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a b s t r a c t 

One of the main challenges of the measures against the COVID-19 epidemic is to reduce the amplitude 

of the epidemic peak without increasing without control its timescale. We investigate this problem using 

the SIR model for the epidemic dynamics, for which reduction of the epidemic peak I P can be achieved 

only at the price of increasing the time t P of its occurrence and its entire time-span t E . By means of a 

time reparametrization we linearize the equations for the SIR dynamics. This allows us to solve exactly 

the dynamics in the time domain and to derive the scaling behaviour of the size, the timescale and the 

speed of the epidemics, by reducing the infection rate α and by increasing the removal rate β by a fac- 

tor of λ. We show that for a given value of the size ( I P , the total, I E and average ˆ I P number of infected), 

its occurrence time t P and entire time-span t E can be reduced by a factor 1/ λ if the reduction of I is 

achieved by increasing the removal rate instead of reducing the infection rate. Thus, epidemic contain- 

ment measures based on tracing, early detection followed by prompt isolation of infected individuals are 

more efficient than those based on social distancing. We apply our results to the COVID-19 epidemic in 

Northern Italy. We show that the peak time t P and the entire time span t E could have been reduced by a 

factor 0.9 ≤ 1/ λ ≤ 0.34 with containment measures focused on increasing β instead of reducing α. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The recent COVID-19 epidemics is posing formidable challenges

oth to the health and economic systems worldwide. In order to

ackle the ongoing epidemic, the countries faced with the COVID-

9 epidemic have used different strategies. In order to control the

pidemic one has to lower the reproduction number (also called

eproduction rate) ρ , eventually below the threshold, i.e ρ < 1. In

 simple SIR Model [2–6,1] , which we consider in this paper, ρ
epends on the infection rate α, the removal rate β and the total

opulation N . If ρ > 1 the epidemic starts with the number of

nfected individuals I growing exponentially, it reaches a maximum

 P at a time t P , then decreases down to zero at time t E when the

pidemic ends. 

Although for severe epidemics like the COVID-19 it is very diffi-

ult to keep the reproduction number ρ from the beginning below

he threshold, nevertheless containment measures soften the epi-

emic because they lead to a reduction of the epidemic peak I P . 

Basically, there are therefore three types of containment mea-

ures one can use. One can act on α by lowering it, for instance
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y forcing social distancing or by prophylaxis measures. One can

chieve the same result increasing β , e.g. by means of a prompt

trict isolation of infected individuals. Last but not least one can

educe the total population N by separating it in strictly non-

ommunicating compartments. 

The policies of different countries for fighting the COVID-19

sually contemplate a mixture of the three types of measures men-

ioned above. Obviously, the choice of focusing on one kind of

easure instead of another depends on a number of factors, which

nclude not only its effectiveness but also its feasibility and its so-

ial and economic impact. For instance most of the European coun-

ries have focused their COVID-19 fighting strategies on measures

imed at reducing the infection rate α. Countries like Korea and

ingapore favoured instead measures aimed at rising β . 

A general feature of the epidemic dynamics is that the reduc-

ion of the epidemic peak I P can be only achieved at the expenses

f increasing t P and t E , i.e of increasing the time-span of the epi-

emic. This is evident if one looks at the curves showing the be-

aviour of the number of infected I ( t ) as a function of time. Low-

ring α and/or increasing β will result in flattening the curves, i.e

n a reduction of the epidemic peak together with an increasing of

he width of the curve. The flattening of the epidemic curve may

ave both positive and negative effects, depending on a number of

https://doi.org/10.1016/j.chaos.2020.109940
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factors such as the capacity of the medical infrastructure to treat a

big number of infected. On the one hand for epidemics like COVID-

19 having a high rate of hospitalised infected with severe symp-

toms, reduction of I P and the slow down of the epidemic is neces-

sary in order to allow the health systems to treat them properly.

On the other hand, increasing t P means increasing the time-span

in which the containment measures are effective, with potentially

disruptive effects both on the economies and the live of the popu-

lations in the involved countries. 

In this paper we investigate, in the framework of the SIR model,

the impact of containment measures, which act on α and β , on

I P , t P , t E and on the epidemic speed ( d ρ/ dt | P ). In order to be able

to analyse, analytically, the dependence of the latter parameters

from the former we need an exact form for the solution of the

SIR dynamics in the time domain. Using a time reparametrization

we linearize the SIR equations. This allows us to solve exactly the

dynamics in the time domain. The form of the exact solution is

then used to derive the scaling behaviour of I P , t P , t E and of the

epidemic speed d ρ/ dt | P by reducing the infection rate α and by

increasing the removal rate β by a factor of λ. 

The main result of this paper is that containment measures

which achieve the same reduction of the size of the epidemic ( I P ,

the total, I E and average ˆ I P number of infected) impact differently

on its timescale. The occurrence time t P of the peak and the entire

time-span t E of the epidemic can be reduced by a factor 1/ λ if the

reduction of I is achieved by increasing the removal rate instead of

reducing the infection rate. This means that, unless a drastic slow

down of the epidemic is needed, epidemic containment measures

based on tracing, early detection followed by prompt isolation of

infected individuals are more efficient than those based on social

distancing. In the final part of the paper we apply our results to

the COVID-19 epidemic in Northern Italy. We show that the peak

time t P and the entire time span t E could have been reduced by

a factor 0.9 ≤ 1/ λ ≤ 0.34 with containment measures focused on

increasing β instead of reducing α. 

The structure of the paper is as follows. In Sect 2 , by means

of a time reparametrization, we are able to linearize the equations

for the SIR dynamics. This allows us to solve exactly the dynamics

in the time domain and to derive the scaling behaviour of I P , t P ,

t E and d ρ/ dt | P , by reducing the infection rate α → α/ λ or by in-

creasing the removal rate → λβ . We show that keeping I P fixed

its occurrence time t P and t E can be be reduced by a factor 1/ λ by

acting on the removal rate β instead on the infection rate α. This

will be discussed in Sect. 3 . In Sect. 4 we discuss approximate solu-

tions of the SIR model in which the reproduction number ρ < e . In

Sect. 5 we apply our results to the COVID-19 epidemic in Northern

Italy. We show that the peak time t P and the entire time-span of

the epidemic could have been reduced by a factor 0.9 ≤ 1/ λ ≤ 0.34

with containment measures focused on increasing β instead of the

reducing α. Finally, in Sect. 6 we state our conclusions. 

2. SIR model: time reparametrization and linearization 

The SIR model describes the deterministic dynamics of an in-

fective epidemic, characterized by the fact that individuals, which

have been infected and have recovered gain permanent immunity

[2–6,1] . Although the model is quite simple, it can be used to give

at least rough estimates of epidemic dynamics, and in particular of

the COVID-19 epidemic [7,9–11] . A generalisation of the SIR model

to take into account a large number of asymptomatic infectives -

hence more apt to describe the COVID-19 epidemic- has been pro-

posed in Ref. [9–11] . 

The homogeneous and isolated population of N individuals ex-

posed to the epidemic, is characterised at time t by the number

of susceptible S ( t ), infected and infectives I ( t ) and removed (recov-

ered, dead or isolated) R ( t ) individuals, with the conservation law
 = S(t) + I(t) + R (t) . The timescale of the epidemics is assumed

o be relatively short so that N can be assumed constant. 

The dynamic describing the evolution of the epidemic is deter-

inistic and described by the following, non linear, dynamical sys-

em: 

dS 

dt 
= −αSI, (1a)

dI 

dt 
= αSI − βI, (1b)

dR 

dt 
= βI. (1c)

The infective epidemic is characterised by two parameters: (1)

he infection rate (also called contact rate) α, which gives the tran-

ition rate between the class of susceptible and that of infected;

2) the removal rate β , which gives the transition rate between the

lass of infected and that of removed (1/ β gives the characteristic

ime for the removal of infected from the dynamics). 

From Eq. (1b) it is immediately evident that number of infected

ndividuals grows, i.e the epidemic spreads, only if 

 > γ , γ := 

β

α
, (2)

here γ is the epidemic threshold. Equivalently, one can introduce

he reproduction number ρ( t ): 

(t) = 

S(t) 

γ
, (3)

hich represents the expected number of new infections gener-

ted by a single infection. The epidemic spreads if the basic repro-

uction number ρ0 := ρ( t 0 ) > 1. The parameters α and β depend

n several factors. Some of them are attributes of the pathogen

ausing the disease and cannot be changed. Other are influenced

y the social behaviour of the individuals and can be therefore

hanged with containment and prophylaxis measures. 

The system (1a),(1b),(1c) is difficult to solve, analytically in

he time domain. Usually one proceeds by eliminating dt from

qs. (1a) , (1b) , then after integration one easily finds the function

(S) = I 0 + (S 0 − S) + γ log (S/S 0 ) , where I 0 , S 0 are the initial data

see e.g. Ref. [10] ). This form of I ( S ) allows one to derive some

ualitative and quantitative features of the epidemic dynamics but

ot its explicit time evolution. This latter can be only obtained by

umerical integration of Eqs. (1a) , (1b),(1c) . For instance, one can

asily find that, if initially we are above the threshold ρ0 > 1, I ( t )

rows till it reaches a maximum I P , then it goes down to zero at a

ime t E when the epidemic ends. 

The function I ( S ) allows to determine analytically the value

f the peak I P but not the time t P of its occurrence, nor its

ntire time-span t E , nor the speed of the reproduction number

 P := d ρ/ dt | P , nor the average value of the number of infected indi-

iduals at the peak ˆ I P . t P , t E , V P and 

ˆ I P have to be determined after

olving numerically the dynamics. This is a quite unpleasant fea-

ure because it prevents a clear understanding of the dependence

f t P , t E , V P and 

ˆ I P from the parameters α, β , which is a crucial

nformation for fighting the epidemic. 

In order to solve analytically the temporal dynamics let us

eparametrize the time introducing a new time coordinate τ de-

ned by d τ/d t = I(τ ) , i.e.: 

 − t 0 = 

∫ τ

τ0 

dτ ′ 
I(τ ′ ) , (4)

here t 0 = t(τ0 ) is the initial time. Using time-translations we can

ut without loss of generality, τ0 = t 0 = 0 . The new time coordi-

ate has a simple intuitive meaning, τ ( t )/ t gives the average value
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 (t) the number of infected at time t : 

ˆ 
 (t) := 

1 

t 

∫ t 

0 

I(t ′ ) dt ′ = 

τ (t) 

t 
. (5)

he time reparametrization (4) allows to linearise the system

1a),(1b),(1c) : 

dS 

dτ
= −αS, (6a) 

dI 

dτ
= α(S − γ ) , (6b) 

dR 

dτ
= β. (6c) 

This can be easily integrate to give: 

 = S 0 e 
−ατ , (7a)

 = I 0 + S 0 − S 0 e 
−ατ − βτ, (7b)

 = R 0 + βτ, (7c)

here S 0 , I 0 are initial data and R 0 = N − S 0 − I 0 . In the following

e will take R 0 = 0 . The function τ ( t ) is defined implicitly by 

 = 

∫ τ

0 

dτ ′ 
I 0 + S 0 − S 0 e −ατ ′ − βτ ′ . (8) 

xact solutions of the SIR model, which are equivalent to our

qs. (7a) , (7b),(7c), (8) have been derived in Refs. [12,13] using a

ompletely different approach. 

Although, the integral (8) cannot be evaluated analytically, it al-

ows to solve the temporal dynamics of the SIR model and to in-

estigate the scaling behaviour of the relevant quantities character-

zing the epidemic when the parameters α, β change. The previous

xpressions allow us to compute easily all the relevant quantities

or the epidemic peak. From Eqs. (6b) and (7a) one gets immedi-

tely τ P , the τ -time coordinate of the peak. The other quantities

re readily computed using Eqs. (7a) , 7b ), (7c), (8) : 

 P = I 0 + S 0 − γ − γ log 

(
S 0 
γ

)
, (9a)

 P = γ , R P = γ log 

(
S 0 
γ

)
, V P = −αI P , (9b)

P = 

1 

α
log 

(
S 0 
γ

)
, (9c) 

 P = 

∫ τP 

0 

dτ ′ 
I 0 + S 0 − S 0 e −ατ ′ − βτ ′ . (9d) 

The entire time-span of the epidemic t E can be computed set-

ing I = 0 in Eq. (7b) . Because I 0 is usually small compared to S 0 
t can be neglected, t E is obtained by first finding the (higher) root

E of the transcendental equation: 

 0 − S 0 e 
−ατE − βτE = 0 , (10)

nd then using Eq. (8) to compute t E . 

An other important quantity, which describes the intensity of

he epidemics is the total number I E of individuals that are infected

ver the whole time-span of the epidemics. Taking into account

hat I 0 is rather small and that initially S 0 = N, I E can expressed in

erms of the lower root S E of the transcendental equation obtained

y setting I = 0 in Eq. (7b) (see Ref. [9] ) for details. We have 

 E = N − S E , (11)

here S E is the lower root of the transcendental equation 

 − S E + γ log 

(
S E 

)
= 0 . (12)
N 

t  
. Scaling behaviour of epidemic parameters 

In this section we investigate the scaling behavior of the peak

uantities ( 9a ... (9d) , the total number of infected (11) , I E and t E 
y changing of the parameters α and β . It is already known

hat Eqs. (1a) ... (1c) are invariant under the scaling α → λα, β →
β, t → λ−1 t [9] . This scaling transformation leaves invariant the

pidemic threshold γ and tells us that we can increase (reduce)

he timescale of the epidemic by simultaneously reducing (increas-

ng) both α and β . However, this is not what we are interested

n. Actually, we want to know what happens to the epidemic pa-

ameters listed above when we increase the threshold γ . Let us

rst observe that both the number of infected at the peak I P (see

q. (9a) and the total number of infected I E (see Eq. (11) are

ecreasing functions of the parameter γ . In fact, we get from

q. (9a) and Eq. (12) , 

dI P 
dγ

= − log 

(
S 0 
γ

)
, 

dS E 
dγ

= −
(

γ

S E 
+ 1 

)−1 

log 

(
S E 
N 

)
. (13) 

e see that above the epidemic threshold ( S 0 / γ > 1), dI P / d γ is

lways negative, while being S E < N, dS E / d γ is always positive. 

It follows that if we want to reduce the peak and the total num-

er of infected we have to increase γ by a factor λ > 1. Because

ne can increase γ either by reducing α or by increasing β , we

ave to compare the effects on the peak parameters of these two

ifferent ways of increasing γ . 

We are therefore lead to consider two different scaling trans-

ormations: transformation T (1) , which reduces the infection rate:

→ λ−1 α, γ → λγ , λ � 1 (14)

nd transformation T (2) , which increases the removal rate: 

→ λβ, γ → λγ , λ � 1 . (15)

he peak quantities in Eqs. ( 9a ... (9d) and the τ E of Eq. (10) do not

ransform in a simple way under T (1) and T (2) , however the ratios

f T (1) and T (2) -transformed quantities follow simple scaling laws.

n particular, they remain invariant whenever the quantity depends

nly on their ratio γ and not on α and β separately. 

Using the following notation to denote rescaled quantities:

 

(1) 
P 

= I P (λ
−1 α) , I (2) 

P 
= I P (λβ) and similarly for the others quan-

ities, we get, 

 

(1) 
P 

= I (2) 
P 

, S (1) 
P 

= S (2) 
P 

, R 

(1) 
P 

= R 

(2) 
P 

, (16a)

 

(2) 
P 

= λV 

(1) 
P 

, τ (2) 
P 

= λ−1 τ (1) 
P 

, τ (2) 
E 

= λ−1 τ (1) 
E 

. (16b)

The transformation law for t P and t E can be derived by first act-

ng with the transformation T (1) on the integral (9d) , then acting

ith T (2) on the same integral and finally redefining the integra-

ion variable in the second integral τ ′ → λ−1 τ ′ . One obtains in this

ay: 

 

(2) 
P 

= λ−1 t (1) 
P 

, t (2) 
E 

= λ−1 t (1) 
E 

. (17)

inally, using Eqs. (5) , (16b), (17) and taking into account that I E 
epends only on γ (see Eqs. (11) , (12) ) we can easily show that the

verage number of infected 

ˆ I P and the total number of infected I E 
re invariant, i.e. 

ˆ 
 

(2) 
P 

= 

ˆ I (1) 
P 

, I (1) 
E 

= I (2) 
E 

. (18)

n important result follows from Eqs. (16a) , (16b),(17) and (18) :

pidemic containment measures, which have the same effect for

hat concerns I P , R P , S P , ˆ I P and I E , have different im pact on the oc-

urrence time t P of the peak, the whole time span of the epidemic

 E and on the epidemic speed V P . Choosing measures increasing

he removal rate β by a factor λ instead of reducing the infec-

ion rate α by a factor 1/ λ allows to drop t and t by a factor
P E 
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1/ λ. For instance by implementing epidemic containment measures

with λ = 2 we can reduce by a half both the time needed for the

epidemic to reach the peak and the whole time-span of the epi-

demic. It should be noticed that this epidemic timescale reduction

effect becomes more relevant for epidemics with high reproduc-

tion number ρ0 > > 1. In fact the factor λ is limited by λ < ρ0 ,

simply because for λ > ρ0 the epidemic does not develop at all.

Thus, if we have for instance ρ0 = 5 we can reduce the peak time

and the entire time-span of the epidemic until a factor of 1/5. 

Therefore, increasing β represents an efficient way to fight epi-

demics. If by increasing it we manage to bring ρ below the thresh-

old we simply stop the epidemic, but even if we do not go so far,

we can still reduce the size of an epidemic keeping under control

its timescale. 

The behaviour of the reproduction number speed V P in

Eq. (16b) explains clearly what is going on. If one acts on β in-

stead on α, V P increases, as expected, by a factor of λ. In short,

increasing β instead of reducing α, allows one to speed up the

epidemic dynamics keeping constant the number of infected at the

peak, the average number of infected and the total number of in-

fected. This is possible because the increasing of the removal rate

allows prompt removal of infected individuals. 

4. Approximate solutions for ρ0 < e 

In the general case the integral (8) cannot be computed analyt-

ically. Therefore the function τ = τ (t) has to be computed numer-

ically, by first performing numerical integration of the integral in

(8) to find t = t(τ ) and then inverting it. There is, however, a sit-

uation in which the integral (8) can be computed analytically and

the dynamics of the epidemic until the peak, can be expressed an-

alytically in closed form in terms of the time t , albeit in approxi-

mate form. 

For ατ < < 1 we can approximate the exponential in Eq. (8) by

e −ατ ≈ 1 − ατ . This approximation allows to solve the integral and

to invert the function t = t(τ ) . We find, 

τ ≈ I 0 
α(S 0 − γ ) 

(
e α(S 0 −γ ) t − 1 

)
. (19)

With this position we can easily write down the approximate form

of the solutions (7a),(7b),(7c) in terms of the time t . We quote here

only the form of I ( t ) and t P as a function of I P , 

I(t) ≈ I 0 e 
α(S 0 −γ ) t , t P ≈ 1 

α(S 0 − γ ) 
log 

I P 
I 0 

. (20)

Eqs. (19) and (20) are a good approximation only for ατ < 1. Be-

cause τ ( t ), is an increasing function of t , the approximation for the

dynamics is good until the peak, if ατ P < 1, which implies from

Eq. (9c) : 

ρ0 = 

S 0 
γ

< e. (21)

5. Application to the COVID-19 epidemic in Northern Italy 

The recent development of the COVID-19 epidemic in North-

ern Italy represents an interesting case for applying the results

described in the previous sections. The epidemic developed in

the three main regions of Northern Italy (Lombardia, Veneto and

Emilia-Romagna) we consider in this paper, starting from end of

February 2020 (although it may be possible that the epidemic was

circulating in the regions before that date). 

Altogether these three regions have around 20 millions of in-

habitants, we will therefore take N = 2 · 10 7 in our computations.

We take as initial value I 0 = 100 , which approximately corresponds

to the known cases of COVID-19 infected Northern Italy on Febru-

ary 23, 2020. The determination of the initial values of the other
wo parameters of the SIR model α0 and β0 is more involved.

hese initial values are completely determined by the pathogen

ecause they are not affected by the epidemic containment mea-

ures put into play. The value of α0 can be determined from the

xponential behaviour of the early dynamics, or equivalently from

he initial doubling time [7,8] . Using the raw data for the early dy-

amics of the epidemic in Northern Italy, Gaeta [7,8] has given the

stimate: 

0 = 

10 

−7 

6 

. (22)

he determination of β0 is even more problematic. This is because

e expect it to be sensitive to the presence of large cohort of

symptomatic infectives. We can estimate β0 from the basic re-

roduction number ρ0 , using Eq. (3) . Rough evaluations of ρ0 give

 number between 2 and 2.5, however the indeterminacy related

o the presence of large number of asymptomatic infectives may

esult in a much higher value for ρ0 . To be rather conservative we

ssume here ρ0 = 3 , so that Eqs. (3) and (22) give: 

0 = 

1 

9 

. (23)

he COVID-19 containment strategies put in place in Northern Italy

re a mixture of social distancing, social confinement, early detec-

ion and infection tracing. Although mainly focused of social dis-

ancing, these strategies contain all the previous ingredients, which

odify in different ways the parameters α and β . Social distancing

cts by reducing α, whereas systematic, prompt, and strict isola-

ion of infected individuals as a result of early detection and trac-

ng enhances β . Both effects rise γ and reduce in the same way

he amplitude of the peak I P , the average number of infected 

ˆ I P 
nd the total number of infected I E . 

Because it is almost impossible to disentangle the effects of the

arious containment measures on α and β in the real situation,

e will discuss and compare two hypothetical situations in which

he rising of γ , γ → λγ 0 , with γ0 = (2 / 3) · 10 7 , is obtained in two

ully distinct and complementary ways: 

• (1) We have exclusively social confinement containment mea-

sures: β is held fixed to its initial value β0 , whereas α0 is re-

duced by a factor 1/ λ. 

• (2) We have exclusively containment measures consisting in

prompt and strict isolation of infected individuals triggered by

early detection and tracing of infected: α is held fixed to its

initial value α0 , whereas β0 is increased by a factor λ. 

Being 1 ≤ λ < ρ0 we consider the following values: λ =
 , 1 . 5 , 2 , 2 . 5 , 2 . 9 . Using Eqs. (9a) ... (9d) we compute for these val-

es of the parameters α and β the peak quantities: peak ampli-

ude I P , the time t P (in days) of occurrence of the peak (computed

y numerical evaluation of the integral (9d) ), average number of

nfected 

ˆ I P and absolute value of the epidemic speed at the peak

 V P | (in days −1 ). Moreover, using Eqs. (11), (12), (10) , together with

q. (9d) , we compute numerically the total number I E of infected

ndividuals during the epidemic and its whole time span t E (in

ays). The results are shown in Table 1 . Our results are in accor-

ance with the scaling behaviour given by Eqs. (16a) , (16b), (17) and

18) . 

We see from Table 1 that the raising of the epidemic threshold

or γ from the initial value γ 0 first to 2 γ 0 then to 2.9 γ 0 let both

he number of infected at the peak and their average number dras-

ically sink from the order of magnitude 10 6 first to 10 5 and then

o 10 3 − 10 4 . This reduction is the same independently of the fact

hat if it is achieved by reduction of α (way (1)) or by increase of

(way (2)). Similarly, the total number I of infected individuals
E 
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Table 1 

Comparison of the effect of reduction of the infection rate α → (1/ λ) α versus increase of the removal 

rate β → λβ on epidemic parameter: peak amplitude I P , average value of infected ˆ I P , peak time t P , 

speed of reproduction number | V P | at the peak, total number of infected individuals I E and whole time- 

span of the epidemics t E . The total population is N = 2 · 10 7 , β0 = 1 / 9 and α0 = (1 / 6)10 −7 . The values of 

I P , ̂ I P , t P , | V P | , I E , t E are tabulated for values of λ = 1 , 1 . 5 , 2 , 2 . 5 , 2 . 9 . For sake of clarity we also show in the 

table the values of α and β corresponding to a given value of λ. 

λ α/ α0 β/ β0 I P ˆ I P t P (days) | V P |(days) −1 I E t E (days) 

1 1 1 6 · 10 6 1.13 · 10 6 58 10 −1 1.88 · 10 7 187 

1.5 0.66 1 3.07 · 10 6 5.74 · 10 5 109 3 · 10 −2 1.59 · 10 7 279 

1.5 1 1.5 3.07 · 10 6 5.74 · 10 5 72 5 · 10 −2 1.59 · 10 7 187 

2 0.5 1 1.26 · 10 6 2.45 · 10 5 198 10 −2 1.16 · 10 7 453 

2 1 2 1.26 · 10 6 2.45 · 10 5 99 2 · 10 −2 1.16 · 10 7 227 

2.5 0.4 1 2.95 · 10 5 6.42 · 10 4 426 2 · 10 −3 6.2 · 10 6 899 

2.5 1 2.5 2.95 · 10 5 6.42 · 10 4 170 5 · 10 −3 6.2 · 10 6 319 

2.9 0.34 1 1.12 · 10 4 3.7 · 10 3 1592 6 · 10 −5 1.3 · 10 6 3213 

2.9 1 2.9 1.12 · 10 4 3.7 · 10 3 549 2 · 10 −4 1.3 · 10 6 1107 
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i  

t  

t  

t  

i  

a  
rops from the huge value 1 1.88 · 10 7 till 1.16 · 10 7 (for λ = 2 ) and

hen to 1.3 · 10 6 (for λ = 2 . 9 ) 

On the other hand, the two ways of reducing I P and 

ˆ I P and I E 
ffect differently the occurrence time of the peak t P and the whole

ime span of the epidemic t E . By acting on β (way (2)) instead of

n α (way (1)) we can shorten these times by 33% (for λ = 1 . 5 ),

y 50% (for λ = 2 ) and even reduce it by almost 1/3 (for λ = 2 . 9 ).

orrespondingly, the speed of variation of the reproduction num-

er | V P | will be enhanced by the same factors. 

If the containment measures can manage to increase λ above 3,

e go below the threshold for ρ and the epidemic does not start at

ll. Obviously, in a real situation reducing α or increasing β is not

erformed once for all at the beginning, but occurs in steps. Our

ain result is that in order to try to stop the epidemic it is much

ore convenient to rise β instead of lowering α because even if

e do not manage to stop it, we are able to reduce its size and at

he same time to shorten its timescale. 

. Concluding remarks 

In this paper we have analysed, in the context of the standard

IR model for epidemic dynamics, the impact of different contain-

ent measures on size (the epidemic peak I P , the average number

f infected 

ˆ I P and the total number of infected I E ), the timescale

the occurrence time of the peak t P and the whole time-span t E )

nd the speed (time variation of the reproduction number | V P |) of

pidemics. Using an exact solution for the epidemic dynamics we

ave been able to derive the scaling behaviour of these quantities

nder change of the two parameters (the infection rate α and the

emoval rate β) of the SIR model, which can be controlled by the

ontainment measures. This allowed us to compare the impact on

ize, timescale and speed of the epidemic of containment measures

cting either on α or on β . 

The main result of our paper is that for a given reduction of

 P , ̂  I P , I E , the timescale and the speed of the epidemic are to a great

xtend sensitive to the kind of measures we put into play. By in-

reasing the removal rate β instead of reducing the infection rate

y a factor λ one can reduce the timescale of the epidemic by a

actor 1/ λ and increase the speed of the epidemics by a factor λ.

ence, flattening of epidemic curves I ( t ) achieved by reducing α or

ncreasing β are not equivalent. Flattening the curve by acting on

instead on α allows to keep under control also the width of the

urve. 

This means that containment measures based on increasing

, e.g. based on tracing and removal of infectives, have a differ-

nt effect than those that reduce α, e.g based on social distanc-
1 Notice that without containment measures at the end of the epidemic almost 

ll individuals have been infected. 

t  

b  

i

ng or lockdown. This his particularly true for what concerns the

imescale of the epidemic. If by increasing β we manage to bring

below the threshold we simply stop the epidemic, but even if

e do not go so far, we can still reduce the size of an epidemic

eeping under control its timescale. This is surely an advantage

hen the sanitary system can deal with the epidemic because in

his way containment measures do not have to be implemented

or a long time span. The situation is of course different if and

hen the sanitary system is overwhelmed by the epidemic, as it

appened in the first phase of the COVID-19 diffusion in many

ountries or regions, also as a result of its unexpectedly fast 

preading. 

An important point we have not addressed in this paper is the

etermination of the exact way in which the usual containment

easures used to fight epidemic, impact on the values of the pa-

ameters α and β . Whereas it is quite clear that social distancing

educes the parameter α and does not change β , the effect of other

easures like, early detection and contacts tracing is not a priori

vident. Early detection and contact tracing increase β only if im-

lemented on a large scale and followed by prompt and strict iso-

ation of the detected infectives. If this is not the case, it is likely

hat these measures just bring a small reduction of α
The recent analysis of Gaeta [10] of the different strategies used

n Northern Italy to tackle the COVID-19 epidemic seems to con-

rm this result. He found that simple early detection and contact

racing, while having an impact on the epidemic peak, do not sub-

tantially affect the timescale of the epidemic. On the other hand

e also showed that contact tracing if followed by prompt isola-

ion is the only efficient way to reduce the size of the epidemic,

ithout having to live with it a long time. The Veneto experience

hows that this was one of the factors underlying the success of

he containment strategy in that region. Thus the main lesson one

an draw from our results is that, epidemic containment measures

ocused on tracing, early detection followed by prompt removal

f infected individuals are more efficient to fight epidemics than

hose based on social distancing. 

Let us conclude this paper with some comments about the

ange of validity of our results. The SIR model is an oversimpli-

ed model for epidemic dynamics. Generalisations of it are nec-

ssary in order to give a good descriptions of real epidemics. For

nstance, in the case of the COVID-19 epidemic a generalization of

he SIR model seems to be necessary in order to take into account

he presence of a large set of a asymptomatic infective [9–11] . On

he other hand, the SIR model gives the bare bones of determin-

stic epidemic dynamics. For this reason we believe that, at least

t qualitative level, the main result of this paper - the possibility

o reduce the epidemic peak keeping under control its timescale

y acting on removal rates- could remain true for generalized and

mproved SIR-like models. 
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