019. To better compare the source apportionment results, 7-factor
was considered as the optimal solution. Corresponding results were re-
ported in this study. More details about PMF running and result diagno-
sis can be found elsewhere (Bressi et al., 2014; Zheng et al., 2018) and in
Text S2.

2.4. Potential geographical source regions

Hourly backward trajectories reaching themonitoring site were cal-
culated using the HYSPLIT model (Stein et al., 2015) driven by the
GDAS_1 reanalysis meteorological field. The start height was set as
100 m above the ground level. 72 h backward air mass trajectories
were calculated. The air masses reaching the monitoring site were
mainly from north and south directions in this study (Fig. S5). The po-
tential geographical source regions were separated into North China
(NC), South China (SC), and Local according to the following proce-
dures: (1) the endpoint with a height N2500 m were excluded due to
few impacts of surface emissions on air masses (Kanaya et al., 2016);
(2) the endpoints of each trajectory were projected to one of the three
regions; (3) the number of trajectory endpoints projected in above re-
gions were counted; (4) the trajectory was classified into SC, NC, and
Local in turn, starting with SC because the air masses transported from
south directionwere less compared to other three regions. If a trajectory
spent over 10 hwithin SC, it was allocated to SC. Similarly, the trajectory
was allocated to NC if it spent over 10 h within NC. The air mass was at-
tributed to Local if it spent over 52 hwithin local areas. Thismethodwas
used elsewhere (Liu et al., 2019a). The thresholds were somewhat arbi-
trarily set according to the sensitive analysis of the threshold values on
air mass classification and the combination used here showed the best
classification (Fig. S6).

2.5. Statistical analysis and data visualization

Analysis of variance (ANOVA) was used to test whether the differ-
ences of meteorological parameters, chemical compositions, and source
contributions for the two periodswere significant or not at the 95% con-
fidence interval. Data analysis and visualization were realized by R lan-
guage (R Core Team, 2018) with packages such as “ggplot2”, “openair”,
“lubridate”, “reshap2”, and “normalweatherr”, etc. All these packages
can be accessed via the Comprehensive R Archive Network (CRAN:
https://cran.r-project.org2).

3. Results

3.1. Changes in air pollutants

The national mean change rates of CO, NO2, O3, PM10, PM2.5, and SO2

were −13.0%, −35.7%, 21.9%, −32.5%, −15.0%, and −20.1%, respec-
tively (Fig. S1). The results suggested a substantial improvement of air
quality in China during the lockdown period due to COVID-19. Most re-
gions showed a decreasing in PM2.5 and an enhancement in O3. The re-
verse variations of PM2.5 and O3 were also reported elsewhere during
the lockdown periods (Sharma et al., 2020; Tobías et al., 2020). Previous
studies suggested that the O3 increase was related with its enhanced
production rate, as the PM2.5 reduction impairing its role as a scavenger
of hydroperoxy radicals (Li et al., 2019a, 2019b). In this study, the
change rates of NO2 (−55.6%), PM10 (−33.7%), PM2.5 (−37.0%), and
SO2 (−26.5%) at the observational site were lower than the national av-
erages of them, suggesting larger impacts of lockdown on air quality in
Wuhan.

3.2. Variations in chemical compositions

Details about themass concentrations of measured chemical species
for the two periods are listed in Table 1. Fig. 1A and B shows the mass
concentrations and percentages of main PM2.5 chemical species. SNA
were the dominant species, totally accounting for 74.1% and 72.8% of
the main chemical compositions of PM2.5 in 2019 and 2020, respec-
tively. Compared to those in 2019, the meanmass concentrations of ni-
trate in 2020 decreased most (9.86 μg m−3), followed by ammonium
(4.73 μg m−3), sulphate (2.90 μg m−3), OC (2.22 μg m−3), TE
(1.17 μg m−3), EC (1.02 μg m−3), and chloride (0.85 μg m−3). The de-
crease of TE and EC verified the primary emission reduction due to the
lockdown of Wuhan city.

The PM2.5 chemical compositions associated with air masses from
different potential geographical regions for the two periods are com-
pared in Fig. S7. For chemical species associated with local air masses,
the mean sulphate level in 2020 (14.0 ± 6.19 μg m−3) was higher
than that in 2019 (12.3± 3.85 μgm−3) (p=0.82), while the other spe-
cies showed reductions compared to 2019. For air masses from NC, the
OC and sulphate in 2020 were higher than those in 2019. For other spe-
cies, they showed lowermass concentrations during the study period in
2020.

https://github.com/skgrange/normalweatherr
https://cran.r-project.org2
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Fig. 1.Differences in themain chemical species and source contributions of PM2.5 derived from PMFmodel for the two periods. A and B are themain PM2.5 chemical compositions. C and D
are PMF source contribution results. BB, CC, FW, IP, RD, SIA, and VE represent biomass burning, coal combustion, firework burning, industrial processes, road dust, secondary inorganic
aerosol, and vehicle emissions, respectively.
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3.3. Variations in source contributions

Seven sources including biomass burning (BB), coal combustion
(CC), firework burning (FW), industrial processes (IP), road dust
(RD), secondary inorganic aerosol (SIA), and vehicle emissions
(VE) were apportioned for both the two periods. Their source pro-
files and diurnal variations derived from the PMF model are shown
in Figs. 2 and 3, respectively. Prior to further analysis, the similarity
of the source profiles was checked by Pearson coefficients (r),
index of agreement (IOA), and coefficient of efficiency (COE). As
shown in Table S3, r, IOA, and COE varied in the ranges of
0.72– 0.98, 0.54– 0.85, and −0.01– 0.77, respectively. If the source
profiles are similar, the r, IOA, and COE approach 1. According to
this rule, the profiles of BB, CC, RD, SIA, and VE showed high similar-
ity, while the FW and IP showed less similarity. The source identifica-
tion results were detailedly described as follows.
3.3.1. Biomass burning
K+ is widely used as a tracer of biomass burning (Chen et al., 2017;

Zhou et al., 2018; Zheng et al., 2019a). In addition to K+, abundant OC,
EC, Na+, Cl−, OC, and EC are also reported for the source profile of bio-
mass burning (Reid et al., 2005), although they vary according to fuel
type and combustion efficiency (Bressi et al., 2014). In this study, high
loadings of K+ (19.2 ± 6.52% in 2019 and 14.9 ± 15.6% in 2020, the
same sequence for the following descriptions) and Cl− (59.5 ± 15.6%
and 72.3 ± 16.1%) were found in this factor. The diurnal variation of
this source peaked at noon and night, with lower values occurred at
early morning and late afternoon (Fig. 3). Biomass burning was
prohibited in urban areas and the source may be related to regional
transportation from north China in 2019 and suburban regions of
Wuhan in 2020, according to the evidences from conditional probability
function (CPF) analysis in Fig. S8. Biomass burning was an important
contributor to PM2.5 in north China in winter, with the contributions
of 7– 12% (Zhang et al., 2013; Shang et al., 2018). In the suburban of
Wuhan and its surrounding regions, biomass fuels are still adopted for
heating and cooking. Outdoor biomass burningwas frequently observed
in the surrounding areas of Wuhan (Mehmood et al., 2020). Compared
to the same period in 2019, the fire spot numbers detected byMODIS in
2020 reduced (Fig. S9). The contributions of biomass burning also de-
creased as shown in Fig. 1C.
3.3.2. Coal combustion
High loadings of As (86.2 ± 11.8% and 92.2 ± 8.11%), Se (47.7 ±

10.0% and 42.9 ± 7.51%), and Pb (36.9 ± 10.0% and 38.8 ± 4.96%)
were found in this factor, which have been widely reported as the
tracers of coal combustion (Tian et al., 2015; Liu et al., 2018; Zhou
et al., 2018; Liu et al., 2019b). Additionally, this factorwas positively cor-
related with SO2 (r = 0.65, p b 0.01 for 2019 and r = 0.52, p b 0.01 for
2020). Therefore, it was reasonable to attribute this factor to coal
combustion.
3.3.3. Firework burning
Firework burning was characterized by high loadings on K (49.5 ±

4.63% and 44.3 ± 5.71%), K+ (49.6 ± 4.38% and 52.3 ± 10.5%), Ba
(77.1 ± 6.73% and 68.6 ± 8.26%), and Cu (53.5 ± 6.20% and 39.5 ±
6.34%) (Kong et al., 2015; Rai et al., 2020). K+ was mainly from the fur-
nish paper burning; Cu and Ba were additives for colourful flame (Kong
et al., 2015). Higher contributions were found around the New Year's
Eve and the Lantern Festival (Fig. S10), with the maximum contribu-
tions occurring at ~02:00. Firework burning is prohibited in the urban
areas of Wuhan. The high contributions of this source occurred with
wind speed higher than 3 m s−1 (Fig. S8). Therefore, this factor was at-
tributed to firework burning and it wasmainly associated with regional
transportation.
3.3.4. Industrial processes
This factor was characterized by high loadings on Cr (43.9 ± 23.7%

and 91.9 ± 23.1%), Mn (48.8 ± 16.8% and 21.3 ± 4.92%), Fe (33.5 ±
11.5% and 25.5 ± 6.02%), and Zn (27.9 ± 10.4% and 15.5 ± 2.75%)
(Taiwo et al., 2014). PM2.5 emitted from iron and steel industry has
high fractions of Fe and Mn (An et al., 2015). Cr and Mn are abundant
in particles from stainless steel production and Zn is abundant for parti-
cles emitted from Zn metallurgy emissions (Querol et al., 2007). This
factor can be attributed to local industrial processes in Wuhan. It was
verified by the high CPF values under low wind speed (i.e., b1 m s−1)
in east (2019) and south directions (2020) (Fig. S8), where locates
plenty of industrial plants (Fig. S11). Two peak contributions at daytime
and lower contributions at night of this factor in 2019 were also related
to the daily production activities of industrial processes (Merico et al.,
2020).
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3.3.5. Road dust
This factor was highly loaded on crustal elements, like Ca (91.6 ±

8.21% and 94.9 ± 13.0%), Fe (29.5 ± 8.30%, and 37.6 ± 6.43%), and
Mn (20.1 ± 12.4% and 27.7 ± 6.04%). A previous study conducted in
Wuhan identified a similar source as fugitive dust due to high loadings
on Ba, Ca, Fe, and Mn (Lyu et al., 2016). Fe and Mn are also abundant
in brake wear and tyre wear dusts (Garg et al., 2000; Adachi and
Tainosho, 2004). According to these markers, road dust was widely
Fig. 3.Diurnal variations of seven PM2.5 sources derived from the PMFmodel during 01/23 0:00
confidence intervals of the mean.
identified around the world (Richard et al., 2011; Pancras et al., 2013;
Tao et al., 2014; Waked et al., 2014; Lyu et al., 2016; Liu et al., 2019b).
Therefore, this factor was identified as road dust in this study.

3.3.6. Secondary inorganic aerosol
SO2–

4 (50.6 ± 9.60% and 52.2 ± 10.8%), NO–
3 (47.3 ± 11.6% and

50.9 ± 15.0%), and NH+
4 (46.8 ± 8.76% and 51.5 ± 10.3%) had higher

loadings on this factor (Lyu et al., 2016; Zhang et al., 2013; Zheng et al.,
– 02/22 23:00 in 2019 (dashed line) and 2020 (solid line). The error bars represent the 95%
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2019a). Excepted for their primary emissions from coal combustion
(Dai et al., 2018; Zhang et al., 2018; Yan et al., 2020), SIA can be formed
from the atmospheric homogenous and heterogeneous reactions of
their precursors (Seinfeld and Pandis, 2006). As shown in Fig. S8, high
contributions of this factor were found for both low and high wind
speeds, which favoured their formation locally or through regional
transportation.

3.3.7. Vehicle emissions
This factor had higher loadings on OC (41.7 ± 12.1% and 45.7 ±

11.5%) and EC (37.5 ± 12.9% and 34.5 ± 6.21%) and moderate loadings
on Cu (13.8 ± 3.79%, 23.0 ± 10.5%) and Pb (10.4 ± 3.59% and 19.6 ±
7.66%). A similar factor was resolved in previous studies, which was
identified as vehicle emissions (Xia and Gao, 2011; Yao et al., 2016;
Liu et al., 2018; Zheng et al., 2019a). Significant positive correlations
(r = 0.39, p b 0.001 in 2019 and r = 0.35, p b 0.001 in 2020) between
this factor and NO2 were found. Additionally, the diurnal variations
showed morning and evening peaks in 2019, which reflected the daily
variation of traffic activities. The diurnal pattern of this source in 2020
was not as clear as that in 2019, which should be related to the prohibi-
tion running of private cars during the city lockdown period (Fig. 3).

The mass concentrations and percentages of the seven sources are
shown in Fig. 1C and D. The top three contributors to PM2.5 mass were
SIA, BB, and VE. Industrial processes exhibited the highest reduction of
mass concentration contribution (8.02 μg m−3), followed by BB
(5.50 μg m−3), SIA (5.00 μg m−3), VE (2.99 μg m−3), CC
(2.43 μg m−3), and FW (1.54 μg m−3). The percentage contributions
of CC, IP, and FW also showed reductions of 3.10%, 11.0%, and 0.08%, re-
spectively, while the percentage contribution of SIA increased by 8.70%.
The reverse variations of these sources suggested the decreased primary
emissions but enhanced secondary formation rate during the lockdown.

The diurnal variations of PM2.5 source contributions showed differ-
ences for the two periods (Fig. 3). For industrial processes, it showed
double peaks in 2019 while it monotonically decreased from about
05:00 to 16:00 during the study period in 2020. The diurnal variation
of VE indicated that the peak value at 10:00 (local time) in 2020was im-
paired compared to 2019. Previous studies concerning the impacts of
short-term pollution control measures for mega-events on air pollutant
variations showed decreases of air pollutants,while the diurnal patterns
of air pollutants during control period were similar to the non-control
period (Wang et al., 2015; Liu et al., 2015, 2017). The results here im-
plied that the strictest lockdown measures not only reduced the pri-
mary emissions obviously but also changed the diurnal variation
patterns of air pollutants. The universal reductions of air pollutants
from various sources indicated a possibility of precise control of PM2.5

at a specific time of a day.
Fig. S7 shows the mean PM2.5 source contributions associated with

different air mass classifications. For local air masses, the SIA mass con-
tributions in 2020 (25.5 ± 12.8 μg m−3) were higher than that in 2019
(17.5 ± 12.5 μg m−3), while other sources showed obvious decreases
compared to 2019. For air masses from NC, the mass contributions of
the seven sources decreased in 2020 compared with those in 2019.
For air masses from SC, the mass contributions of VE (12.7 ±
4.07 μg m−3) and RD (1.23 ± 1.07 μg m−3) in 2020 were higher than
those (10.9 ± 4.65 μg m−3 for VE and 0.57 ± 0.57 μg m−3 for RD) in
2019.

4. Discussions

4.1. Role of emission on reduction

As shown in Table 1, higher ambient temperature, mixing layer
height, solar irradiation, lower relative humidity, and wind speed in
2020 compared with those for 2019 were found. Due to the conflicting
roles of these meteorological conditions on air pollutant formation and
removal processes (Zhang et al., 2015; Chen et al., 2020), it was difficult
to discuss the influences of emission reduction on air pollutant concen-
trations. Therefore, a weather normalized technic was adopted to ana-
lyze the influence of emission on air pollutant variations. After the
weather normalized procedures, the pollutant levels can represent the
anthropogenic emissions (Li et al., 2019a; Zhai et al., 2019). The differ-
ences between the observed and de-weather levels of air pollutants
can be regarded as meteorology related variations. As shown in
Fig. S12, meteorological conditions were favorable for reducing air pol-
lutant concentrations for both the two periods. The pollutant emission
dominated the reduction of air pollutants during the study period of
2019 and 2020 (Fig. 4).

The observed PM2.5 decreased by 27.0 μg m−3 in the study period of
2020 (45.9 μgm−3), compared to that of 2019 (72.9 μgm−3). The emis-
sion reduction contributed to 24.8 μg m−3 (92.0%) and meteorology
contributed only 2.20 μg m−3 (8.00%) to PM2.5 decrease. For the main
chemical species of PM2.5, the variations due to emission were in the
range of −0.87 μg m−3 (Cl−) to −9.50 μg m−3 (NO–

3). Similarly,
emission-related variations were −0.37 μg m−3 (RD) to
−8.09 μg m−3 (IP) for PM2.5 source contributions. The reduced mass
concentrations for air pollutants caused by emission control were
higher than those caused bymeteorology related variations (Fig. 4). Pre-
vious studies suggested that meteorology dominated the day-to-day
variations of air pollutants (He et al., 2016, 2017). However, the city
lockdown experiment showed that substantial emission reductions
dominated the reductions inmass concentrations of PM2.5 and its chem-
ical compositions. The air quality improvement is a long-way journey.
The results here implicated that air pollution control measures should
be continuously taken step by step to improve the air quality in regions
with serious air quality issues.

4.2. Enhanced contributions from secondary formation

OC, sulphate, nitrate, and ammonium are from both primary emis-
sions and secondary formation (Huang et al., 2014), while EC is from
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primary emissions (Bond et al., 2013; Cao et al., 2013). As shown in
Fig. 5, the ratios of OC, sulphate, nitrate, and ammonium for the compar-
ison between 2020 and 2019 were lower than 1, suggesting the reduc-
tion of primary emissions in 2020. The atmospheric oxidation ability
(AOA), however, enhanced in Wuhan and northern China with the evi-
dence from the increased Ox (O3 + NO2) (Fig. S1). The ratios of OC, sul-
phate, nitrate, and ammonium to EC were generally higher than 1
during a day (Fig. 5), suggesting a substantial enhancement of second-
ary formation (Huang et al., 2020). The sulphate and nitrate oxidation
rates (SOR andNOR) also showed enhancements in 2020 (Fig. S13), im-
plying higher fractions of sulphate and nitrate from secondary forma-
tion. For OC, sulphate, and ammonium, the ratios to EC ranged from
about 5% to ~85% (Fig. 5A, B, D), suggesting stronger formation. The di-
urnal variations of the scaled sulphate, nitrate, ammonium, and OC
(SNAO) by EC for the two periods further showed the enhancement of
secondary formation (Fig. S14). The SNAO enhancement from 5:00 to
18:00 coincided with the diurnal cycle of O3, indicating the role of O3

oxidization in secondary formation during the daytime (Brown, 2006;
Hallquist et al., 2009).

This unique lockdown experiment can be regarded as an extremely
sensitive test of primary emission reduction on air quality. Results here
revealed that the primary emission reducedwhile the secondary forma-
tion increased. The lockdownmeasures yielded a significant decreasing
of traffic volumes which subsequently reduced the NOx levels. Reduc-
tion of NOx emissions is important for O3 and inorganic species controls
(South Coast Air Quality Management District, 2013). A recent study
suggested that reducing NOxwill reduce nitrate, while increase the sec-
ondary organic aerosol (SOA) levels (Zhao et al., 2017) due to the en-
hancement of AOA (Praske et al., 2018; Huang et al., 2020). The
impacts of NOx reduction on AOA or SOA yield have a tipping-point. Be-
fore this tipping-point, reducing NOx enhances the AOA and promotes
the SOA yield, while after this point, further reducing NOx emissions
will impair AOA and limit the yield of SOA (Zhao et al., 2017; Huang
et al., 2020). Such significant NOx reduction during the lockdown still
enhanced the AOA in Wuhan. In the short-term, the NOx emissions
will recover in China with the alleviate of COVID-19 (Zhang et al.,
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2020a) and the AOA should decrease. However, considering the histor-
ical decreasing trends of NOx emission in developed countries (Duncan
et al., 2016; Jiang et al., 2018), theNOx emissionswould be decreasing in
China continuously. Decreasing volatile organic compounds (VOCs)
would offset the secondary formation enhancement asNOx emission re-
duction, considering the non-linear relationship between them (Huang
et al., 2020). Therefore, further air pollution control would be challeng-
ing in China, considering the combination pollution of PM2.5 and O3

(Zeng et al., 2019). A two-pollutant strategy to solve PM2.5 and ozone
problems should be carried out with a focus on VOCs and NOx emission
reduction in further air pollution control policies (Li et al., 2019b).

4.3. Reduced emission from different geographical source regions

It was estimated that CO, NOx, SO2, PM2.5, BC, and OC emissions de-
creased by 13– 41%, 29– 57%, 15– 42%, 9– 34%, 13– 54%, and 3– 42%, re-
spectively in the first two months in 2020 compared to 2019 (Huang
et al., 2020). The differential concentration-weighted trajectory
(DCWT) results (Text S3) showed reductions of source contributions
for air masses transported from potential geographical regions affecting
Wuhan for the two periods (Fig. 6). Generally, the DCWT values of the
seven sources showed negative mean (± standard deviation) values
of −3.29 ± 6.76 μg m−3 (BB), −1.28 ± 1.61 μg m−3 (CC), −0.26 ±
3.71 μg m−3 (FW), −3.87 ± 5.28 μg m−3 (IP), −0.22 ± 0.87 μg m−3

(RD),−4.36 ± 11.0 μg m−3 (SIA), and−2.23 ± 4.23 μg m−3 (VE), sug-
gesting substantial emission reductions of these sources along the
transportation routes to the receptor site. The large standard deviations,
however, indicated the spatial variances, especially for BB, FW, and SIA.

The DCWT values of FW increased by 27.5 μgm−3 at most for the air
masses transported from the eastern Shandong and northern Jiangsu,
suggesting the influences of regional transportation of firework burning
on air quality in Wuhan, especially for the Spring Festival period. The
DCWT values of SIA showed positive values for air masses transported
from two routes: central Shanxi and Inner Mongolia as well as the
southern Anhui and Jiangsu, with a maximum increase of 30.2 μg m−3

and 33.4 μg m−3, respectively. The increased DCWT values for SIA
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Fig. 6. Differential concentration-weighted trajectory (DCWT, μg m−3) values of source contributions for the observational period in 2020 compared with those in 2019.
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were similar to the results of a recent study that the enhanced second-
ary formation in the Beijing-Tianjin-Hebei and Yangtze River Delta re-
gions (Huang et al., 2020). The positive DCWT values of SNA scaled by
CO, especially for sulphate (Fig. S15) also verified the secondary forma-
tion enhancement for the two transport routes.

High SO2 emissions were found in northern China and the lower
reach of the Yangtze River (van der A et al., 2017; Kourtidis et al.,
2018). The air masses reaching Wuhan during winter were mainly
from two transportation routes including north and northeast direc-
tions (Zheng et al., 2019b). High emissions and enhanced atmospheric
oxidative ability contributed to the secondary formation of sulphate
during air mass transportation from the two directions to Wuhan. This
phenomenon was further supported by the enhancement of SOR from
0.45 (2019) to 0.68 (2020) for the air masses transported from NC
(Fig. S16). The decreased atmospheric oxidative ability (Fig. S1) and
less SO2 emissions in south China resulted in less secondary formation
of sulphate, which was proved by the reduced SOR from 0.22 (2019)
to 0.20 (2020) for air masses transported from SC (Fig. S16).

5. Conclusion

In this study, the variations of chemical species and sources of PM2.5

in Wuhan were investigated, where the strictest lockdown measures
were adopted as COVID-19. Compared to the same period in 2019
(72.9 μg m−3), PM2.5 levels in the following one month after the lock-
down ofWuhan in 2020 (45.9 μgm−3) decreased by 27 μgm−3, mainly
due to the emission reduction (92.0%). Themass concentrations ofmain
PM2.5 components showed reductions ranging from 0.85 (chloride) to
9.86 μg m−3 (nitrate). The mass contributions of various sources de-
creased in 1.54 (firework burning)–8.02 μg m−3 (industrial processes).
The decreases of trace elements (0.65%) and elemental carbon (0.67%)
suggested the reduction of primary emissions due to lockdown. The in-
creased mass percentages of sulphate (3.05%), organic carbon (2.48%),
and secondary inorganic aerosol (8.70%), however, suggested the en-
hanced secondary formation of PM2.5. The air masses reaching Wuhan
fromdifferent potential geographical regions showed substantial reduc-
tions of the mass contributions from various sources, excepted for bio-
mass burning, firework burning and secondary inorganic aerosols
from several regions. This study highlighted that the lockdown mea-
sures not only reduced themass concentrations of air pollutants and as-
sociated chemical compositions, but also modified the diurnal variation
patterns of PM2.5 sources. Further researches should deeply investigate
the emission reduction on atmospheric oxidation ability and secondary
aerosol formation mechanisms.
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